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Abstract—The optimal channel selection for data transmission
is essential for reliable communication in an indoor environment
like industrial IoT (IIoT). Due to the presence of complex objects
in the indoor factory environment, signals might get reflected.
This leads to reliability loss and degradation of transmitted signal
quality by increasing signal outage. Again, the optimal channel se-
lection for efficient scheduling of the heterogeneous data packets
generated by delay-sensitive ultra-reliable low latency (URLLC)
service and delay-tolerant broadband service in IIoT demand
for accurate identification of wireless link status. Therefore, the
identification of wireless channel status like Line-of-Sight (LOS),
None-Line-of-Sight (NLOS), and Multi-Path (MP) between the
transmitter and the receiver becomes essential to reduce packet
error probability in IIoT. In this regard, we propose a deep
learning-based classifier model using Convolutional Neural Net-
work (CNN) and Long Short Term Memory (LSTM) to identify
the LOS/NLOS or MP signals and enhance the reliability of the
signal by improving system throughput and accurate positioning.
We compare the performance of the proposed model with various
machine learning classifier models to evaluate the performance of
the proposed CNN-LSTM model. We have used an open-source
dataset collected from two different indoor industrial sites to
be used for the training and testing of the classifier models.
We have evaluated the performance based on the accuracy and
time complexity of the proposed classifier model, which shows
superiority in comparison to baseline machine learning models.
Additionally, the results show that the system Bit Error Rate
(BER) improved significantly with the optimal channel selection
during scheduling of heterogenous data type using the proposed
CNN-LSTM model.

Index Terms—LOS, NLOS, multipath, URLLC, CNN-LSTM,
CNN, MLP, IIoT, 5G.

I. INTRODUCTION

THE rapid advancement of Internet-of-Things (IoT) tech-
nology and wireless communication facilitates various

futuristic smart applications. The introduction of the fifth-
generation (5G) wireless systems brings innovative services
that have the potential to enable mission-critical applications
like industrial automation, autonomous driving, smart grid,

and smart city operations with the help of reliable data trans-
mission among IoT devices while improving the overall user
experience [1]. Maintaining the reliability of data transmission
becomes one of the essential requirements for communication.
In these large-scale IoT applications, billions of smart devices
are interconnected to transmit data wirelessly.

For instance, applications like industrial automation in in-
dustrial IoT (IIoT) are a classic example of large-scale IoT
network. Generally, IIoT contains multiple access points and
receiver devices simultaneously transmitting and receiving
data packets in an indoor environment [2]. In such a case,
the presence of a large number of objects in the indoor
environment of the IIoT increases the complexity of signal
transmission without getting affected by the channel condition,
which is a challenging task. The characteristics of the materials
in the indoor area hugely affect the data transmission while
introducing blockage and scattering [3]. Moreover, IoT users
have heterogeneous Quality-of-Service (QoS) requirements
like low latency, high data rate, and reliable data transmission.
Therefore, identification of channel status becomes crucial for
providing reliable data transmission and determining optimal
scheduling policy for these incoming data traffic in such
scenarios [4].

Accurate identification of the type of channel is one of
the essential requirements for reliable communication. The
research work for developing enabling techniques to classify
the type of wireless channel is gaining attention. In this regard,
the work in [5] used a deep learning-based technique to
classify the type of channel using the channel impulse response
data as input. Here, the authors used a Convolutional Neural
Network (CNN) and Long Short Term Memory (LSTM)
model to classify the LOS/NLOS channel from accurate indoor
positioning in an ultra-wideband (UWB) system. Similarly,
the work in [6] and [7] use the CNN-based classifier for
LOS/NLOS classification. Specifically, the work in [6] pro-
posed a hybrid scheme containing both deep learning and
transfer learning to classify NLOS paths in an unmeasured



environment. Likewise, the research work in [7] utilizes a
CNN-based LOS/NLOS classification model in an urban 3D
massive MIMO system. In another work in [8], the authors
have proposed a Morlet wave transform and CNN classifier
model to identify LOS/NLOS.

A. Motivation and Contributions

The accurate channel type identification is helpful in assign-
ing specific sub-channels to users with heterogeneous QoS
requirements in an IIoT scenario [8]. Most of the recent
works in this area utilize supervised learning models to
accurately classify the channel type. However, the wireless
environment is unpredictable. Therefore, the authors in [9]
have proposed an unsupervised learning classifier that selects
the useful channel features to classify LOS/NLOS. In [10], the
authors proposed a classifier based on RSSI (Received Signal
Strength Indicator) data to identify LOS/NLOS channels. The
proposed classifier uses the statistical features extracted over
multiple channel measurements and decides the threshold level
according to the indoor environment. Most of the researchers
utilized the LOS/NLOS classification outcome for finding
accurate positioning in an indoor environment only while
limiting the utilization of these results for efficient scheduling
[11]. However, none of the work used the LOS/NLOS and
Multi-Path (MP) classification simultaneously to address the
scheduling challenges of heterogeneous data traffic to the best
of our knowledge.

