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Abstract. A sufficient condition for the representation group for a nonabelian representation
(Definition 1.1) of a finite partial linear space to be a finite p-group is given (Theorem 2.9). We
characterize finite symplectic polar spaces of rank r at least two and of odd prime order p as the only
finite polar spaces of rank at least two and of prime order admitting nonabelian representations.
The representation group of such a polar space is an extraspecial p-group of order p1+2r and of
exponent p (Theorems 1.5 and 1.6).
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1. Introduction

A point-line geometry is a pair S = (P, L) consisting of a nonempty ‘point-set’ P and a nonempty
‘line-set’ L of subsets of P of size at least 2. S is a partial linear space if any two distinct points
x and y are contained in at most one line. Such a line, if it exists, is written as xy, x and y are
said to be collinear and written as x ∼ y. If x and y are not collinear we write x � y. The graph
with vertex set P , two distinct points being adjacent if they are collinear in S, is the collinearity
graph Γ (P ) of S. We write d(x, y) to denote the distance between two vertices x and y in Γ(P ).
For x ∈ P and A ⊆ P , we define x⊥ = {x} ∪ {y ∈ P : x ∼ y} and A⊥ = ∩

x∈A
x⊥. S is nondegenerate

if P⊥ is empty. A subset of P is a subspace of S if any line containing at least two of its points
is contained in it. The empty set, singletons, the lines and P are all subspaces of S. For a subset
X of P the subspace 〈X〉 generated by X is the intersection of all subspaces of S containing X. A
subspace is singular if each pair of its distinct points is collinear. A geometric hyperplane of S is a
subspace of S different from P , that meets every line nontrivially.

1.1. Representations of partial linear spaces. Let p be a prime. Let S = (P,L) be a partial
linear space of order p, that is, each line has p+1 points. (Note that, usually, order of a generalized
polygon means something else, see [20], Section 1.3, p. 387).

Definition 1.1. (Ivanov [12], p. 305) A representation of S is a pair (R, ψ) , where R is a group
and ψ is a mapping from the set of points of S into the set of subgroups of order p in R, such that
the following hold:

(i) R is generated by the subgroups ψ(x), x ∈ P .

(ii) For each line l ∈ L, the subgroups ψ (x), x ∈ l, are pairwise distinct and generate an
elementary abelian p-subgroup of order p2.

The group R is then called the representation group. The representation (R,ψ) is faithful if
ψ is injective. For each x ∈ P , we fix a generator rx of ψ (x) and denote by Rψ the union of
the subgroups 〈rx〉, x ∈ P . A representation (R, ψ) of S is abelian or nonabelian according as R

is abelian or not. Unlike here, ‘nonabelian representation’ in [12] means that ‘the representation
group is not necessarily abelian’. A representation (R1, ψ1) of S is a cover of the representation
(R2, ψ2) of S if there exist an automorphism β of S and a group homomorphism ϕ : R1 −→ R2

such that ψ2(β (x)) = ϕ (ψ1 (x)) for every x ∈ P . Further, if ϕ is an isomorphism then the two
representations (R1, ψ1) and (R2, ψ2) are equivalent.

We now indicate various possibilities for the representation group. Embeddings of partial linear
spaces (like projective spaces, polar spaces, generalized polygons, etc.) of order p in projective
spaces over the field Fp of order p are all examples of abelian representations. The representation
group is the corresponding vector space considered as an abelian group. Every representation
of a projective space is faithful (by Definition 1.1(ii)) and the representation group of a finite
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projective space of dimension m over Fp is an elementary abelian group of order pm+1. However, a
representation of a generalized quadrangle need not be faithful. For example, let S = (P,L) be a
(2, 1)-generalized quadrangle, let P1, P2, P3 be three triads partitioning P and let R = {1, r1, r2, r3}
be the Klein four group. Define ψ : P −→ R by ψ(x) = 〈ri〉 if x ∈ Pi. Then (R,ψ) is an abelian
representation which is not faithful.

Root group geometries are some examples of nonabelian representations of partial linear spaces.
Let H be a finite simple group of Lie type defined over Fp. Let G = (P, L) be the root group
geometry of H. That is, the ‘point set’ P is the collection of all (long) root subgroups of H. Two
distinct root subgroups x, y ∈ P are collinear if they generate an elementary abelian subgroup of
order p2 and each subgroup of order p in it is a member of P . The ‘line’ xy is the set of p + 1
subgroups of order p in 〈x, y〉. The identity map defines a representation of G in H and H is a
representation group of G. Note that if H is of type E6, E7 or E8, then G is a parapolar space (see
[4], p. 75); if it is of type G2 or 3D4, then G is a generalized hexagon with parameters (p, p) and
(p, p3) respectively (see ([6], p. 322 and 328) for p odd and ([7], Lemma 2.2, p. 2) for p = 2); if it is
type F4 or 2E6, then G is a metasymplectic space (see Section 4, [6]); and if it is of type 2F4, then
G is a (2,8)-generalized octagon (see [19]). For a discussion of root group geometries including the
classical ones, see [5] and [10], Chapter 4.

