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The explicit construction and classification of super Kac-Moody algebras
associated with a Z,-graded Lie algebra is presented. The canonical realisa-
tion of such algebras and the central extension problem is also briefly discussed.

1. INTRODUCTION

In recent years the study of infinite-dimensional Lie algebras popularly known
as Kac-Moody algebras! and loop algebras? has got wide acceptance in the context
of 2-dimensional conformal field theory3, string theory? and soluble statistical
models®. The existence of such Lie algebras is also felt while analysing the
symmetries associated with non-linear systems®’? (equations). Even in linear equa-
tions, the symmetry possesses a loop algebra structure®’®. From all these angles, the
study of classification theory and representations of infinite-dimensional Lie algebras
is highly promising. We do have some systsmatic analysis of generating Kac-Moody
and loop algebras from finite dimensional Lie algebras. Kac! has thrown a lot of
light on the construction of Verma modules (the highest weight representation) for
such Lie algebras. The reducibility properties and complete classification of all
infinite dimensional Lie algebras are yet to be completely analysed. Here, following
the work of Goddard-Olivel® and Kacl, we present a systematic construction of
infinite dimensional Lie algebras (super) starting from a Zz-graded Lie algebra. The
classification of Zz-graded Lie algebras (from cohomological analysis) have been dealt
with in detail elsewherell 14, We thus start from a Z2-graded Lie algebra and from
the knowledge of their automorphic structures construct (super) Kac-Moody Lie
algebras. We make no pretention that in the present analysis, we have only addressed
to the construction and classification of (super) Kac-Moody algebras. The representa-
tions of such Lie algebras will be presented in future communication. Our material

is arranged as follows.

In section 2, we present a brief resume of Zs-graded Lie algebras and the
Dynkin diagrams. We have introduced the notion of extended Dynkin diagrams for
such super Lie algebras from the structure of the extended cartan matrices. These
diagrams correspond to the identity automorphism of Zs-graded Lip algebras and
correspondingly yield untwisted infinite dimensional Kac-Moody Lie algebras. From
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486 K. C. PATI AND K. C. TRIPATHY

the outer automorphisms of Zs-graded Lie algebras, we obtain exhaustive the
twisted infinite dimensional Kac-Moody algebras.

In Section 3, we introduce the Chevally basis and from the vanishing properties
of the Cartan matrix generate the (super) Kac-Moody algebras.

In section 4, we intioduce the canonical basis for realizing the (super)
Kac-Moody algebras and analyse the central extension properties. As expected, if
the Za-graded Lie algebia is strongly semi-simplel4, then the central extensions of
Kac-Moody algebras are trivial. We also discuss the role of 2-cocycles in the central
extension problem. The computation of 2-cocycles have been discussed elsewhere
using spectral analysis!4. The study of central extension problem is intimately
connected with the deformation of Zs-graded Lie algebras and the super quantization
problem.

In an appendix, we discuss the degeneracy properties of the roots introducing
the Cartan-Weyl basis for the super Kac-Moody algebras.

2. RESUME OF SUPER LIE ALGEBRAS
A super Lie algebra is a Za-graded Lie algebra L = Ly & Lz (i.e if a € Le;
b€ Lp;|a|,|B) =1{0,1} then[a, b] € Lasp) with a bracket[,] satisfying the
following properties
la, b} = — (— 1)1 [p, 4] R))
fa, (b, cll = [la, B], c] + (— DI*PL[B, [a, c]). (2.2)

Here we briefly review some important theorems and lemmas (without proof)
regarding the classification of simple super Lie algebra.

Definition 1—A super Lie algebra L = Ly @ L7 is called simple if it satisfies
the following conditions.

(i) The representation of Ly on Ly is faithful and [Ly, LT] = Lg.
(ii) The representation of Ly on Lt is irreducible.

Definition 2—A finite dimensional super Lie algebra L = I3 & L1 is called
classical if it is simple and the representation of Ly on Li is completely reducible.