Motivated by this, we propose a CNN-LSTM-based
LOS/NLOS and MP channel status identifier, which will
be helpful for scheduling the incoming mixed data traffic
proactively in an IIoT system. We know that the performance
of deep learning-based classifiers has been superior to many
ML-based models. Therefore, in this work, we proposed a
CNN and LSTM deep learning-based classifier model for
LOS/NLOS and MP detection and classification. We have
utilized the channel classification results to accurately allocate
the channels to delay-sensitive and delay-tolerant services for
reliable communication.

B. Paper Organization

In this paper, Section II presents the system model of
the proposed CNN-LSTM model for LOS NLOS or MP
classification. Then, in Section III, we propose an optimal
scheduling scheme based on incoming traffic delay constraints
and the channel type. We provide the simulation setup and
performance analysis of the CNN-LSTM classifier and pro-
posed scheduler in section IV. Finally, Section V includes the
conclusion and future scope of our work.

II. SYSTEM MODEL

We consider an IIoT scenario, where multiple transmitters
transmit data packets to multiple IoT devices in an indoor
environment. The transmitting access points(AP) and receiving
devices are equipped with single antennas. Let the IIoT system
contain I single antenna device nodes. A downlink commu-
nication scenario is considered where the channel bandwidth

Fig. 1. Proposed CNN-LSTM Deep learning model

is denoted as B, which is divided into R Physical Resource
Blocks (PRBs) to accommodate user requirements.

A. Wireless traffic model

The considered IIoT system has a mixed data traffic of
both delay tolerant signal, i.e., enhanced mobile broadband
(eMBB) signal and delay-sensitive ultra-reliable low latency
communication (URLLC) signal. Both types of signals have
different QoS requirements. Generally, eMBB traffic requires
a high data rate of transmission with delay-tolerant service
requirements. However, URLLC traffic needs highly reliable
signal transmission within a strict delay constraint. If the
packet transmission delay exceeds the deadline constraints,
then the packet will be dropped, which reduces the relia-
bility by increasing the error probability. Therefore, efficient
scheduling of these mixed traffic types in an indoor IIoT en-
vironment is challenging. In such a scenario, accurate channel
state information is desired for efficient scheduling of these
heterogeneous data types in the suitable channel to satisfy the
QoS requirements of individual users.

Each user has a corresponding queue, and the queue length
is dependent on the delay constraint of the packets. Here the
delay-sensitive traffic is scheduled on the mini-slot, and the
delay-tolerant traffic is scheduled at the start of a time slot. Let
the total end-to-end delay constraint be De, which is equivalent
to two mini-slot time periods. Then, the reliability of the
transmission for the user i can be defined as the probability
of the packet satisfying the delay deadline constraint as given
below:

P {Di < Dmax} ≥ De, (1)

where Dmax is the maximum end-to-end delay constraint of
a packet. In order to reduce packet drop probability, we need
to schedule the arrived traffic and allocate the PRBs according
to the QoS requirement of the incoming traffic. Therefore, to
minimize packet error probability and enhance the reliability
of signal transmission, identifying the ideal channel condition
is very much essential. Hence, we employ a CNN-LSTM
sequence prediction model to classify and predict the channel
status accordingly.



B. Proposed CNN-LSTM Network

CNN has the ability to automate the feature extraction
process to learn the patterns without manual feature engineer-
ing. It uses multiple layers of filters to extract the features,
which makes it resilient to noise. The accuracy of CNN is
higher compared to other deep learning models. However,
it requires a larger dataset to train and achieve the desired
accuracy. The CNN contains multiple hidden layers comprised
of convolution layers, pooling layers, and fully connected
layers. Basically, the feature extraction and high-level abstrac-
tion of input data are done at the convolution layer using
multiple kernel filters. The pooling layers then reduce the
dimensionality of the output feature map obtained from the
convolution layer. In this work, we have used the MaxPooling
function to reduce the computation load and time complexity.
The convolution and MaxPooling layers together extract the
features and reduce the dimensionality of the input data. Then,
a fully connected layer uses the softmax function to select the
probability of classes. The output of a fully connected layer
is the class with the highest probability.