The following example shows that the representation group for a nonabelian representation of a
finite partial linear space could be infinite.

Example 1.2. Let S = (P,L) be a (2, 2)-generalized hexagon. Then S is isomorphic to H(2) (the
one admitting an embedding in O7(2)) or its dual H(2)∗ (see [20], Theorem 4, p. 402). For each
x ∈ P , H(x) = {y ∈ P : d(x, y) < 3} is a geometric hyperplane of S. The subgraph of Γ(P ) induced
on the complement of H(x) in P is connected if S ' H(2) and has two components if S ' H(2)∗

(see [9], section 3). By ([12], Lemma 3.6, p. 310), H(2)∗ admits a nonabelian representation whose
representation group is infinite. In fact, this representation is the cover of all other representations
of H(2)∗.

Our basic tool in this paper (Theorem 2.9) in fact is a sufficient condition on S and on the
nonabelian representation of S to ensure that the representation group is a finite p-group.

We refrain from listing several natural questions that suggest themselves regarding the represen-
tations and the possible representation groups of finite partial linear spaces. For more on nonabelian
representations, see [12].

1.2. Polar spaces. A polar space [2] here is a nondegenerate point-line geometry S = (P, L) with
at least three points per line satisfying the ‘one or all’ axiom:

For each point-line pair (x, l) , x /∈ l, x is collinear with one or all points of l.

(see [2], Theorem 4, p. 161 and [22], 7.1, p. 102). Rank of S is the supremum of the lengths m of
chains Q0 ( Q1 ( · · · ( Qm of singular subspaces in S. Since L is nonempty, the rank of S is at
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least two, but could be infinite. A remarkable discovery of Buekenhout and Shult is that a polar
space is a partial linear space ([2], Theorem 3, p. 161). A polar space of rank 2 is a generalized
quadrangle (GQ, for short). That is, it is a nondegenerate partial linear space such that:

Whenever x ∈ P, l ∈ L with x /∈ l, x is collinear with exactly one point of l.

If a finite GQ has a line with at least three points and a point on at least three lines then there
exist integers s and t such that each line contains s + 1 points and each point is on t + 1 lines ([3],
Theorem 7.1, p. 98). In that case we say that it is a (s, t)-GQ.

Building on the work of Veldkamp, Tits classified polar spaces whose rank is finite and at least
three [22]. (For polar spaces of possibly infinite rank, see [14].) This implies that a finite polar
space of rank r ≥ 3 and of order p is isomorphic to either the symplectic polar space W2r(p) or
one of the orthogonal polar spaces Q+

2r(p), Q2r+1(p) and Q−
2r+2(p). For notation see ([21], p. 329).

If r = 2 the above yield (p, p)-,(p, 1)-,(p, p)- and (p, p2)-GQs respectively. We note the number of
points of these polar spaces ([21], Theorem 1, p. 330):

|W2r(p)| = (p2r − 1)/(p− 1);
|Q+

2r(p)| = (pr−1 + 1)(pr − 1)/(p− 1);
|Q2r+1(p)| = (p2r − 1)/(p− 1);
|Q−

2r+2(p)| = (pr − 1)(pr+1 + 1)/(p− 1).

The following inductive property of these spaces is important for us (see [3], section 6.4, p. 90).

Lemma 1.3. Let S be one of the above polar spaces of finite rank r ≥ 3 and let x, y be two
noncollinear points. Then {x, y}⊥ is a polar space of rank r − 1 and is of the same type as S.

Finite GQs are classified only for s = 2, 3 (see [20], 5.1, p. 401). See [16] for several examples of
finite GQs. In [15], Kantor studied finite (p, t)-GQs S with t ≥ 2 admitting a rank 3 automorphism
group G on points and proved that one of the following holds: (i) t = p2 − p− 1 and p3 - |G|; (ii)
G ∼= PSp (4, p) or PΓU (4, p) and S is one of the natural GQs associated with these groups; (iii)
p = 2, G = Alt(6) and S is the GQ associated with PSp (4, 2) ([15], Theorem 1.1). This paper
started with a search for new finite (p, t)-GQs embedded in groups and resulted in a characterization
of finite symplectic polar spaces W2r(p) of rank r ≥ 2 for odd primes p (Theorems 1.5 and 1.6).

