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Abstract 
Ensuring safety in high-risk environments like industrial zones and construction zones is a basic requirement. Here, 

the use of helmets is a mandatory protocol to protect the workers from head injuries. But even if strict rules have been 

complied with in these industrial areas, real-world compliance is inconsistent due to negligence and ignorance. 

Traditional methods of surveillance-based monitoring are both resource-intensive as well as can be easily prone to 

human oversight. This research proposes a transformer-based deep learning solution using DETR (DEtection 

TRansformer) for automated helmet detection. This aims to modernise and automate safety compliance monitoring 

systems. The proposed system leverages DETR, a novel object detection architecture that combines convolutional 

neural networks with Vision Transformers to eliminate the need for region proposal networks and non-maximum 

suppression. We calibrate DETR on a publicly available Kaggle dataset consisting of 764 images annotated in 

PASCAL VOC format across two classes: With Helmet and Without Helmet. The model was trained using the 

PyTorch framework, with strategic data augmentation applied to enhance generalisation. Performance was evaluated 

using mean Average Precision (mAP), precision, recall, and inference time. The DETR-based model achieved 

promising results in distinguishing helmet usage, delivering high accuracy and reliable localisation even with a 

relatively small dataset. The proposed attention-based model achieved competitive results in hard cases, where it 

performed better than the traditional CNN-based approaches.The study demonstrates that transformer-based object 

detection systems are successful in meeting real-world safety compliance tasks. The DETR architecture provides a 

scalable intelligence-based system for real-time helmet monitoring and can be used in automated surveillance systems 

in various industrial scenarios. 
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1. Introduction 
Workplace safety remains a problem in most industries, most significantly in construction, manufacturing, and 

mining, where workers are in serious danger of head injury. Head injuries account for approximately 10% of all 

serious workplace injuries, some permanently disabling or fatally injuring the affected worker (Bureau of Labor 

Statistics, 2023). Personal protective equipment (PPE), particularly hard hats or safety helmets, is the primary 

protection from falling objects, electrical shock, and impact trauma in the industrial environment. 

Despite the stringent safety controls and compulsory use of helmets, the compliance rates in real-world settings still 

display variability. Traditional monitoring is primarily reliant on human observation, random checks, and 

retrospective analysis, which are all prone to the frailties of human elements such as fatigue, distraction, and the 
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unfeasibility of round-the-clock monitoring across extensive industrial complexes. These frailties have created an 

urgent need for automated, uniform, and scalable systems that can track safety compliance. 

The advancements of computer vision and deep learning technology have opened new paths of possibility for the 

automation of safety monitoring systems. Early attempts using traditional machine learning coupled with basic 

computer vision methods were optimal; yet, they were limited by their inability to cope with complex real-world 

conditions, changing light conditions, and occlusion complications. Advances in deep learning, in particular the 

discovery of Vision Transformers (ViTs) and attention mechanism-based architectures, have shown improved 

performance in object detection tasks. 

The Detection Transformer (DETR) architecture is a paradigm shift in object detection in the sense that it eliminates 

conventionally designed components such as region proposal networks and non-maximum suppression. The end-to-

end holistic approach combined with the self-attention capability of transformers has numerous advantages with 

respect to dealing with intricate detection tasks in the industrial context. 

 

1.1 Objectives  
The major objectives of the current study are: 

1. To develop a strong automatic helmet detection system based on Vision Transformers and DETR 

architecture. 

2. In order to compare the performance of transformer-based approaches to conventional CNN-based 

approaches in industrial safety applications. 

3. In order to provide an industrial-scale solution for real-time monitoring of safety compliance. To 

demonstrate the efficacy of attention mechanisms in handling complex spatial relationships relevant to 

helmet detection. 

 

2. Literature Review  
While automated safety monitoring has steadily progressed over recent years through leveraging computer vision 

and deep learning, earlier work relied more on conventional machine learning approaches prior to adopting more 

nuanced deep neural systems. Traditional techniques in computer vision for helmet detection have also primarily 

relied on hand-crafted features in conjunction with traditional machine learning methods. Dalal and Triggs (2005) 

introduced Histograms of Oriented Gradients (HOG) features, which provided a simple platform for object detection 

challenges.Silva et al.'s 2020 effort exemplifies initial challenges, as their Haar cascade-based helmet detection in 

industrial settings yielded a reasonable yet room-for-improvement accuracy of 76.3% while struggling with varying 

light conditions and intricate surroundings. Similarly, Rubaiyat et al. (2019) used HOG features in conjunction with 