Now if L is a simple super Lie algebra,, then an invariant form on it is cither
non-degenerate or identically zero and any two invariant forms on L are propor-
tional. Throughout this article we discuss about simple super Lie algebras with non-

degenerate Killing forms. A simple super Lie algebra with non-degenerate Killing
form is classicall®.

Theorefn 1— A simple finite dimensional super Lie algebra with non-degenerate
Killing form is isomorphic to one of the simple Liz algebra or to one of the following



SUPER KAC-MOODY ALGEBRA 487
classical super Lie algebras A (m, n), m % n; B(m, n), C (n), D (m, n), m — n # 1,
F(4), G(3): We have
Amn)=SL{m+ 1I,n+ D, m%n
B(m,n) = OSP(2m + 1, 2n)
Cn) =0SP2,2n—2)
D (m, n) = OSP 2m, 2n).

F (4), G (3) are exceptional super Lie algebras of 40 and 31 dimension respectivel /.

Root Space Decomposition of Super Lie Algebras

Let L = Ly ® LT be a Zg-graded Lie algebra and 7 be Cartan subalg:zbra.
h is also called Cartan subalgecbra of L. A Cartan sub algebra of a classical super
Lie algebra is diagonalizable. If h* be the dual space of & we can now write L as

L= & L2 .23
AER
and
[LA (), LP (M) C LAM*(h) % A, u € h*. ... (2.49)

Let us define

Ag =€ |a=0L2 () # {0}

AT = {A € i*| L’ll (h) # {0}

A=A5\JAT.

The clements of A are called the roots of L w.r.t. i, Ag is called the system of even
roots and AT, is called the system of odd roots which are nothing but systam of
weights of the representation of Ly on Ly . Since & is a Cartan subalgebra of Lg,
we have L (h) = h.

Thus we can write

L=hn & U & 11X ..(2.5)
AEAG 0 rear 1

Like ordinary Lie algebra, here also we can define a system of simple roots
m = {o1 ... ar} C A, if cvery other root of the super Lie algebra can be obtained as a
result of linear combination of thzse system of simple roots. ris called the rank of
the super Lie algebra. Now we can define an r X r square matrix called Cartan
matrix with elements ats = «s (hi) which can be read of from the Dynkin diagram.
The rules are samz as ordinary Lie algebras with a little modification. A super Lie
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algebra of rank r can be represented by a Dynkin diagram consisting of » white, grey
or black circles. The white circles imply even roots whereas the black and grey
citcles denote odd roots. The roots are expressed in terms of linear functions of
e1,e2 ...em and 81, 82 ... 8, which forms a unit basis of A*, with inner product
(es,e9) =351 =i, j=m @k, 81) = — 31 1 =k, I < n; (e1, ) = 0. The white
and black circles correspond to 2 in the diagonal of the Cartan matrix while grey
circles correspond to zero in the diagonal. If the ith and jth aircles are not joined
then atf = an = 0.

(a) Root System

We now list all the simplest root systems of super Lie algebras.

(i) A(m,n) : The roots are expressed in terms of e1 ...em,1, 31 == emya...,
Ingl = emyny

Ay ={es — ej, 8 — 85} i # j; Ar = {F et — 3j}.
The simplest root system is

{ex — e2, ea — e3 ... emy1 — 81, &1 — 82 ... 8 — Bnya)

(i) B(m,n) : The roots are expressed in terms of e1 ... em, 31 = eamy1...,

dn = eamin

Ay = {Let Les, +25t, +ei, +8c +87), i #j
Ay = {8, tes L35}

The simplest root system is
Oy — 3, .. 8% —e1,e1 —e2 ... em_1 — em, em} for m > 0.
{81 — 83, dn_3 — On, 8} for m = 0.

