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Abstract 
 

Present work deals with prediction of flank wear of drill bit using back propagation 

neural network (BPNN). Drilling operations have been performed in mild steel work-

piece by high-speed steel (HSS) drill bits over a wide range of cutting conditions. 

Important process parameters have been used as input for BPNN and drill wear has 

been used as output of the network. Inclusion of chip thickness as an input in addition 

to conventional parameters leads to better training of the network. Performance of the 

neural network has been found to be satisfactory while validated with experimental 

result. 
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1.  Introduction 
 

Drill wear is a very important issue in manufacturing industries. Drill wear not only 

affects the surface roughness of the hole, but also influences the life of the drill bit. 
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Wear in drill bit is characterized as flank wear, chisel wear, corner wear and crater 

wear. Since wear on drill bit dictates the hole quality and tool life of the drill bit, 

online monitoring and prediction of drill wear is an important area of research. Many 

works have been reported in the broad field of tool condition monitoring.  

Lin and Ting [1] studied the effect of tool wear as well as other cutting parameters 

on the current force signals, and established the relationship between the force signals 

and tool wear as well as the other cutting parameters.  
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Lin and Ting [2] in another work used back propagation neural network with 

sample and batch mode, and observed faster convergence of error in the case of 

sample mode. EI-Wardany et al. [3] used the vibration signal in drill condition 

monitoring. They presented a study using the kurtosis of the time domain and area 

under the power spectrum curve to monitor various type of drill wear. Lee et al. [4] 

used the abductive network modeling for drilling process for predicting the tool life, 

tool wear and surface roughness. Optimal network architecture is prepared based on 

predicted square error criterion. Li and Tso [5] used the regression model for 

monitoring the tool wear based on current signals of spindle motor and feed motor. 

Liu et al. [6] used the algorithm for synthesis of polynomial network for predicting 

(ASPNS) the corner wear in drilling operation. Choudhury and Raju [7] developed a 

regression model to measure the flank wear and corner wear of a drill bit in cutting 

operation. Kim et al. [8] used the william drill model for predicting and validating the 

progressive drill wear based on spindle motor power consumption. Davim and 

Antonio [9] used the evolution strategy for identifying the type of wear in poly-

crystalline diamond (PCD) drill bit with metal matrix composite as work-piece. They 

used the pareto optimal solution in the genetic algorithm for maximization of tool life 

and minimization of drill wear. Ertunc and Loparo [10] used decisions fusion center 

algorithm (DFCA) for monitoring online tool wear condition in drilling process, and 

used various numerical methods for predicting the condition of tool wear land. Tsao 

[11] used the radial basis function network (RBFN), and adaptive based radial basis 
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function network (ARBFN) to predict the flank wear, and compared their result with 

experimentally obtained data. Nouari et al. [12] used the third wave advantage 

software for predicting the tool chip interface temperature, which is major factor for 

drill wear formation in the dry condition. Abbu [13] used the vibration signature 

analysis for predicting the wear rate in drilling. He estimated three different patterns 

of vibration signature like harmonic wavelets coefficient, power spectra density and 

first fourier transformation (FFT). All these are inputs to the neural network model. 

Kim and Ramulu [14] used multiple objective linear programming models for 

optimizing drill hole quality with different cutting conditions such as speed and feed-

rate.  

 
 
 
2.  Back propagation neural network 
 

Back propagation neural network (BPNN) has been used in the present work. Basic 

structure of back propagation neural network having input, hidden and output layers, 

is shown in Fig. 1. Input layer receives information from the external sources, and 

passes this information to the network for processing. Hidden layer receives 

information from the input layer, and does all the information processing, and output 

layer receives processed information from the network, and sends the results out to an 

external receptor.  The input signals are modified by interconnection weight, known as 

weight factor wij, which represents the interconnection of ith
 node of the first layer to 

jth node of the second layer. The sum of modified signals (total activation) is then 

modified by a sigmoidal transfer function. 

Batch mode type of supervised learning has been used in the present case, where, 

all input-output pattern sets are presented to the neural network one by one, and then 

adjusted using average gradient information. During training, the calculated output is 

compared with the target output, and the mean square error is calculated. If the mean 

square error is more than a prescribed limiting value error, it is back propagated i.e., 

from output to input then weights are further modified till the error is within a 

prescribed limit. 

 
Mean square error E , is calculated by the equation (1), 
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3.  Experimental set-up 
 

Large number of experiments over a wide range of cutting conditions has been 

performed. In the present work, flank wear has been considered. Fig. 2 shows a 

schematic representation of the experimental set up used in present work. 