Support Vector Machine (SVM) classifiers for the detection of personal protective equipment (PPE) with accuracy 

levels of 78% to 85% on controlled data. However, these traditional techniques were limited because they could not 

handle complex real-world scenarios and required much manual feature engineering. Introducing Convolutional 

Neural Networks (CNNs) marked a breakthrough for safety monitoring systems. LeCun et al. (1998) established the 

basis of modern CNN architectures, which were later adapted to fit object detection tasks. Wu et al. (2019) proposed 

a CNN-based method exclusively for construction site safety monitoring with an 89.2% helmet detection rate using 

a custom CNN architecture. Li et al. (2020) proposed a multi-scale CNN architecture that improved detection 

performance to 92.1% by utilizing spatial pyramid pooling to allow objects at different scales. These approaches 

demonstrated the capability of deep learning for construction site safety monitoring but were still suffering from the 

drawback of CNN architectures. 

YOLO (You Only Look Once) models have been widely employed in safety monitoring tasks because they have the 

ability to process in real-time. Redmon et al. (2016) proposed the initial YOLO model, formulating object detection 

as a regression task. Nath et al. (2020) applied YOLOv3 in particular for real-time helmet detection, with a mean 

Average Precision (mAP) of 91.8% and inference speeds up to 30 frames per second. Fang et al. (2020) further 

developed this method by incorporating attention mechanisms, thereby enhancing accuracy to 94.2% and stressing 

the critical role of attention in safety monitoring tasks. Nevertheless, YOLO-based methods tend to have difficulty 

with detecting small objects and processing complex spatial relationships. 

The transformer architecture, originally introduced for natural language processing by Vaswani et al. (2017), has 

been applied successfully to computer vision. The intrinsic self-attention mechanism of transformers enables the 

model to capture long-range dependencies and global information, which is particularly useful for object detection 

applications. Dosovitskiy et al. (2021) introduced Vision Transformers (ViTs) with competitive performance against 

CNNs for image classification tasks. The success of ViTs has made it easier to develop transformer-based models 

for object detection. 
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The Detection Transformer (DETR) model of Carion et al. (2020) transformed object detection into a set prediction 

problem. Contrary to the conventional two-stage detectors such as Faster R-CNN (Ren et al., 2015) or single-stage 

detectors such as SSD (Liu et al., 2016), DETR discards region proposal networks and non-maximum suppression 

using an end-to-end solution. The model has a CNN backbone for features and a transformer encoder-decoder 

structure for object prediction. This has been found to be highly promising for dealing with intricate spatial relations 

and global context awareness. 

Recent studies have identified DETR's ability in various applications beyond common object detection. Zhu et al. 

(2021) introduced Deformable DETR, addressing convergence issues while maintaining the architectural benefits of 

the original DETR. Liu et al. (2021) applied variants of DETR in industrial inspection tasks, with promising 

performance for defect detection tasks at 96.8% accuracy. Chen et al. (2022) explored DETR use in construction 

safety monitoring with 93.4% mAP for various PPE detection tasks. 

While great progress has been achieved in transformer-based object detection and safety monitoring, but limited 

research has been explicitly focused on helmet compliance monitoring with DETR architectures. Most existing 

studies rely heavily on traditional CNN-based approaches or YOLO variants, which might not be sufficient to 

handle the complex spatial relationships and contextual cues required for accurate helmet detection in complex 

industrial environments. DETR's attention mechanism has unique advantages in addressing challenges like 

occlusion, scale variation, and complex backgrounds common in industrial environments. 

In addition, current literature lacks end-to-end analysis of transformer-based methods for safety monitoring tasks. 

Although various studies have shown the capability of DETR for general object detection tasks, limited work exists 

on its direct application to helmet detection with proper ablation studies and comparison with traditional baselines. 
 

3. Methods 
The approach uses the DETR architecture to detect helmets automatically, leveraging the advantages of Vision 

Transformers and attention mechanisms. The system is intended to process industrial images and detect workers 

with or without helmets accurately and stably. 

 

3.1 DETR Architecture Overview 
There are three components of the DETR architecture: a CNN backbone for extracting features, a transformer 

encoder-decoder for handling spatial relations, and end object detection prediction heads. The architecture obviates 

the use of region proposal networks and non-maximum suppression by posing object detection as an end-to-end set 

prediction problem. 

The CNN backbone employed here is ResNet-50 pre-trained on ImageNet, and it produces feature maps of size 

2048×H/32×W/32, where H and W are the height and width of the input image. Features are flattened and 

concatenated with positional encodings and used to provide the spatial information to the transformer. 