(iii) C (n) : The roots are expressed in terms of e1, 81 = e3, ..., on-1 = en,1

Ag = {£28;, b0 £35}, Ay = {te1 + 3}

One of the simplest root system is
+ {et — 81, 8 — 32, ..., 352 — On_1, 28n_1}

(iv) D (m, n) : The roots are expressed in terms of linear function of e1 ..., em,
31 == gomyl, ..., On = eamyn.

Ay {£ et £ e1, £268i, 48 435}
Ar = {dei £ 335}
One of the simplest root system is

{81 — 82, ...8n — e1, e1 —e2 ... em-1 — em, em-1 + em}
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(v) F(4) : The roots are expressed in terms of e1, e2, e3 corresponding to Bs and 8
corresponding to A1.

Ay = {Let tes, et +08} i #j
Ay = {3 (£ e1 & ez + e3 £ d)}.

One of the simplest such system is
{(ecr+ea+e3+9), —e1, e1 — €2, e2 — e3).

(vi) G (3) : The roots are expressed in terms of linear functions of ei, ez, e3
corresponding to G2 and e1 + e2 + es = 0 and & corresponding to A41.
Ay = {et — e1, e1, &+ 23}, Ar = {4 et + 3, £+ 8}.
The unique system of simple roots is

{8 + e1, ez, e3 — e2}.
(b) Extended Root System

We know that the r X r square Cartan matrices constructed from the system of
simple roots of a super Lie algebra of rank r are indecomposable and the deter-
minants do not vanish. We now extend the simple root system by adding one more
extra 1oot which is the negative of the highest root. This new (r + 1) X (r + 1)

;Super Lie Super RKac-Moody
algebras Dynkin diagrams algebras Extended Oynkin diagrams
A(m.n) OO - RO -0 A (mny
S R - e S

B(m.n) (eSS o N N = 0] s(”(m,n) OO0 — - -®- - -O20
B (0 n) 0—0 - - - B - - Bm(o,n) B - - —- @ ~ O5r 8

i
C(n) @—O-- — = - OO0 C()(n) 0D

) [§)] :
D(m,n) oS MRUEN— D' (m ,n) B i
, e

F(4) S—rX0—0 (4) OPpEP——I==D—0

.
613 &—O=k0 Vi3 Cp-——O=0

f

Table I
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square matrix is called the exteneded Cartan matrix and the corresponding Dynkin
diagram is called extended Dynkin diagram. It is easily seen that the determinant of
the extended cartan matrix is null. These extended root systems and extended
Dynkin diagrams yield the super Kac-Moody algebras (infinite dimensional). In
Table 1, we have shown the Dynkin diagrams for the super Kac-Moody algebras
while in Table II we have examined some special case of super Kac-Moody algebras
and displayed the cotresponding cartan matrices.

However, this list does not exhaust all possible Kac-Moody algebras. The
above extended Dynkin diagrams correspond to identity automorphism of the super
Lie algebras. Such algebras are called untwisted Kac-Moody algebias.

"Super . i ) Extended Extended
clil'éaebm Dynkin diagram Cartan matrix Carfan matrix Dynkin diagram
(2.1 0 0 (o1 0 0 1]
42 1 0 -1 2-1 0 0
A(2,1) O—O0—@—0 01 0 1 0-1 2 -1 0
lo 0 = 2] 00-1 01
{—1 00 -y 2
2.1 0 o] |f2-10 0 0
O =50 L1 0 1 © L2 2-1 0 © SO0
B(2,2) 0 -1 2 - 0 -1 01 DO
0 0 -2 2] 0 0-1 2 -1
Lo 0 0-2 2
0 1 0 0-2 1t O]
C(3)
! &—0==0 a2 -2 2 01 0 %
0 -1 2 a2 -2
0 0 2
{2-1000 (24 00 0 0
101 00 2 2-1 0 00
A
pte) —o < 0-1 2-1- 0-1 01 00 m@_o@
0 0~ 2 0 0 0 -1 2 -1-1] ],
b 04 0 2 00 04 20
0 0 0-1 0 2
0t o0 © 21 00 0
1t 22 0O k3 0 1 0 O
F(L) —0r0—0 0 -1 2 -1 0-1 2 -2 0 OP@—O0-0
00 1 2 00-1 2 1
00 0-1 2]
0 1 0 [2-1 0 ¢
S —O==0 -1 2 -3 . 0 1 0
o -t 2 0 -1 2-3 CBER—0eS0
o 0 -1 21