1.3. Extraspecial p-groups and Hall-commutator formula. A finite p-group G is extraspecial
if its Frattini subgroup Φ (G) , the commutator subgroup G′ and the center Z (G) coincide and have
order p. An extraspecial p-group is of order p1+2m for some integer m ≥ 1, has exponent at most p2

if p is odd and 4 if p = 2, and the maximum of the orders of its abelian subgroups is pm+1 (see [8],
section 20, p. 78,79). We denote by p1+2m

+ an extraspecial p-group of order p1+2m if its exponent is
p when p is odd and the abelian subgroups of order pm+1 are elementary abelian when p = 2. Note
that p1+2

+ is isomorphic to the group of 3× 3 upper triangular matrices with entries from Fp and 1



5

on the diagonal. For more on extraspecial p-groups, see ([11], section 3, p. 127 and Appendix 1, p.
141).

For elements g1, g2 in a group, we write [g1, g2] = g−1
1 g−1

2 g1g2 and gg2
1 = g−1

2 g1g2. We repeatedly
use the following Hall’s commutator formula ([8], 7.2, p. 22), mostly without mention.

Lemma 1.4. Let G be a group. Then for g1, g2, g3 ∈ G,

(i) [g1g2, g3] = [g1, g3]g2 [g2, g3];
(ii) [g1, g2g3] = [g1, g3][g1, g2]g3.

1.4. Statement of main results. In this paper we prove:

Theorem 1.5. Let S = (P, L) be a finite polar space of rank r ≥ 2 and of prime order p. If S

admits a nonabelian representation (R, ψ) then:

(i) p is odd;
(ii) R = p1+2r

+ ;
(iii) S is isomorphic to W2r (p).

Theorem 1.6. W2r (p) , r ≥ 2, admits a nonabelian representation. Any two such representations
are equivalent.

In Section 2 we prove a sufficient condition for a nonabelian representation group to be a p-group
(Theorem 2.9) which is crucial here and also in [18]. In Section 3 we prove Theorem 1.5(i) and
that R ' p1+2m

+ for some m ≥ 1. In Section 4 we prove Theorem 1.5 when the rank is two. Finally,
in Section 5 we prove Theorem 1.5 for the general rank and Theorem 1.6.

2. Initial Results

Let S = (P, L) be a partial linear space. We assume that Γ (P ) is connected and that with
each x ∈ P is associated a geometric hyperplane H (x) in S containing x. Consider the following
conditions on S:

(C1) If y ∈ H (x) then x ∈ H (y).
(C2) The subgraph Γ (H ′ (x)) of Γ (P ) induced on the complement H ′ (x) of H (x) in P is con-

nected.
(C3) If y ∈ H ′ (x) then there exist lines l1 and l2 containing x and y respectively such that for

each w ∈ l1, H (w) intersects l2 at exactly one point. Further, this correspondence is a
bijection from l1 to l2.

(C4) The graph Σ(P ) with vertex set P in which two points x and y are adjacent if y ∈ H ′(x) is
connected.

Example 2.1. Let S = (P, L) be a polar space of rank r ≥ 2. Then Γ(P ) is connected. For each
x ∈ P , associate the geometric hyperplane x⊥ of S. Then (C1), · · ·, (C4) hold.
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Example 2.2. Let S = (P, L) be a near 2n-gon, n ≥ 2, admitting quads (see [1]). We assume that
each line of S contains at least three points. By definition, Γ(P ) is connected. For each x ∈ P ,
associate the geometric hyperplane H(x) = {y ∈ P : d(x, y) < n} of S. Clearly (C1) holds. The
second corollary to ([1], Theorem 3, p. 155) implies that (C2) holds. Now, ([1], Theorem 2, p.
151) implies that if d(x, y) = n, x, y ∈ P and l1 is any line containing x, then there exists a line
l2 containing y such that (C3) holds. This also implies that if u ∼ v, u, v ∈ P , then there exists
w ∈ P such that d(u,w) = d(v, w) = n. So u,w, v is a path in Σ(P ). Then connectedness of Σ(P )
follows from that of Γ(P ). Thus C(4) holds.

We study nonabelian representations of finite polar spaces of order p here (Theorems 1.5 and
1.6) and that of near hexagons of order two and admitting quads in [18].

Remark 2.3. If S = (P,L) is a generalized 2n-gon and H(x), x ∈ P , is as in Example 2.2, then
(C2) need not hold, see Example 1.2.

Let (R,ψ) be a representation of S. For x, y ∈ P, define uxy = [rx, ry]. Throughout this section
we assume that

uxy = 1 whenever x ∈ P and y ∈ H (x) .

Proposition 2.4. Assume that (C1) and (C2) hold in S. Then the following hold:

(i) If uvw = 1 for v, w ∈ P with v ∈ H ′(w), then rw ∈ Z(R).
(ii) If a ∈ P and ra ∈ Z(R), then rc ∈ Z(R) for every c ∼ a.

Proof. (i) Let y ∈ H ′(w), y ∼ v and vy ∩ H(w) = {x}. Then uwy = 1 because x /∈ {v, y} and
uwx = uvw = 1. Now, connectedness of Γ (H ′ (w)) implies that uwz = 1 for every z ∈ H ′ (w) . Since
uwz = 1 for z ∈ H (w) also, rw ∈ Z (R).