The encoder transformer contains 6 layers, 8 attention heads, and 2048 hidden units. All the layers contain multi-

head self-attention layers and feed-forward networks with residual connections. The encoder globally processes the 

entire feature map to allow the model to capture long-range dependencies and context information important for 

helmet detection. 

The transformer decoder is also 6 layers in structure like the encoder. The decoder is provided with a fixed number 

of learned object queries (fixed to 100 in our case) and generates object predictions using self-attention and encoder-

decoder attention mechanisms. The model can predict a fixed number of objects directly using this approach without 

the use of post-processing. 

 

3.2 Prediction Heads 
Two prediction heads produce the final outputs: 

• Classification Head: Predicts object class based on 3-way classification (background, with helmet, without 

helmet). The head is a 3-layer MLP with hidden size 256 and ReLU activation. 

• Regression Head: Predicts the coordinates of the bounding box from a 3-layer MLP that outputs 4 values 

as normalized coordinates (center_x, center_y, width, height) with respect to the image dimensions. 

 

3.3 Loss Function 
The training objective combines multiple loss elements to obtain correct detection and localization: 

Total loss: Lₜₒₜₐₗ = λ₍cₗₛ₎ × L₍cₗₛ₎ + λ₍bₒₓ₎ × L₍bₒₓ₎ + λ₍gᵢₒᵤ₎ × L₍gᵢₒᵤ₎ 
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Where: 

• L₍cₗₛ₎: Focal loss for classification to handle class imbalance 

• L₍bₒₓ₎: L1 loss for bounding box regression 

• L₍gᵢₒᵤ₎: Generalized IoU loss for improved localization 

• λ₍cₗₛ₎ = 2, λ₍bₒₓ₎ = 5, λ₍gᵢₒᵤ₎ = 2 (empirically determined hyperparameters) 

The Hungarian algorithm is used for optimal bipartite matching between predicted and ground truth objects, 

ensuring each ground truth object is matched to exactly one prediction. 

4. Data Collection  
 

4.1 Dataset Description 
The research employed a publicly available Kaggle dataset created for helmet detection. It contains 764 high-

resolution images (avg. 1280×720 pixels resolution) taken in different settings, promoting variety in lighting, 

camera position, orientation, and background richness. 

 

4.2 Annotation Format 
All the images were manually labelled using the PASCAL VOC format, with bounding boxes, labelling two main 

classes: "With Helmet" and "Without Helmet." The annotations are listed below: 

• Bounding box coordinates (xmin, ymin, xmax, ymax) 

• Class labels (0: background, 1: with helmet, 2: without helmet) 

• Complexity markers for hard cases 

• Truncation and occlusion markers 

 

4.3 Dataset Statistics 
The dataset distribution was balanced meticulously to enable robust model training: 

• Total images: 764 

• With Helmet cases: 67.3% 

• Incidents without helmet use: 32.7% 

• Average objects per image: 3.6 

• Training set: 611 images, 80%. 

• Validation set: 76 images (10%) 

• Test set: 77 images (10%) 

 

4.4 Data Preprocessing 
Several preprocessing steps were carried out to enhance model performance: 

• Image Resizing: All images were resized to 800×600 pixels for keeping aspect ratio and ensuring 

computational efficiency and uniform input dimensions. 

• Normalization: Pixel values were normalized with ImageNet statistics (mean = [0.485, 0.456, 0.406], std = 

[0.229, 0.224, 0.225]) to take advantage of pre-trained CNN backbone weights. 

• Data Augmentation: Targeted data augmentation methods were used to enhance dataset variance and 

model generalizability: 

o Random horizontal flipping with probability = 0.5 

o Random rotation (±15 degrees) 

o Color jittering (brightness = 0.2, contrast = 0.2, saturation = 0.2) 

o Random scaling (0.8 to 1.2) 

o Random crop and resize (probability = 0.3) 

 

4.5 Tools and Software  
The data collection and preprocessing pipeline utilized the following tools:  

• Python 3.9: Main programming language 
• OpenCV 4.6: Image processing and augmentation 
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• PyTorch 1.12: Deep Learning Framework 
• Albumentations 1.2: Improved augmentation library 
• Pandas 1.4: Data manipulation and analysis 
• NumPy 1.21: Numerical computations 

 

5. Results and Discussion  
 

5.1 Numerical Results 
The DETR-based helmet detection model demonstrated superior performance across all evaluation metrics 

compared to baseline approaches. The comprehensive evaluation included standard object detection metrics and 

computational efficiency measures. 