Table II
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(c) Outer Automorphisms of Super Lie Algebras and the Twisted Kac-Moody Algebras

The outer automophism of a super Lie algebra L = Ly ® LT is defined as OQut
L = Aut L/ag, where a¢ is the connected comjonent of the identity of a Lie group

with Lie algebra Lo.
algebra.

«g is embedded in the automorphism group of the supei Lie

Super Lie algebras and ther
automorpnisms ( the superscript
indicates the order of automorphisms)

Extended Dynkin diagrams

R
SL (m,n)

OSP(”( 2mel | 20)

2
St )(2m+1 2n)

OSP(])( 2, 2n)

M
05SP" ' (2m, 2n)
(2)
St (2m, 2m)

Ot - — — — ey
(2) e — - —.2®
OSP (2m ,2n) O ——— - 430
-~ 4 1
Ulamat 2ne) e e g
F(I)(A) OED——OO—0
0“)(.3) RO Ot

Table 1II
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Empirically, we see that if ¢ € Aut L, N = order ¢ then we can divide L into
eigen spaces Ls where

Ly = {l)|a(l) = le2*v-1JIN} ...(2.6)

The outer automorphisms of super Lie algebra has been studied in detail elsewherel®,
Here we briefly mention some of the resuits 1elevant to our present analysis. We list
all the extended Dynkin diagrams (Table III) obtained through outer automorphism.
In the Dynkin diagrams, each point can be a white or a grey circle. The different
Dynkin diagrams for the same super Lie algebra accounts for the parity of the no. of
grey circles, and the different no. of white and grey circles and all possible system of
simple roots.

The diagrams which correspond to second order outer automorphism give rise
to twisted super Kac-Moody algebras. Here we would like to stress that the extended
Dynkin diagrams are more symmetrical than Dynkin diagrams.

3. CHBVALLEY BASIS AND SUPER KAC-MOODY ALGEBRAS

Every super Lie algebra can be written in a Chevalley basis associated to system
of simple roots. 1f A =as be a cartan matrix of a super Lie algebra of rank r and
L.1, Lo and L1 be the vector spaces with bases {fit }, {f}, {et} G = 1, 2, ..., r) respec-
tively, then we have

les, f4] = 8¢ I
[, e} = ais es
[, fsl1=—apfi 33D
[hs, hs] = 0O
deg i = 0, deg ei = deg fi = 0 for even root
deg e¢ = deg ft = 1 for odd root.

Conversly, given any 1 % 1 matrix 4 = ai7 satisfying the above relation (3.1) and
having properties of a Cartan matrix for super Lie algebra i. e. a1 €Z, ati = 0 or 2,
ai§ = 0 = asi = 0 defines an abstract complex super Lie algebra G (4), which is
essentially the super Kac-Mocdy algebra defined by Cartan matrix A. We can have
two conditions.

() A is positive definite in the sensu that all the principal minors of A4 are
greater than zero. Then G (A) becomes a finite dimensional super Lie algebra.

(i1) We find also that by admitting a single isotropic vector (negative of the
highest root vector) in the simple rcot system, det 4 = 0 and all the proper principal
minor of A are greatur than zero. That means A4 is not an invertible matrix and G
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(4) becomes infinite dimensional. These are affine super Kac-Moody algebras and
they correspond to extended Dynkin diagrams.