We have used a CNN-LSTM architecture to classify the link
between transmitter and receiver as a LOS/NLOS, or multipath
channel. As the data is a time series data, we have used
LSTM to predict the channel status based on the incoming
data pattern. Long Short term memory (LSTM) is an advanced
version of recurrent neural network (RNN) that can provide
long-term dependencies to model chronological sequences.
Basically, LSTM is composed of three gates as forget gate
(f ), the input gate (i), and the output gate (y) [5]. Forget gate
updates the cell state from the previous epoch. In the forget
gate, the input vector xt is fed to the sigmoid function. Then,
the output of the sigmoid function is the output vector yt,
which is multiplied by the state vector Ct−1 from the previous
epoch. The output vector can be represented as:

ft = σ(wf .[ht−1, xt] + by) = σϕf (2)

where wf is the weight vector, by is the bias vector, and
σ is the sigmoid function. The output vector ft decides the
degree to remember or forget the previous state vector Ct−1.
Then, the input gate contains sigmoid and tanh functions to
process input data xt. The input gate function is given as:

it = σ(wi.[ht−1, xt] + bi) (3)

Ĉt = tanh(wc.[ht−1, xt] + bc) (4)

where w and b are the weight and bias vectors. At last,
the output gate decides the output of the LSTM network. For
improving the generality and prediction accuracy, parameter
optimization is required. This requires a proper arrangement
to address the overfitting problem in the deep learning models.
In our work, we use dropout after the fully connected layer. A
dropout rate is defined in the proposed CNN-LSTM classifier
to ignore some neurons and nodes during model training to
counter overfitting. We have not used the bidirectional LSTM
here because it requires a large number of parameters to

Fig. 2. Proposed Scheduling and Resource Allocation scheme

be determined during training which ultimately increases the
training time and degrades clarification accuracy.

III. PROPOSED SCHEDULING SCHEME

We propose a scheduling scheme based on the predicted
result of the CNN-LSTM network, as shown in Fig. 2.
After the channel status identification, the priority matrix is
calculated based on the delayed deadline, and the incoming
traffic is arranged in ascending order of latency constraint.
Then, the scheduling request is served, and PRBs are allocated.
The delay-sensitive services are given the highest priority and
scheduled within two mini-slot time periods in an LOS channel
to improve reliability and reduce packet drop. On the other
hand, delay-tolerant services are scheduled on either LOS or
MP channel. LOS channels are given the highest priority, then
the MP channel. If a channel is identified as NLOS, then the
scheduled data transmission quality in this channel is hugely



degraded. Therefore, the LoS link is given priority to schedule
the incoming traffic instead of NLOS and MP.

We calculate the Bit Error Rate (BER) as the performance
evaluation metric for the proposed scheduler. Depending on
the deadline constraint of the arrived packet, we update the
priority queue status. Then, the earliest deadline packet is
given the highest priority to be scheduled through the LOS
path. If the delay constraint is below the threshold level, i.e.,
two mini slots, then it is termed a delay-sensitive service;
otherwise, it is a delay-tolerant service. Then, according to
the scheduling policy, BS schedules the available physical
resource blocks (PRB) for the incoming traffic. Depending
on the channel status, delay-sensitive services are scheduled
in LOS paths, and delay-tolerant services are scheduled either
on LOS, NLOS, or MP channels. First, the queuing delay of
each device node is calculated and normalized, which can be
represented as:

wq
i (t) =

qn(t)∑I
i=1 q(t)

, (5)

where qn(t) is the queuing delay of device node i at time
slot t. Then, the total delay at the device node is normalized
and is represented as:

wD
i (t) =

Dn(t)∑I
i=1 Dn(t)

. (6)

Then, considering the queuing delay and total normalized
delay at an IoT device, priority-based weights are assigned to
each node i at the time slot t. This can be represented as,

Pi(t) = wq
i (t) + wD

i (t), (7)

where Pi represents the sum of the total normalized delay
at a user node i.Then, the PRB allocation is done proportional
to the delay constraint Pi(t).

IV. SIMULATION STUDY AND PERFORMANCE ANALYSIS

For simulation, we use an open-source dataset collected in
two different environments as given in [12]. The LOS, NLOS,
and MP measurements were present in the dataset containing
the RSSI value and CSI value at different timestamps. We
build the classification model using the total number of 25000
samples randomly selected from the dataset. We use 20,000
samples for training and 5000 for testing the classifier model.
Samples are randomly selected to prevent model overfitting.
We employ Python with TensorFlow and Keras library to
simulate the deep learning models using a PC with 16 GB
RAM and an I7 CPU (3.3GHz). We train the other baseline
classifier models, like MLP and CNN classifier models, with
the proposed CNN-LSTM model to provide a comparison of
accuracy in classifying the channel type. The training of each
model is done with 20 epochs. The features like RSSI, CIR,
received power level, and first path power level are selected for
training the deep learning models. Then, the performance of
the classifiers is evaluated in terms of classification accuracy,
training time, and testing time. We calculate the performance

Fig. 3. Classification accuracy comparision

evaluation metrics like precision, recall, and F1 score of the
classifier models as [12]:

Recall = TP ∗ [1/(TP + FN)] (8)

Precision = TP ∗ [1/(TP + FP )] (9)

F1 score = 2 ∗ Precision.Recall

Precision+Recall
(10)

Here, TP is the true positive; FP and FN denote false posi-
tive and false negative values, respectively. Basically, precision
is the percentage of relevant or positive results, whereas recall
indicates the positive cases where the classifier prediction is
correct. On the other hand, the Fl-score conveys the balance
between the precision and recall value of a particular classifier
model.