Radial drilling machine (Batliboi Limited, BR618 model) is used for the drilling 

operation. HSS drill bits with different diameters have been used for drilling in mild 

steel work-piece at different cutting conditions. Thrust force and torque are recorded 

through a piezo-electric Kistler 9272 dynamometer. Signal from the dynamometer is 

amplified through charge amplifier, and is stored in the computer through data 

acquisition system. Charge amplifiers of B&K 2525 model and Advantech PCL 818 

HG model data acquisition system are used in present work. Thickness of chip for 

each cutting condition is measured using micrometer. Flank wear is measured by the 

digital microscope with the help of Karl-Zeiss software interfacing. The maximum 

flank wear is used as the criterion to characterize the drill condition, and is obtained 

by measuring the wear at different points on either of the cutting edge. Photographs of 

gradual wear build-up process for three different feed-rates are shown in Fig. 3(a)-

3(c).  

 

4.  Results and discussion 
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Drilling operation has been conducted over a wide a range of cutting condition. 

Spindle speed has been varied in the range 315 rpm to 1000 rpm in six steps. Feed-

rate has been varied from 0.13 to 0.71 mm/rev in six steps. HSS drill bit of three 

different diameters have been used for drilling holes in mild steel plates. Various 

combination of spindle speed, feed-rate and drill diameter has been used to perform 52 

different drilling operations. For each of these conditions, thrust force and torque have 

been measured using the dynamometer, and the data is stored in the computer through 

the data acquisition system. Also corresponding to each cutting condition, maximum 

flank wear has been measured using digital microscope with interface of Karl-Zeiss 

software. For each cutting condition, the average thickness of chip is measured using 

the micrometer. The results of the experiment are tabulated in Table 1. 

 

 

4.1. Effect of important parameters on thrust force and torque 
 
 
  Figs. 4-10 show the effect of important cutting parameters on thrust force and 

torque during drilling operation. From Figs. 4-5 and Figs. 7-8 it could be observed that 

thrust force and torque increase as drill diameter and feed rate increase. This is due to 

increase of the un-deformed chip thickness, which is known as size effect [2]. It has 

also been observed that drill diameter has more effect on thrust force and torque than 

that of feed-rate, and as a result both thrust force and torque increase sharply beyond 

7.5 mm drill diameter. It may be due to increase of thickness of un-deformed chip 

with increase of drill diameter than that of feed rate. Increase of drill diameter along 

the circumferential direction imparts more chip load than that of increase in feed rate 

along the axial direction. Fig. 6 and Fig. 9 show that thrust force and torque decrease 

with increasing spindle speed. This is due to high temperature generation at the tool 

chip interface, and thus the strength of the work material reduces [2]. 

 

4.2. Wear prediction by neural network 

 

 Back propagation neural network algorithm has been used in the present work. 

To train the neural network thrust force, torque, chip thickness, spindle speed, feed-

rate and drill diameter are used as input parameters and corresponding maximum flank 
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wear has been used as the output parameter as shown in Fig. 1. From the 52 data sets 

obtained from the experiment, 39 have been selected at random for training the 

network, and remaining 13 are used for testing. The normalized data sets are used for 

training the network. The data sets are normalized in the range of 0.1 to 0.9 by using 

equation (2). 

min

max min

1 0.8 x xy
x x

⎛ ⎞−
= + ⎜ ⎟−⎝ ⎠

                                                                                                 ( )2  

where, 

x = Actual value, 

maxx =Maximum value of x , 

minx =Minimum value of x ,                                         

y =Normalized value corresponding to x .  

  

 The number of hidden layer, number of nodes in the hidden layer, learning rate 

( )η , and momentum coefficient ( )α  are decided by trial and error. 

 

4.2.1.   Neural network architecture without chip thickness 

 

 Different combination of learning rate (η ), and momentum coefficient ( )α  and 

number of hidden layer have been tried. Depending upon the mean square error and 

convergence rate, optimum network architecture has been arrived at. In the present 

case, 5-4-1 network with η =α =0.3 has been found out to be the optimum network 

(Table 2). Fig. 10 shows the variation of training and testing error with number of 

iteration for the network used in the present case. The wear predicted by the neural 

network has been compared with the corresponding actual experimental values and 

are shown in Fig. 11. It could be observed from the figure that the predicted wear is 

within ± 7.5% of the actual experimental values of the flank wear. 

 

4.2.2.   Neural network architecture with chip thickness 

 

An attempt has been made to study the effect of including chip thickness as an 

input to the neural network in addition to the input used in the earlier network (5-3-1). 
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Best network architecture has been again arrived at by trial and error of different 

combination of learning rate (η ), momentum factor ( )α and number of hidden nodes. 