(ii) By definition, H (a) ( P . Let b ∈ H ′ (a). By (C1) , a ∈ H ′ (b). By (i), rb ∈ Z(R) because
uab = 1. Now, ac ∩ H (b) is a singleton. Since each line contains at least 3 points, there exists a
point z in ac ∩H ′(b) different from a. Now, b ∈ H ′ (z) by (C1) and ubz = 1. So, rz ∈ Z(R) by (i)
again. So the subgroup generated by ψ (ac) is contained in Z (R) and rc ∈ Z(R). ¤

Corollary 2.5. Assume that (C1) and (C2) hold in S. If R is nonabelian then the following hold:

(i) uxy 6= 1 whenever x, y ∈ P and y ∈ H ′(x).
(ii) Rψ ∩ Z(R) = {1}.

(iii) If x ∼ y then y ∈ H (x).
(iv) If H (x) 6= H (y) for each pair of noncollinear points x and y, then ψ is faithful.

Proof. (i) follows from Proposition 2.4 and the connectedness of Γ(P ). (ii) and (iii) follow from
(i). We now prove (iv). Suppose that 〈rx〉 = 〈ry〉 for distinct x, y in P. Then x � y by Definition
1.1(ii) . By (i), u ∈ H(x) if and only if u ∈ H(y). So H (x) = H (y) , a contradiction. ¤
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Proposition 2.6. Assume that (C3) holds in S. Then for x, y ∈ P , [uxy, rx] = [uxy, ry] = 1. If
uxy 6= 1 then uxy is of order p and 〈rx, ry〉 = p1+2

+ .

Proof. Let x ∈ P , y ∈ H ′ (x) and l1, l2 be lines as in (C3). Let x, a, u be three pairwise distinct
points in l1 and y, b, v be points in l2 such that y ∈ H (a) , b ∈ H (x) and v ∈ H (u) . By (C3), y, b, v

are pairwise distinct. Write rx = ri
ar

j
u, ry = rk

vrm
b for some i, j, k, m, (1 ≤ i, j, k,m ≤ p− 1). Now,

uxy = [ri
ar

j
u, ry] = [rj

u, ry] = [rj
u, rk

vrm
b ] = [rj

u, rm
b ] = [rxr−i

a , rm
b ] = [r−i

a , rm
b ].

Since [r−i
a , rm

b ] = [rm
b , ri

a]
r−i
a ,

uxy = [rm
b , ri

a]
r−i
a = [ryr

−k
v , ri

a]
r−i
a = [r−k

v , ri
a]

r−i
a = [r−k

v , r−j
u rx]r

−i
a

= [r−k
v , rx]r

−i
a = [rm

b r−1
y , rx]r

−i
a = [r−1

y , rx]r
−i
a = [r−1

y , rx].

So uxyr
−1
y = r−1

x r−1
y rx = r−1

y

[
r−1
y , rx

]
= r−1

y uxy. Thus [uxy, ry] = 1. Similarly, uyx =
[
r−1
x , ry

]
.

This, together with
[
ry, r

−1
x

]
=

[
r−1
x , ry

]−1 = u−1
yx = uxy implies that [uxy, rx] = 1. Now,

[
ri
x, ry

]
=

[rx, ry]
i = ui

xy for all i ≥ 0. So up
xy = 1 and 〈rx, ry〉 = p1+2

+ . ¤

Proposition 2.7. Assume that (C1) , · · ·, (C4) hold in S. Then R′ ≤ Z(R) and |R′| ≤ p.

Proof. For x, y ∈ P , let Uxy = 〈uxy〉. Let a, b be adjacent in Γ (H ′ (x)) and ab ∩H (x) = {c} . Now
rb = ri

ar
j
c for some i, j, 1 ≤ i, j ≤ p− 1. Since [rx, rc] = 1, we have

uxb = [rx, rb] =
[
rx, ri

ar
j
c

]
=

[
rx, ri

a

]
= [rx, ra]

i = ui
xa.

So Uxb = Uxa. This, together with (C2), implies that Uxy is independent of the choice of y in H ′ (x).
Since uxy = u−1

yx , we have Uxy = Uyx. So, if x, y ∈ P with y ∈ H ′(x), then Uxy = Uyx. Now, by
(C4), Uxy is independent of the edge {x, y} in Σ(P ). We denote this common subgroup by U .

We now show that U ≤ Z (R) . Let x ∈ P and y ∈ H ′ (x) . We show that [uxy, rz] = 1 for each
z ∈ P . We may assume that z ∈ H ′ (x)∪H ′ (y) . In this case it is clear from Proposition 2.6 because
Uxy = Uxz if z ∈ H ′ (x). Similarly, if z ∈ H ′ (y).

