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Abstract: Recently, a novel systolic structure has 
been proposed for the computation of DFT for 
transform length N = 4 M ,  M being prime to 4.  In 
this paper, we have proposed a similar structure 
for the computation of DHT by prime factor 
decomposition. A new recursive algorithm is also 
proposed for computing DHT using a linear 
systolic array of cordic processing elements. The 
proposed structure has nearly the same hardware 
requirement as that of the corresponding DFT 
structure for real-valued data; but it yields signifi- 
cantly higher throughput, 

prime factor decomposition used in this paper is different 
from that used in Reference 4.  A new recursive algorithm 
is also proposed for efficient computation of the DHT by 
a linear systolic array of cordic processing elements (PE). 
It is shown that the proposed structure has nearly the 
same hardware requirement as the corresponding DFT 
structure [ 5 ]  for real-valued data; but it yields signifi- 
cantly higher throughput. 

2 The recursive DHT algorithm and its systolic 
solution 

The DHT defined by eqn. 1 may be expressed as 
I I 

( N - 1 ) / 2  

" = l  
X ( k )  = x(0) + 1 [Re Pt {z(n)a"} + Im Pt {z(n)a'""}] 

1 Introduction 

The discrete Hartley transform (DHT) of a real-valued 
sequence { x ( n ) }  is defined [ l ]  as and 

1 N - l  ( 2;" 2nkn) 
N n = O  N 

X ( k )  = - x(n)  cos ~ + sin ~ 

f o r k = 0 , 1 ,  ..., N - 1  (1) 

where 1/N is the scale factor. Note: l J N  is ignored in the 
rest of the paper. 

This transform has been emerging as an useful alterna- 
tive to the discrete Fourier transform (DFT) to avoid the 
complex arithmetic in various signal processing applica- 
tions. Several attempts have therefore been made to 
develop efficient DHT algorithms to increase the compu- 
tational speed but, only a few reports have been made so 
far of hardware implementation of the DHT. Boussakta 
and Holt [ 2 ]  have proposed a method for computing the 
DHT by Fermat number transform (FNT) using a VLSI 
chip. Chakrabarti and Ja'Ja' 131 have presented a bit 
serial solution for small DHT modules. Also they have 
suggested a systolic architecture for the prime factor 
DHT [ 4 ]  which is computed via four temporary outputs. 

Recently, Jones [ S I  has proposed a novel systolic 
structure for the computation of DFT for transform 
length N = 4 M ,  M being prime to 4.  In this paper, we 
have proposed a structure similar to that of Reference 5 
for the computation of prime factor DHT. The scheme of 
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X ( N  - k )  = x(0) + [Re Pt { z ( n ) a - " " }  
n =  1 

+ Im Pt {z(n)a-'"}]  (2b)  

where z(n) = x(n) + j x ( N  - n), a = e-'Zn" and 
X ( N )  = X ( 0 )  for k = 0, 1 ,  . . . , ( N  - 1)/2, j = J( - 1) and 
N is an odd number. N o t e :  The upper limit of the sum- 
mation index n of eqn. 2 would be N J 2  when N is even. 

The DHT components given by eqn. 2 may be written 
as 

X ( k )  = Re Pt Y ( k )  + Im Pt Y ( k )  ( 3 4  
and 

X ( N  - k )  = Re Pt Y ( N  - k)  + Im Pt Y ( N  - k )  (3b)  
where 

Y ( k )  = (. . (( z( y ) a k  + z( ?))ak 

and 

Y ( N  - k )  = (,,' ((z( Y)Kk + z(?))c' 

+ z ( ? ) ) a - k + . " + z ( l )  

(4b) 
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(N + 1)/2 identical recursions; where each recursion is 
composed of a pair of complex multiplications followed 
by a complex addition. 