Table 3 shows some of the combinations tried and corresponding mean square error 

and number of iterations. Depending upon the mean square error and the convergence 

rate, 6-5-1 network with η =0.8 and α =0.7 has been found to be optimum network in 

the present case. Fig. 12 shows the variation of mean square error for the 6-5-1 

network with η =0.8 and α =0.7. It could be observed that mean square error value is 

not only much lower compared to the 5-3-1 network used earlier but also arrived at 

much less number of iteration. Predicted values of flank wear have been compared 

with corresponding actual measured values and shown in Fig. 13. It could be observed 

that the predicted values are within ± 2.5% of the actual values which is much less 

compared to the network used earlier 5-3-1(without chip thickness). 

 
5.  Conclusions 
 

A methodology for prediction of drill wear using back propagation neural network 

has been developed. Effect of various important parameters on thrust force and torque 

has been studied. Present study shows that back propagation neural network could be 

trained for future prediction of flank wear during drilling operation. It has also been 

observed that inclusion of chip thickness as input to the neural network not only 

reduces mean square training error but also it is achieved at a much less number of 

iteration. The predicted wear from neural network is very close to the actual wear 

measured experimentally. 
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Fig. 1. Neural network with six input nodes and one output node. 
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Fig. 2. Schematic diagram of the experimental set-up. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
Fig. 3(a). Flank wear at diameter 10 mm, spindle speed 500 rpm, and feed-rate 0.13 

mm/rev (Drill bit : HSS, Work-piece : Mild steel). 
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Fig. 3(b). Flank wear at diameter 10 mm, spindle speed 500 rpm, and feed-rate 0.18 

mm/rev (Drill bit : HSS, Work-piece : Mild steel). 
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Fig. 3(c).  Flank wear at diameter 10 mm, spindle speed 500 rpm, and feed-rate 0.25 

mm/rev (Drill bit : HSS, Work-piece : Mild steel). 
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Fig. 4. Variation of average thrust force with drill diameter at different feed-

rates. 
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Fig. 5. Variation of average thrust force with drill diameter at different speeds. 
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Fig. 6. Variation of average thrust force with spindle speed for different drill 

diameters. 
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Fig. 7. Variation of average torque with drill diameter at different feed-rates. 
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Fig. 8. Variation of average torque with drill diameter at different speeds. 
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Fig. 9. Variation of average torque with spindle speed for different drill 

diameters. 
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Fig. 10. Variation of mean square error with number of iteration for 5-3-1 neural 

network with α =0.3, η =0.3  (without considering chip thickness). 
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Fig. 11. Comparison between experimental value and predicted  value of flank wear 

by 5-3-1 neural network (without considering chip thickness). 
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Fig. 12. Variation of mean square error with number of iteration for 6-5-1 neural 

network with α =0.7, η =0.8  (considering chip thickness). 
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Fig. 13. Comparison between experimental value and predicted value of flank wear by 

6-5-1 neural network (considering chip thickness). 
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Table 1 
Experimental data for mild steel work-piece 
 
Serial 
no  

Drill 
diameter  
(mm) 

Speed  
(rpm) 

Feed 
(mm/rev) 

Force   
(N) 

Torque 
(N-m)  

Chip 
thickness 
(mm) 

Wear  
(mm) 

1 10 500 0.13 3256 60.00 0.72 0.1 
2 7.5 500 0.13 667 14.34 0.67 0.13 
3 5 500 0.13 567 9.58 0.52 0.08 
4 10  500 0.18 3298 62.51 0.82 0.17 
5 7.5  500 0.18 692 14.58 0.76 0.14 
6 5 500 0.18 584 10.12 0.41 0.04 
7 10  500 0.25 3789 67.54 0.82 0.1 
8 7.5  500 0.25 1004 17.22 0.77 0.3 
9 5 500 0.25 956 14.56 0.53 0.15 
10 10 400 0.13 3892 62.76 0.89 0.12 
11 7.5 400 0.13 712 15.24 0.81 0.09 
12 5 400 0.13 612 9.89 0.54 0.07 
13 10 400 0.18 3935 64.72 1.1 0.07 
14 7.5 400 0.18 744 15.65 0.94 0.13 
15 5 400 0.18 624 10.96 0.55 0.03 
16 10 400 0.25 4056 68.21 1.2 0.09 
17 7.5 400 0.25 1045 17.3 0.95 0.08 
18 5 400 0.25 997 15.32 0.72 0.14 
19 10 630 0.13 2854 51.65 0.66 0.04 
20 7.5 630 0.13 621 11.25 0.63 0.17 
21 5 630 0.13 554 7.64 0.47 0.05 
22 10 630 0.18 2988 57.62 0.77 0.11 
23 7.5 630 0.18 675 12.15 0.69 0.07 
24 5 630 0.18 569 8.22 0.49 0.04 
25 10  630 0.25 3426 61.11 0.8 0.1 
26 7.5 630 0.25 978 16.54 0.73 0.2 
27 5 630 0.25 944 13.24 0.51 0.05 
28 10 800 0.36  2547 48.95 0.87 0.0775 
29 7.5 800 0.36  649 10.62 0.68 0.0525 
30 5 800 0.36 523 6.24 0.48 0.045 
31 10  800 0.5 3021 52.24 0.94 0.082 
32 7.5 800 0.5 696 13.35 0.78 0.074 
33 5 800 0.5 547 8.64 0.57 0.0675 
34 10  800 0.71 3501 57.61 1.1 0.094 
35 7.5 800 0.71 956 15.24 0.82 0.088 
36 5 800 0.71 912 10.37 0.59 0.074 
37 10 315 0.36  4114 71.56 1.15 0.096 
38 7.5 315 0.36  1068 18.27 0.88 0.0832 
39 5 315 0.36 1034 11.54 0.61 0.0725 
40 10 315 0.5 4181 72.62 1.2 0.102 
41 7.5 315 0.5 1112 19.44 0.84 0.085 
42 5 315 0.5 1084 12.85 0.58 0.076 
43 7.5 315 0.71 1434 23.62 0.88 0.105 
44 5 315 0.71 1325 18.14 0.65 0.086 
45 10 1000 0.36  2423 44.51 0.85 0.068 
46 7.5 1000 0.36  584 6.47 0.72 0.044 
47 5 1000 0.36 489 2.36 0.57 0.038 
48 10 1000 0.5 2473 46.32 1.01 0.074 
49 7.5 1000 0.5 607 7.38 0.95 0.062 
50 5 1000 0.5 503 3.15 0.65 0.0575 
51 7.5 1000 0.71 921 8.12 0.96 0.078 
52 5 1000 0.71 884 4.57 0.66 0.065 
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Table 2  
Training error for different neural network architectures (without considering chip 
thickness) 
 