Now, since R = 〈rx : x ∈ P 〉, uxy ∈ Z(R) and uxy = 1 if y ∈ H(x), it follows that R′ = 〈uxy :
x ∈ P, y ∈ H ′(x)〉 = U and is of order at most p (Proposition 2.6). ¤

Proposition 2.8. Assume that (C1), · · ··, (C4) hold in S. If R is nonabelian then exponent of R is
p or 4 according as p is odd or p = 2. In particular, if P is finite then R is finite and Φ(R) = R′.

Proof. Let r = r1r2 · · ·rn ∈ R, ri ∈ Rψ. We use induction on n. Let r = hrn, where h = r1r2 · · ·rn−1.

Since R′ ⊆ Z(R), ri
nh = hri

n

[
ri
n, h

]
= hri

n [rn, h]i. So ri+1 = hi+1ri+1
n [rn, h]1+2+···+i for all i ≥ 0.

Now, the result follows because by induction hp = 1 if p is odd and h4 = 1 if p = 2. Note that if
p = 2, exponent of R can not be 2 as R is nonabelian.

Now, if P is finite then R/R′ and so R are finite and Φ(R) = R′〈rp : r ∈ R〉 = R′. For p = 2,
the last equality holds because r2 ∈ R′ for every r ∈ R. ¤
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We now summarize the above results.

Theorem 2.9. Let S = (P, L) be a connected partial linear space of prime order p. Suppose that for
each x ∈ P there is associated a geometric hyperplane H(x) containing x such that (C1), · · ·, (C4)
hold. Let (R, ψ) be a nonabelian representation of S such that [ψ(x), ψ(y)] = 1 for all x, y ∈ P with
y ∈ H (x). Then the following hold:

(i) If x, y ∈ P with y ∈ H ′(x), then [ψ(x), ψ(y)] 6= 1 and 〈ψ(x), ψ(y)〉 = p1+2
+ ;

(ii) |R′| = p, R′ ⊆ Z(R), R is a p-group, and exponent of R is p or 4 according as p is odd or
p = 2.

Further, Rψ ∩ Z(R) = {1}; ψ is faithful if H(x) 6= H(y) whenever x � y; and R is finite with
R′ = Φ(R) if P is finite.

Remark 2.10. For p = 2, Theorem 2.9(ii) is a consequence of ([12], Lemma 3.5, p. 310) where
Ivanov did not assume (C3). Our proof of Proposition 2.7 is similar to that of ([13], Lemma 2.2,
p. 526).

Corollary 2.11. Let S and (R,ψ) be as in Theorem 2.9. If P is finite then (R, ψ) is the cover of
a representation (R1, ψ1) of S where R1 is extraspecial or p = 2 and Z(R1) is cyclic of order 4.

Proof. If Z(R) is elementary abelian (this is the case if p is odd), write Z(R) = R′T , R′ ∩ T = {1}
for some subgroup T of Z(R). Let R1 = R/T. Then R1 is extra special. Define ψ1 from P to R1

by ψ1(x) = 〈rxT 〉 , x ∈ P. Since rx /∈ Z(R), 〈rxT 〉 is a subgroup of R1 of order p for each x ∈ P .
Then (R1, ψ1) is a nonabelian representation of S and (R, ψ) is a cover of (R1, ψ1).

If Z(R) is not elementary abelian, then p = 2. Write Z(R) = 〈a〉K, 〈a〉 ∩ K = {1} where
K ≤ Z(R) and a is of order 4. Since r2 ∈ R′ for every r ∈ R, it follows that R′ = 〈a2〉. Now taking
R1 = R/K, the above argument completes the proof. ¤

3. Nonabelian Representation Group of a Polar Space

If a polar space of rank r ≥ 2 and of order p admits a faithful abelian representation then the
polar space is necessarily classical (for rank 2 case, see [17], 4.4.8, p. 76) and the representation is,
up to a projective linear transformation, a standard one. The following proposition shows that a
polar space of finite rank and of order p admits a nonabelian representation only if p is odd. For
any representation (R, ψ) of S, Definition 1.1(ii) implies that [rx, ry] = 1 if y ∈ x⊥. By Example
2.1, all the results of the previous section hold.

Proposition 3.1. Let S = (P, L) be a polar space of finite rank r ≥ 2 and of order three. Then
every representation of S is abelian.

Proof. Let (R, ψ) be a representation of S. By Lemma 1.3, there exists a chain of subspaces
Q0 = P ) Q1 ) Q2 ) · · · ) Qr−2 such that Qi is a polar space of rank r − i. Thus Qr−2 is a
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(2, t)-GQ. Let x, y ∈ Qr−2, x � y, and T be a (2, 1)-GQ in Qr−2 containing x and y. Such a T

exists because each line has 3 points. Let {x, y}⊥ = {a, b} in T . For u ∼ v, we define u ∗ v ∈ P

by uv = {u, v, u ∗ v}. In T , since [rb, ry] = [rb, rx] = 1 and r(a∗x)∗(b∗y) = r(a∗y)∗(b∗x), it follows that
rxry = ryrx. Now, Corollary 2.5(i) completes the proof. ¤

For the rest of this paper we assume that p is an odd prime.