It is shown 161 that a vector P, may be obtained from 
a vector Po by rn successive phase rotations, given by 

where 

Po = cxo> Y 0 l T  

p ,  = C X , ,  Y,Y 
and 

such that 

x ,  = K ( x o  cos a + y o  sin a)  

and 

y, = K ( y o  cos a - x o  sin a) 

for 
m -  1 

a =  E a i  
i = O  

m - 1  

K = fl (1 + 6:)'" 
i=0  

and 

a, = tan-'6, 

It may be seen from eqns. 5c and 5d that 

a 

Fig. 1 
U cordic circuit I 
b cordic circuit 11 
Y(k),  and Y ( N  - k), are inputs 
Y(k),,  and Y ( N  - kIlL are outputs after 'L' lteratlons 
For rotations' TI is Im Y(k) followed by Re Y ( N  ~ k )  and T2 IS Re Y ( k )  followed 
by Im Y ( N  - k) 
For scalings: T, is Re Ylk) followed by Im Y ( N  - k) and T2 is Im Y l k )  fallowed by 
Re Y ( N  ~ k) 
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Cordic circuits for processing elements 

Eqns. 5 and 6 imply that the complex multiplications of 
the form ( x o  +jyo)e-ja as well as (yo +jxo)@ may be 
computed via phase rotations and scaling. By setting 6i  
to be a power of 2, phase rotations can be achieved by 
repeated shift-add operations. It is shown [7] that scaling 
can also be performed by repeated shift-add operations. 
The pair of complex multiplications required in each 
recursion to compute Y(k) and Y(N - k )  may therefore 
be performed in a cordic circuit by the same sequence of 
shift-add operations. Two different cordic circuits to be 
used for these multiplications are depicted in Fig. 1. The 
systolic array consisting of (N + 1)/2 cordic PES to 
compute N-point DHT is shown in Fig. 2a. The function 
of the ( k  + 1)th PE is described in Fig. 2b. The addition 
of the real parts with the corresponding imaginary parts 
of the outputs of the (k  + 1)th PE yields the kth and 
(N - k)th DHT components. 

A 

3 

For the transform length N = NI x N,, where NI and 
N, are relatively prime, the indices k and n in eqn. 1 may 
be mapped into pairs of indices ( k l ,  k , )  and (nl, n,), 
respectively, according to the following equations [e] 

The prime factor DHT algorithm and its 
implementation 

k = (klN, sl + k ,  N , s , )  mod N 

n = (n,N, + n, NI) mod N 
(74 

(7b) 

for 

k ,  and n, = 0, 1, .._, (N, - 1)  

and 

k ,  and n, = 0, 1, ..., (N, - 1)  

where 

N,s, = 1 mod N I  

and 

N,s, = 1 mod N, (W 
As a result, eqn. 1 assumes a two-dimensional form 

N I - 1  N I - 1  

n z = 0  " , = O  
X ( k , ,  k,)  = 1 1 

The arguments of sine and cosine functions of eqn. 9 may 
be expanded to yield 

N z - 1  

" 2 = 0  
X(k1, k 2 )  = c w(k1, n 2 )  

k1n1 u(k , ,  n,) = 1 x ( n l ,  n,) cos 2n - 
n l  = o  NI 

NI-1 
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and into the next section. The second section of the structure 
is a linear array of (N, + 1)/2 PES (discussed in Section 

If each of the complex adders and delay cells, as well 
as the PES, are driven by the same clock, the DHT of the 
first row of ~ ( k , ,  n,) can be obtained in (N2 + 3) time 
steps. One time step is considered to be the time taken by 

N k , ,  0) = u(k , ,O)  + u(k, ,  0) (104 2). 
u(k,,  n,) and $k, ,  n,) in eqns. 1Oc and 10d represent the 
even and the odd parts of the DHT of elements of the 
n, th column of x(nl, n,), respectively. w(k, ,  0) in eqn. 10e 
denotes the DHT of the zeroth column of x(nl, n,). 

first second third 

f X(O).Z(l),Z(2), ,Z((N-l)/  2) P E  P E  P E  . . - . . -  P E  

21" - 
i 

P E  

-r 

a PE to perform both the multiplications required to be 
computed in each recursion. The successive output corre- 
sponding to the successive rows of w(k , ,  n,) as input can 
be obtained from the linear array in (N, + 1)/2 time steps 
interval. Thus, the DHTs of all four rows of w(kl ,  n,) are 
computed in a total of [(5/8)N + 9/21 time steps; and the 
DHT of successive sets of N-point data may be obtained 
in an interval of 2(N, + 1) = (N/2 + 2) time steps. - Z0"t 