 
Serial  

number  
 

Neural 
network 

architecture 

Momentum 
coefficient ( )α

Learning 
rate ( )η  

Mean 
square 
error 

Number 
of 

iteration 

Maximum 
predicted 
error (%) 

Minimum 
predicted 
error (%) 

1 5-3-1 0.7 0.8 0.00766 5076 55.1 2.02 

2 5-3-1 0.8 0.9 0.00650 5394 61.0 3.71 

3 5-3-1 0.5 0.6 0.00770 11002 51.1 1.1 

4 5-3-1 0.6 0.4 0.00770 11340 42.3 0.4 

5 5-3-1 0.3 0.3 0.00700 33371 33.5 0.56 

6 5-4-1 0.7 0.8 0.0050 8214 95.1 3.2 

7 5-4-1 0.8 0.9 0.0070 5048 54.2 1.2 

8 5-4-1 0.5 0.6 0.0050 3737 81.4 3.4 

9 5-4-1 0.6 0.4 0.0050 3816 75.4 3.7 

10 5-4-1 0.3 0.3 0.0050 1068 56.5 3.2 

11 5-5-1 0.7 0.8 0.0090 2554 43.5 1.1 

12 5-5-1 0.8 0.9 0..0090 6146 48.1 0.5 

13 5-5-1 0.5 0.6 0.0060 727 72.5 3.4 

14 5-5-1 0.6 0.4 0.0060 458 55.2 5.7 

15 5-5-1 0.3 0.3 0.0060 629 43.1 2.1 
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Table 3  
Training error for different neural network architectures  (considering chip thickness) 
 
Serial  

number  
 

Neural 
network 

architecture 

Momentum 
coefficient ( )α

Learning 
rate ( )η  

Mean 
square 
error 

Number 
of 

iteration 

Maximum 
predicted 
error (%) 

Minimum 
predicted 
error (%) 

1 6-3-1 0.7 0.8 0.0035 6533 28.68 0.97 

2 6-3-1 0.8 0.9 0.0035 5425 28.57 5.29 

3 6-3-1 0.5 0.6 0.0032 16244 28.41 2.37 

4 6-3-1 0.6 0.4 0.00770 18143 28.49 3.78 

5 6-3-1 0.3 0.3 0.0028 1307 19.22 1.85 

6 6-4-1 0.7 0.8 0.0028 14283 28.04 6.22 

7 6-4-1 0.8 0.9 0.0030 8049 28.17 7.57 

8 6-4-1 0.5 0.6 0.0050 13856 24.38 1.32 

9 6-4-1 0.6 0.4 0.0050 16456 24.44 1..17 

10 6-4-1 0.3 0.3 0.0050 34911 24.81 0.450 

11 6-5-1 0.7 0.8 0.0010 530 7.465 0.00016 

12 6-5-1 0.8 0.9 0..0060 4460 28.52 1.87 

13 6-5-1 0.5 0.6 0.0010 885 7.94 0.021 

14 6-5-1 0.6 0.4 0.0010 998 7.88 0.035 

15 6-5-1 0.3 0.3 0.0060 1983 8.22 0.61 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