Let S = (P, L) be a polar space of finite rank r ≥ 2 and of order p and (R, ψ) be a nonabelian
representation of S. Note that if r ≥ 3, then finiteness of P and that of r are equivalent. However,
if S is a GQ with s + 1 points per line, then finiteness of P is not known except when s = 2, 3, 4
(see [3], p.100). The rest of this section is devoted to prove that R is extraspecial if P is finite.

Lemma 3.2. ψ is faithful and [rx, ry] 6= 1 if x � y.

Proof. This follows from Corollary 2.5(i) and (iv). ¤

Given a line l and two distinct points a and b on it, we write

ψ (l) =
{〈ra〉 , 〈rb〉 , 〈rarb〉 ,

〈
r2
arb

〉
, · · ·, 〈rp−1

a rb

〉}
.

Let x, y ∈ P , x � y and u, v ∈ {x, y}⊥, u � v. Then [rx, ry] 6= 1 and [ru, rv] 6= 1. Let l0 = xu,

l1 = vy, m0 = xv and m1 = uy. Consider the lines l0 and l1. By ‘one or all’ axiom, each point
of l0 is collinear with exactly one point of l1 and vice-versa. Let l0 = {x, u, x1, x2, · · ·, xp−1} and
〈rxi〉 =

〈
ri
xru

〉
for 1 ≤ i ≤ p− 1. Let xi ∼ vi in l1. Then l1 = {v, y, v1, v2, · · ·, vp−1}. Replacing the

generator rv by rj
v for some j (2 ≤ j ≤ p − 1), if necessary, we may assume that 〈rv1〉 = 〈rvry〉 .

So [rxru, rvry] = 1. Then
[
ri
xru, ri

vry

]
= 1 for all i ≥ 0 because R′ ⊆ Z(R). By Lemma 3.2,[

ri
xru, rj

vry

]
6= 1 if i 6= j. So 〈rvi〉 =

〈
ri
vry

〉
. Let mi+1 be the line such that ψ (mi+1) =

〈
ri
xru, ri

vry

〉
,

1 ≤ i ≤ p− 1.

Let z ∈ mi \(l0∪ l1) and w ∈ mj \(l0∪ l1) for i 6= j, 0 ≤ i, j ≤ p. If i = 0, then 〈rz〉 =
〈
rk1
x rv

〉
and

if i > 0 then 〈rz〉 =
〈(

ri−1
x ru

)k1
(
ri−1
v ry

)〉
for some k1, 1 ≤ k1 ≤ p − 1. Similarly, 〈rw〉 =

〈
rk2
x rv

〉

or
〈(

rj−1
x ru

)k2
(
rj−1
v ry

)〉
for some k2, 1 ≤ k2 ≤ p − 1, according as j = 0 or j > 0. Now, from

R′ ⊆ Z (R), the identity [rx, ry] = [rv, ru] (a consequence of [rxru, rvry] = 1) and the fact that each
point of mi is collinear with exactly one point of mj for i 6= j (a consequence of ‘one or all’ axiom),
the following lemma is straight forward.

Lemma 3.3. z ∼ w if and only if k1 + k2 = p.

Proposition 3.4. If a, d ∈ Rψ then ad [a, d](p−1)/2 ∈ Rψ.

Proof. Let a, d ∈ Rψ−{1}. Let x1, x2 ∈ P be such that 〈rx1〉 = 〈a〉 and 〈rx2〉 = 〈d〉. We may assume
that x1 � x2. Then [a, d] 6= 1 by Lemma 3.2. We show that 〈ad [a, d](p−1)/2〉 is the image of some
element of P . Let y1, y2 ∈ {x1, x2}⊥ be such that y1 � y2, 〈ry1〉 = 〈b〉 and 〈ry2〉 = 〈c〉. Consider
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the lines l0 = x1y1 and l1 = x2y2. Let z1 ∈ l0 be such that 〈rz1〉 = 〈ab〉 and let z1 ∼ z2 ∈ l1.
Replacing the generator c by cj for some j, if necessary, we may assume that 〈rz2〉 = 〈cd〉. Let
m0 = x1y2 and m1 = z1z2. Let u ∈ m0 be such that 〈ru〉 =

〈
a(p−1)/2c

〉
. Then x1 6= u 6= y2. Let

u ∼ v in m1. By Lemma 3.3, 〈rv〉 =
〈
(ab)(p+1)/2 (cd)