Y ( N - k )  

b 

Linear systolic array for computation of D H T  Fig. 2 
U Linear array 
b function of ( k  + I)th processing element 
Algorithm. 
ifcount = ( N  + I)/2 then 
Y ( K )  = Z(KJ 
Y ( N  - k )  = Z ( N  ~ k )  
Z ( K )  = 0 
Z(N - k )  = 0 
CO""[ = 0 
else 
Z(kJ = Z," + Z(Kb'  
Z ( N  ~ k )  = Z,, + Z ( N  - k ) C '  

counf =count + I 
endif 

Z0", = 4" 

The proposed structure for a two-factor DHT, where 
NI = 4 and N, is prime to 4 is shown in Fig. 3A. It con- 
sists of two sections. The first section of the structure 
consists of 12 complex adders and three delay cells 
(depicted in Fig. 3B). Four rows of w(k,, n,) are pipelined 
out from it, and get queued through a buffer and a 
channel selector, to be further pipelined in proper order 

IEE PROCEEDINGS-G, Vol. 140, No. 2, A P R I L  I993 

4 Throughput and hardware considerations 

As mentioned earlier, during each recursion, a PE per- 
forms two complex multiplications, where each of these 
multiplications is implemented through L iterations. 
Each iteration comprises one phase rotation followed by 
a scaling. Furthermore, either a rotation or a scaling 
involves two additions and two shifts. All these additions 
and shifts are performed by two pairs of parallel adders 
and shifters if cordic circuit I (Fig. la) is used by PES, 
The total computational load per pair of adder and 
shzter then comes out to be 4L additions and 4L shifts. 
To maintain a precision of L correct bits at the output, 
the input data needs additional log, L bits as guard bits 
to account for the internal cordic arithmetic [9]. 
Assuming that addition of two single bits takes one 
microcycle, a total of ( L  + log, L)  microcycles are neces- 
sary for the addition of two ( L  + log, L) bit words. It 
may be noted here that the additions corresponding to 
one multiplication and the shift operations corresponding 
to the other multiplication are performed simultaneously. 
Hence, no extra time is required for the shift operations. 
The total time required per recursion in cordic circuit I 
may then be calculated to be 4L(L + log, L) microcycles. 
It is stated in Section 3 that the first N-point DHT 
requires [(5/S)N + 9/21 recursions (or time steps) and the 
successive N-point DHTs require (N/2 + 2) recursions. 
Thus the total time required to compute an N-point 
DHT is given by 

(1 1 4  T = (2N + 8)(L + log, L)L microcycles 

If the transform length N + 4, this may be approximated 
to 

T = 2NL(L + log, L)  microcycles (1 Ib) 
137 



In cordic circuit I1 (Fig. lb), the additions and shifts are 
performed by four pairs of parallel adders and shifters. 
Therefore, the duration of each time step in cordic circuit 

microcycles). Using cordic circuit I1 in the PES of the 
linear array, the computation time of N-point DHT may 
therefore be reduced to 

I1 is half that of cordic circuit I (i.e. 2L(L + log, L)  = NL(L + log, L) microcycles 

I input data buffer I 

linear array of (N2+ I )  / 2 
processing elements 

to output buffer 
WO adder 

Fig. 3A 
Z ( k , n J =  W ( k , n ) + j W ( k , N ,  - n )  

Systolic structurefor twofactor D H T  computation 

'lin '21n 

"I in 

'2 in 

'2in 

Y I  out 

Yzout 

Xlout X2out 

Fig. 38 
Adders arc tailored to compute W ( k ,  n) and W(k,  N ,  - nJ according lo eqn IO lor 
N ,  = 4 by choosing proper values of (I, b, c, d and e 
oandhE(1,0,  - I )  
e. d and e t ( I .  0. - 1. 1. -;I 

Function ofcomplex adders and delay cells 
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The DFT of real-valued data, and hence the DHT, may 
also be computed by the DFT structure [SI using the 
following two methods. 