4. CANONICAL REALISATION OF SUPER KAC-MOODY ALGEBRAS

Lat G be a super Lie algebra of all » X n matrices with complex entries on ¢

A
and ¢ [z, 71} be the ring of Laurent polynomial. Then a loop algebra G is defined
as G(¢[t, t 1) i.e. as the complex super Lie algebra of n X n matrices with Laurant
Polynomial as entries. Alternatively, we can say G asthe super Lie algebra of
maps from unit circle S! to super Lie algebra G with finite laurent series
and Lie bracket is defined pointwise. The vector space in which G acts is ¢®, while

the loop algebra (; acts on ¢ ([z, ~1])*. We know that ¢* has a standard basis u1 ...
un of n X 1 column vectors in which u¥ (1 £ k = n) has 1 in the kth row and 0 else-
where while ¢ ([z, £-1]*) consists of # X 1 column vectors with Laurent polynomial
in t as entries. The vector vakes = 7% us form a basis of C (£, t2))* findex by Z.
Thus we get a identification of ¢ ([z, r™1]® with ¢>. The loop algebra is infinite di-
mensional. This will become more clear in the following steps.

A Ze-graded Lie algebra or super Lie algebra involves both commutator and
anticommutator. The generaiors of the super Lie algebra have the following relations.

[0° Q1 = £ 0 ..(4.La)
[0* v°] = Fg" v® ...(4.1b)
e, v = 4% o (410

[,], {,}denote commutator and anticommutator respectively. The generators of
Z3 graded Lie algebra also satisfy the following relations.

(e, (@b, voll + v>, [Q%, Q%11 + (@, (v, @%ll =0 ...(4.2.2)
oo, (v, VBl + {v=, 0%, V® + {[V®, Q%L Vv*} = 0 ...(4.2.b)
e, 8 vl + v, (v, VB + VB, {1V, v}l = 0 ..(4.2.0)

All the above relations can bz written in a more compact from i. e., if X* denotes all
sct of generators Q%’s and V*’s, then we set the degree of the generator as | 9% | =0
and | V* | = 1. Q%s are called even while ¥*’s are called odd.

Then defining the graded bracket [,], we have

X X = x* X — (1) Xy ye L 43)

The relations (4.1. a) — (4.1.b) can be written as
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X", X1 = C.* Xx= ..(4.4)
where the structure constants satisfy

ct = (-1 Lkl [ oo

and the relations (4.2.a ~ 4.2.c) are written as

(= WD g s e 4 (=0 T E e 3oy

+ (= = e ppm o — o, (4.9

Now, if we denote the generator of the locp algebra AG by X* it can be given by

X, =X"@mn€Z X*€G. ...(4.6)
Hence for loop algebia, the commutation relations can be written as

Xt, X,] = [X®m X* @

= [X*, X"] @ m*»

- C:‘ X- Q tm+n

(x

m °

X, =’ Xp,,mn€L. E)

m

This is the loop algebra or untwisted Kac-Moody without central extension.

4b. CENTRAL EXTENSION

Central extension of loop algebras constructed from a super Lie algebra plays
a vital role in super quantization problem.

A
Let G = C|[z, t1] ® G be the loop algebra where G is a super Lie algebra and
~ A
C lt, t711 is a ring of Laurent polyrncmial. Then G = G + ¢k is a central extension

of G by a i-dimensional centre ¢k.

Explicitly,

and
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¥ v Ky -
[Xm ? X ]= C- Xm+n'

Here we introduce an operator do = — ¢ d/dt such that

[X,';,do]=mX:.

)
Now, if X!, , X € G, then

m*
1 v v o v
(X, , X, e = [X* X, 1+ kQ X, , X,) ...(4.8)
and
*
k, X,,1=0 ..{4.9)

where  is a 2 cocycle and is a bilinear functional satisfying

| x5, x|
Qx, ., X,)=—(1 Qxt xi) ..(4.10)
and
Q &, Ix, . X1 D
[xhix, | ,
=Q(x, . x1 X;)+ (=1 Qu, [X., x)

.(4.11)

The central extension is called trivial if the cocycle @ is also coboundry, i. e.,
Qe (Xt X, )= F (X} X, D ..(4.12)

where F is a linear functional on G.