〉
. If y1 ∼ w in the line uv, then 〈rw〉 =〈(

a(p−1)/2c
)k

(ab)(p+1)/2 (cd)
〉

for some k (1 ≤ k ≤ p− 1). Now
[
b,

(
a(p−1)/2c

)k
(ab)(p+1)/2 (cd)

]
=

1. So, [b, c]k+1 = 1 and k + 1 = p. The subgroup
〈
b(p−1)/2

(
a(p−1)/2c

)p−1
(ab)(p+1)/2 (cd)

〉
is

the image of some point of y1w. But b(p−1)/2
(
a(p−1)/2c

)p−1
(ab)(p+1)/2 (cd) = ad [b, c](p+1)/2 =

ad [a, d](p−1)/2 . In the last equality we have used [a, d] = [b, c]−1, a consequence of [ab, cd] = 1.
Thus, ad [a, d](p−1)/2 ∈ Rψ. ¤
Proposition 3.5. Rψ is a complete set of coset representatives of R′ in R.

Proof. Let r1R
′ = r2R

′ for some r1,r2 ∈ Rψ. Since R′ ⊆ Z(R), r1 and r2 are both trivial or are
both nontrivial (Corollary 2.5(ii)). Assume that the later holds and that r1 = r2w for some w ∈ R′.
Let x1, x2 ∈ P be such that 〈rx1〉 = 〈r1〉 and 〈rx2〉 = 〈r2〉. Since [r1, r2] = 1, either x1 = x2 or
x1 ∼ x2 (Lemma 3.2). If x1 ∼ x2 then w 6= 1 by Definition 1.1(ii) and 〈w〉 would be the image of
some point in the line x1x2, a contradiction to Corollary 2.5(ii). So x1 = x2 and r1 = ri

2 for some
i (1 ≤ i ≤ p − 1). Then ri−1

2 = w ∈ R′ ⊆ Z(R). Now, Corollary 2.5(ii) implies that i = 1 and so
w = 1 and r1 = r2.

Now, let sR′ ∈ R/R′. Write s = r1r2 · · · rk, ri ∈ Rψ. Let R′ = 〈z〉. Since R′ ⊆ Z(R), there
is some integer j such that r1r2 · · · rkz

j is an element, say r, of Rψ by Proposition 3.4. Then
sR′ = rR′, completing the proof of the proposition. ¤
Proposition 3.6. Assume that P is finite. Then |R| = p(1 + (p− 1) |P |) and R = p1+2m

+ for some
m ≥ 1.

Proof. Since |R′| = p (Proposition 2.7), the first assertion follows from Proposition 3.5. Also,
R′ = Z (R) because Rψ ∩ Z (R) = {1} and R′ ⊆ Z (R). Now, Proposition 2.8 completes the
proof. ¤
Corollary 3.7. If S is a finite classical polar space of rank r ≥ 2 admitting a nonabelian represen-
tation, then S is isomorphic to W2m(p) or Q2m+1(p).

Proof. By Proposition 3.6, |P | = (p2m − 1)/(p− 1) for some m > 0. So the corollary follows from
the number of points of classical polar spaces (see 1.2). ¤

By proposition 3.5, S admits a faithful abelian representation with representation group R/R′.
Considering R/R′ as a vector space over Fp, it has dimension 2m. Since Q2m+1(p) does not
possess faithful abelian 2m-dimensional representation, the only possibility is that S is isomorphic
to W2m(p). We thank the referee for this remark. In the next sections, we prove this fact giving a
geometrical argument involving triads of points of a generalized quadrangle.
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4. Rank 2 Case

Let S = (P,L) be a finite (s, t)-GQ. A triad of points in S is a triple T of pairwise noncollinear
points. An element of T⊥ is a center of T . A pair of distinct points {x, y} in S is regular if x ∼ y

or if x � y and
∣∣∣{x, y}⊥⊥

∣∣∣ = t + 1. A point x is regular if {x, y} is regular for each y ∈ P \ {x}.
The pair {x, y}, x � y, is antiregular if |z⊥ ∩ {x, y}⊥ | ≤ 2 for each z ∈ P \ {x, y}. A point x is
antiregular if {x, y} is antiregular for each y ∈ P \ x⊥. Dually, we define a triad of lines, center of
a triad of lines, regularity and antiregularity of a line.

Proposition 4.1. Let S = (P,L) be a (p, t)-GQ. If S admits a triad of lines with at least 3 centers
then every representation of S is abelian.