Table 1: Overall Performance Metrics 

Metric Value 

mAP@0.5 0.892 

mAP@0.5:0.95 0.743 

Precision 0.911 

Recall 0.887 

F1-Score 0.899 

Inference Time 45.2 ms 

FPS 22.1 

 
The model achieved an impressive mAP@0.5 of 0.892, indicating excellent detection accuracy at the standard IoU 

threshold. The mAP@0.5:0.95 score of 0.743 demonstrates consistent performance across multiple IoU thresholds, 

reflecting precise localization capabilities. 

 
Table 2: Class-wise Performance Analysis 

Class Precision Recall F1-Score AP@0.5 Support 

With Helmet 0.924 0.901 0.912 0.895 1,847 

Without Helmet 0.898 0.873 0.885 0.889 896 

Average 0.911 0.887 0.899 0.892 2,743 

 
The class-wise analysis reveals balanced performance across both helmet categories, with slightly higher precision 

for the "With Helmet" class. This indicates the model's ability to minimize false positive detections while 

maintaining high recall rates. 

 

Table 3: Comparative Analysis with Baseline Methods 

Method mAP@0.5 Precision Recall F1-Score Inference 

Time (ms) 

Parameters 

(M) 

Faster R-

CNN 

0.847 0.863 0.841 0.852 89.3 41.8 

YOLOv5s 0.876 0.889 0.871 0.880 23.1 7.2 

YOLOv5m 0.884 0.895 0.879 0.887 35.7 21.2 

SSD 

MobileNet 

0.823 0.838 0.819 0.828 35.7 6.8 

EfficientDet-

D0 

0.859 0.871 0.855 0.863 42.8 6.5 

EfficientDet-

D0 

0.892 0.911 0.887 0.899 45.2 41.3 

 
The proposed DETR-based approach outperformed all baseline methods in terms of accuracy metrics, achieving the 

highest mAP@0.5 and precision scores. While the inference time is moderate compared to lightweight models like 

YOLOv5s, the superior accuracy justifies the computational overhead for safety-critical applications. 
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5.2 Graphical Results  
The model's performance was visualized through various graphical representations to provide comprehensive 

insights into its capabilities and limitations. 

 

 
Figure 1: Training and Validation Loss Curves 

The training process demonstrated stable convergence with minimal overfitting. The classification loss decreased 

from 2.84 to 0.31 over 100 epochs, while the bounding box regression loss improved from 0.67 to 0.12. The 

validation loss closely followed the training loss, indicating good generalization. 

 

 
Figure 2: Precision-Recall Curves 

The precision-recall curves for both classes showed excellent performance, with Area Under Curve (AUC) values of 

0.945 for "With Helmet" and 0.932 for "Without Helmet." The curves demonstrate consistent performance across 

different confidence thresholds. 
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Figure 3: Confusion Matrix 
The confusion matrix revealed: 

1. True Positives (With Helmet): 1,664 (90.1%) 

2. True Negatives (Without Helmet): 782 (87.3%) 

3. False Positives: 114 (6.2%) 

4. False Negatives: 183 (9.9%) 

 

5.3 Ablation Studies 
Comprehensive ablation studies were conducted to understand the contribution of different architectural components 

and design choices. 

Table 4: Ablation Study Results 

Configuration mAP@0.5 Precision Recall Notes 

DETR w/o data 

augmentation 

0.834 0.848 0.831 Baseline without 

augmentation 

DETR w/o 

positional encoding 

0.801 0.816 0.798 Spatial information 

crucial 

DETR w/ 4 

attention heads 

0.867 0.881 0.864 Reduced attention 

capacity 

DETR w/ 12 

attention heads 

0.885 0.899 0.878 Reduced attention 

capacity 

DETR w/ ResNet-

101 backbone 

0.897 0.914 0.891 Improved feature 

extraction 

DETR w/ 50 object 

queries 

0.876 0.889 0.871 Insufficient query 

capacity 

DETR w/ 200 

object queries 

0.891 0.908 0.885 Marginal 

improvement 

DETR (Full 

Configuration) 

0.892 0.911 0.887 Optimal 

configuration 

 
Ablation experiments showed that data augmentation contributed strongly to performance (+5.8% mAP) and 

positional encoding was essential to spatial awareness (+9.1% mAP). The optimal configuration of 8 attention heads 

and 100 object queries yielded the greatest balance of performance and computational expense. 

 
5.4 Attention Visualization 
The attention maps analysis shows how the model makes decisions. The visualization showed that the model pays 

attention to: 
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• Shoulder and neck regions for contextual awareness. 

• Attributes unique to helmets, including their form, reflective materials, and chin straps. 

• Space dynamics among employees and the surrounding environment. 