Method I :  For real-valued input, the DFT may be 
obtained from the first ( N 2  + 1)/2 components of each 
‘column DFT’ [ S ]  of the intermediate output. Therefore, 
only (N, + 1)/2 PES may be used in the linear array of 
the structure [SI. The modified structure would then 
yield the first (N, + 1)/2 components of the first column 
DFT after 13 + ( N ,  - 1)/2 + N,] time steps and those of 
the successive column DFTs in N ,  time steps interval. 
The first N-point DFT may thus be computed in 13 
+ ( N ,  - 1)/2 + 4 N , ]  time steps, and the successive 

DFTs may be obtained in the interval of 4 N ,  time steps, 
where each time step is L(3L + 2 log, L)  microcycles [SI. 
The computation time of the DFT of an N-point real- 
valued sequence is therefore given by 

T = N L ( 3 L  + 2 log, L)  microcycles (13)  

Method 2: When the input sequence is real, the third N ,  
point ‘column DFT’ of the intermediate output may be 
obtained from those of the second N ,  point ‘column 
DFT’. Therefore, only three column DFTs are required 
to be computed in the final stage so that the first set of 
final DFT output may be computed in 13 + ( N ,  - I )  
+ 3N, ]  time steps and the successive DFTs in 3 N ,  time 

steps interval. Hence, the computation time of the DFT 
of an N-point real-valued sequence may be given by 

(14)  T = ( 3 / 4 ) N L ( 3 L  + 2 log, L) microcycles 

The hardware requirement of the first section of the pro- 
posed structure is the same as that of the DFT structure 
[ S I  for Method 1 .  For Method 2, however, three complex 
adders and a delay cell may be avoided in the first section 
of the structure 151; because only three column DFTs are 
required to be computed in this case at the output stage. 
Moreover, the amount of hardware used by the second 
section of the proposed structure, using cordic circuit I 
and cordic circuit I1 is nearly the same as those of the 
DFT structure for real valued data by Method 1 and 
Method 2, respectively. 

5 Results and discussion 

An efficient systolic structure is proposed for computing 
the DHT by prime factor decomposition for transform 
length N = N I  x N,, where N ,  = 4 and N ,  is prime to 
4. A recursive algorithm is also proposed to compute N 
point DHT by a systolic array of ( N  + 1)/2 cordic pro- 
cessing elements. The computation times of the prime 
factor DHT by the proposed structure, and the times by 
the DFT structure [5 ]  for real-valued data using two dif- 
ferent methods, are plotted in Fig. 4. It is found that the 
proposed structure requires significantly less computa- 
tion time than the other. It is also observed that the 
hardware requirement of the proposed structure, using 
cordic circuit I and cordic circuit I1 is nearly the same as 
that of the DFT structure [ S ]  for Method 1 and Method 
2, respectively. The adders and shifters of the cordic cir- 

cuits are utilised more efficiently by the proposed scheme 
compared to that of Reference 5.  This is achieved by per- 
forming the additions for one multiplication, and the shift 
operations for the other multiplication simultaneously. 
Cordic circuit I of the proposed structure is similar to the 
cordic circuit proposed in Reference 5 ;  but cordic circuit 
11 is different in that it does not require any control 
switch to regulate the data. 
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Fig. 4 Comparison ofcomputation time o f D H T  by proposed structure 
with that o f D F T  [SI ofreal-valued data 
(I and h proposed struclure using cordic circuit I and cordic circus1 11, respec- 
t1vely 
c and d .  DFT structures [SI if modified for real data to compute by Method I 
and Method 2, respectively 

The higher throughput obtained by the proposed 
DHT structure over the corresponding DFT structure 
[S] for real-valued data is mainly due to the scheme of 
prime factor decomposition, and to the efficient use of the 
cordic circuits by the recursive DHT algorithm. 
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