The comparison of the corresponding precision, recall, and
F1 score of the proposed CNN-LSTM with that of the CNN,
and MLP models are given in Table I. Here, we can observe
the superiority of the CNN-LSTM classifier performance with
respect to the other baseline models. Additionally, we provide
a comparison of the time taken by the deep learning models
for training and testing on the given dataset in Table II. Here,
we can observe that the proposed CNN-LSTM model takes
more time to train in comparison to CNN and MLP models.
This is due to the presence of more dense layers in the CNN-
LSTM model. In Fig.3, we provide a comparative analysis of
ML models in terms of their classification accuracy on the
test dataset. We can observe that the proposed CNN-LSTM
classifier significantly improves the classification accuracy in
comparison to the CNN and MLP classifiers.



TABLE I
CLASSIFICATION MODEL PERFORMANCE COMPARISON

Models LOS NLOS MP
Precision Recall F1 Precision Recall F1 Precision Recall F1

CNN 0.82 0.88 0.85 0.91 0.82 0.86 0.86 0.88 0.87
MLP 0.78 0.9 0.83 0.9 0.79 0.84 0.89 0.85 0.87

CNN-LSTM 0.85 0.92 0.89 0.91 0.88 0.9 0.92 0.88 0.9

Fig. 4. Training and Testing accuracy of each model

Fig. 5. BER vs. SNR (dB)

TABLE II
TRAINING TIME AND TESTING TIME OF CLASSIFIER MODELS

Model Training Time(in s) Testing Time(in s)
CNN 322.96 4.29
MLP 263.91 5.21

CNN-LSTM 627.88 5.17

Similarly, Fig.4 shows the accuracy of deep learning models
in the training and testing phase after 10 epochs. We can ob-
serve that in both the training and testing phase, the prediction

accuracy of the proposed CNN-LSTM model is better than that
of the CNN and MLP models. A comparison of time taken
for training and testing the deep learning models is presented
in Table II. We can observe that the proposed CNN-LSTM
model takes more time to train in comparison to the CNN and
MLP models. This is due to the presence of more dense layers
in CNN-LSTM compared to other classifier models.

Due to the superior performance of CNN-LSTM in terms
of classification accuracy, we use this for identifying the
channel state in an indoor environment. Then, depending on
the prediction, the data packets are scheduled on the specific
wireless sub-channels. The scheduler selects the LOS link
for scheduling the delay-sensitive packets whose deadline is
approaching by giving it the highest priority.

The performance of the proposed scheduling technique is
evaluated in terms of the bit-error rate (BER) value for the spe-
cific type of service requirement. In Fig.5, we provide the BER
performance of the proposed scheduler in comparison to the
baseline Proportional Fair (PF) scheduler under various SNR
conditions. We can observe the improvement in the BER value
of the proposed scheduling scheme for both delay-sensitive
and delay-tolerant services in comparison to PF. According to
the proposed scheme, the delay-sensitive packets are scheduled
in LOS channels, whereas delay-tolerant services can be
scheduled on other sub-channels. This reduces the packet drop
probability and improves the reliability significantly during the
data transmission of heterogeneous service types.

V. CONCLUSION

In this paper, we propose a dynamic scheduling scheme
based on predicted channel status in an IIoT scenario. We
employ the CNN-LSTM deep learning model to accurately
classify and identify the channel type between legitimate trans-
mitter and receiver in IIoT i.e., LOS/NLOS or MP channel.
The performance of the proposed model is evaluated in terms
of classification accuracy, and the results show the superiority
of the proposed CNN-LSTM model in comparison to other
baseline models like CNN and MLP. The output of the CNN-
LSTM model is given to the scheduler for employing the
scheduling policy of the incoming signal depending on the
delay constraint and the predicted channel type. The proposed
scheduling scheme outperforms the baseline schemes like PF
and shows better BER performance in comparison to the
baseline method while improving the reliability of the delay-
sensitive signal transmission. In the future, we plan to extend
the work for developing intelligent and dynamic scheduling
schemes using unlabeled datasets, considering the constraints



of wireless channel dynamics like fading and mobility condi-
tions in the future.
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