It has been established that there is no non-trivial central extension of a semi-
simple Lie algebra. But the same need not be true for Zz-graded Lie algebra. Only
for strongly semi-simple super Lie algebras the central extension is trivial. The com-
putation of 2-cocycles, for super Lie algebras has been discussed by Tripathy and

A
others11-14  Here we calculate the 2-cocycles for G where G is strongly semi simple.

Using the freedom of adding a coboundry, we can now write

A
Q («, do) = 0, where « € G. Now with the help of the equation (4.10) and
(4.11), we have
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Q(x%, x 1, do) =

XX,
Q (X, ,[X, d) — (=1 Q(x, [X, ,do

, | X 11Xy |
=n Q (X4, X)) —m(=1) (X, .X,)

=n0(xh X, )+ mQ (x4, x2)

(m+m Q (X ,X; ) =0
so that
Q (X, ,X, )~ 3m s

Actually it can be shown that
i v
Q (Xm,X”'—'- mdm, n(X,Y) ..(4.19)

where (X, Y) is the invariant normalized product on G.

The untwisted super Kac-Moody algebro is wiitten as
X%, X2 1 =CL* Xpuy + km3m_a (X, 7). ..(4.15)

If o is an automornhism of order N of G, we can split G as T Gk, £ € Zn and define
the shifted mode Xn. ¥ and then defining the algebra by the above equation (4.15)
we get the twisted super Kac-Moody algebra.

CONCLUSION

To summarise our results, we have given an exhaustive classification of super
Kac-Moody algebras, the construction of loop algebra from a Zg-graded Lie algebra
and its central extension. In a future communication, we wish to report the repre-
sentations of (super) Kac-Moody algebras.
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APPENDIX 1

Degeneracy of roots for Uniwisted super Kac-Moody Algebras
The root syst.m of ruper Lie algebra is wiitten in a Cartan-Weyl basis as the

following

and

[H' HY = 0

[HY, E%] = & E°

[ES, E-%] = q¢ H'

(Ee, E?) = « (g, b) Eo*®

[HY, V*] = at p*
[Es, V*] = da+a pBe B
v Vo) = fo ag Y

o, v8 = — 2P pee p 5 Eo (A

a’s are the even roots; while a¢’s are the weights called odd roots. To a given weight,
there may correspond several ¥’s. But for the time being we have dropped this de-
generacy index.
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We can rewrite the root system of the untwisted super Kac-Moody algebra in
this basis as

[HS, , H 1= kmdm s (x. v)

H,, H, 1= a* E"

mtn

S, E*1=a Hy,, + km3m, n

a

[E%, E' 1=e(ab) E*®

min

and
[H‘m V: ]= uf Vr.n*n

(EL , v ]=dars Mboy,

m+n

Vo, Vi =7 " H + km3m,-n

B B nt - e
Vo, V2= — B ey B
$
lk, Eg1=1{k, V3 }= [k, H, 1=10 (A2
We also here see that do operator distinguishes E‘: and V: for different n i. e.

L 3 £ 3
[do, Eg 1=n E, , [do, Vy 1=nV,.

We also have

(Hy ,Eo 1= o Ep ,[Hy ,Val = ot V"

n

and

f ¢
[Hy ., H, ] =0.
Now if we take Cartan subalgebra H :, together with k& and do we have step operators

E: corresponding to even root a = (g, 0, n)
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V: Corresponding to odd root & = («, 0, n)

H: Corresponding to root n 8 = (0, 0, n).

We see that each even root and odd root becomes infinitely degenerate. In addition
we have infinite number of light like roots (0, 0, n)