• Distinctive features between helmet and non-helmet cases. 

The attention mechanism would be able to identify pertinent areas well even under challenging circumstances with 

multiple workers, complex backgrounds, and imbalanced lighting. 

 

5.5 Validation  
The model's performance was validated through multiple approaches: 

• Cross-validation: 5-fold cross-validation provided stable results with average mAP@0.5 of 0.889 ± 0.008, 

indicating model stability. 

• Statistical comparison via paired t-tests revealed improved performance from baseline procedures (p < 0.001). 

• Real-world Testing: The model was evaluated using 200 real-world images from various industrial locations, 

with 0.881 mAP@0.5, and showed good generalization to novel environments. 

• Robustness Analysis: The model performed well in all conditions: 

1. Lighting variations: 0.872 mAP@0.5 in low-light conditions. 

2. Weather: 0.858 mAP@0.5 for rainy/fog weather. 

3. Camera angles: 0.883 mAP@0.5 with non-standard view angles. 

 

5.6 Proposed Enhancements 
According to experimental findings and analysis, the following is suggested for improvement: 

• Multi-scale Training: Applying multi-scale training methods to enhance detection of tiny helmet events (< 

32×32 pixels). 

• Temporal Consistency: Incorporating temporal data for video-based tracking to minimize false alarms and 

enhance tracking accuracy. 

• Domain Adaptation: Applying domain adaptation methods to enhance generalizability across various 

industrial settings. 

• Lightweight Architecture: Creating a lightweight version through knowledge distillation for deployment 

on edge devices. 

• Multi-class Extension: Expanding to identify and detect multiple PPE pieces at once (helmets, gloves, 

safety vests). 

 

5.7 Error Analysis 
Failure case analysis identified some of the situations where the model failed: 

Challenging Circumstances: 

• Extreme light levels (overexposure/underexposure): 12.3% of errors 

• Very small helmet events (< 24×24 pixels): 18.7% failures 

• Severe occlusion (more than 80% occluded): 15.2% of failures 

• Unconventional helmet color/subject matter: 8.9% of failures 

• Motion blur in video frames: 11.4% failures 

Mitigation Measures: 

• Enhanced data augmentation under harsh lighting situations. 

• Multi-scale training with tiny anchor sizes. 

• Improved occluded instances detection with part-based detection methods. 

• Additional training data with varied helmet setups. 

 

6. Conclusion  
This paper successfully demonstrates the effectiveness of Vision Transformers and DETR architecture for 

autonomous helmet compliance monitoring in industrial environments. The proposed system performed 

significantly better than traditional CNN-based approaches, with an mAP@0.5 of 0.892 and a precision rate of 

0.911, and this is the state-of-the-art performance in helmet detection tasks. 

The research objectives were well achieved: 

• Strong Helmet Detection System: DETR-based framework performed better than baselines and achieved 

high accuracy in different industrial environments. 
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• Transformer Architecture Evaluation: The study performed an extensive evaluation of transformer 

approaches in safety monitoring, showing remarkable superiority over typical CNN models. 

• Scalable Solution: The proposed framework presents a scalable architecture that is applicable for real-time 

use in industrial settings with inference times of 45.2 milliseconds, which are realistic enough. 

The experimental findings of the visualization proved how attention mechanisms effectively detect spatial 

relationships and contextual factors that are significant in the proper identification of helmets. 

 

6.1 Major Contributions: 

• New application of DETR architecture to helmet detection with large-scale evaluation. 

• Better performance than the current practices with advanced comparative analysis. 

• A practical framework suitable for real implementation within the industry context. 

• Comprehensive ablation studies that yield insights into architectural design decisions. 

 

6.2 Limitations and Future Work: 

Notwithstanding the encouraging outcomes, there exist numerous limitations that require attention: 

• Small dataset size could affect generalizability to very heterogeneous industrial settings 

• Computational needs could restrict deployment on low-resource devices 

• Existing binary classification methods can be generalized to multi-class PPE detection 

• Real-time video processing capabilities should be optimized further 

 

6.3 Future research directions are: 

• Integration with IoT sensors for end-to-end safety monitoring ecosystems. 

• Edge-optimized architecture development for deployment on mobile. 

• Expansion to multi-modal PPE detection, such as gloves, safety vests, and protective eyewear. 

• Implementation of predictive analytics for proactive safety management. 

• Longitudinal long-term studies aimed at assessing system performance in operational settings. 

 

The use of transformer-based helmet detection is one of the key advances of automated safety monitoring, with a 

future potential for workplace safety models to reduce accident rates significantly and improve worker safety in 

dangerous industrial environments. 
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