Proof. Let {l1, l2, l3} be a triad of lines in S with centers m1,m2,m3. Let {xij} = li∩mj , 1 ≤ i, j ≤
3. Consider the lines l1 and l2. Replacing rx11 by rk

x11
for some k, if necessary, we may assume

that the point a of l1 with 〈ra〉 = 〈rx11rx12〉 is collinear with the point b with 〈rb〉 = 〈rx21rx22〉.
So [rx11rx12 , rx21rx22 ] = 1. Then

[
ri
x11

rx12 , r
i
x21

rx22

]
= 1 for 0 ≤ i ≤ p − 1. Let 〈rx13〉 =

〈
ri
x11

rx12

〉

and 〈rx23〉 =
〈
rj
x21rx22

〉
for some i, j, 1 ≤ i, j ≤ p − 1. If i 6= j then R is abelian (Corollary

2.5(i)). So assume that i = j. Let 〈rx31〉 =
〈
rk
x11

rx21

〉
and 〈rx33〉 =

〈(
ri
x11

rx12

)n (
ri
x21

rx22

)〉
for

some k, n, 1 ≤ k, n ≤ p − 1. If n 6= p − k, then R is abelian by Lemma 3.3. So, we assume that
〈rx33〉 =

〈(
ri
x11

rx12

)p−k (
ri
x21

rx22

)〉
. By a similar argument, we assume that 〈rx32〉 =

〈
rp−k
x21 rx22

〉
.

Now, Lemma 3.3 implies that R is abelian because x32 ∼ x33 and p− k 6= p− (p− k). ¤

Corollary 4.2. If S admits a nonabelian representation then every line of S is antiregular and no
line of S is regular.

Proposition 4.3. Let S = (P,L) be a finite (p, t)-GQ. If S admits a nonabelian representation
(R, ψ), then t = p and R = p1+4

+ .

Proof. We have |P | = (p + 1)(pt + 1) ([17], 1.2.1, p. 2). So |R| = p2
(
t
(
p2 − 1

)
+ p

)
(Proposition

3.6). By Corollary 4.2, t ≥ 2. So, p2
(
t
(
p2 − 1

)
+ p

) ≥ p4. Now, |R| = p2m+1 for some integer
m ≥ 1. Thus,

t = p
(
p2(m−2) + p2(m−3) + · · ·+ p2 + 1

)
.

Since t ≤ p2 ([17], 1.2.3, p. 3), m = 2, t = p and R = p1+4
+ . ¤

In Q5 (p) all lines are regular ([17], 3.3.1(i), p 51). So every representation of Q5 (p) is abelian.
On the other hand, since p is odd, W4 (p) is not self-dual and is isomorphic to the dual of Q5(p)
([17], 3.2.1, p. 43). No point of Q5 (p) is regular ([17], 1.5.2(i), p. 13), so no line of W4(p) is
regular. Again, all points of Q5(p) are antiregular ([17], 3.3.1(i), p. 51), so all lines of W4 (p) are
antiregular. We prove
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Proposition 4.4. Let S = (P,L) be a (p, p)-GQ. If S admits a nonabelian representation then S

is isomorphic to W4 (p).

Proof. Since W4(p) is characterized by the regularity of each of its point ([17], 5.2.1, p. 77), it is
enough to show that if x, y ∈ P and x � y then {x, y}⊥⊥ contains {a, b}⊥ for distinct a, b ∈ {x, y}⊥.
Let (R, ψ) be a nonabelian representation of S. Let z ∈ {a, b}⊥ and w ∈ {x, y}⊥ . We claim that
z ∼ w. Write H = CR (ra) ∩ CR (rb) . Then

|H| = |CR (ra)| |CR (rb)|
|CR (ra) CR (rb)| =

p4p4

p5
= p3.

Let K = 〈rx, ry〉. By Proposition 2.6, |K| = p3. So K = H because K ≤ H. Then [rw, rz] = 1
because [rw,K] = 1. So z ∼ w by Theorem 2.9(i). ¤

5. Proof of Theorems 1.5 and 1.6

Proof of Theorem 1.5. By Proposition 3.1, p is an odd prime. By Lemma 1.3 and Proposition
4.4, S is isomorphic to W2r(p). Proposition 3.6 implies that R = p1+2r

+ . This completes the proof
of Theorem 1.5.

We prove Theorem 1.6 in Propositions 5.2 and 5.3. In view of Proposition 3.4, we first prove

Proposition 5.1. Let G = p1+2r
+ . There exists a set T of coset representatives of Z(G) in G such

that if t1, t2 ∈ T then t1t2 [t1, t2]
(p−1)/2 ∈ T . Further, T is unique up to conjugacy in G.

Proof. Let Z = Z(G) = 〈z〉 and V = G/Z. We consider V as a vector space over Fp. The map
f : V × V −→ Fp taking (xZ, yZ) to i, where [x, y] = zi (0 ≤ i ≤ p − 1), is a nondegenerate
symplectic bilinear form on V . Write V as an orthogonal direct sum of r hyperbolic planes Ki

(1 ≤ i ≤ r) in V and let Hi be the inverse image of Ki in G. Then Hi is generated by 2 elements
xi1 and xi2 such that [xi1 , xi2 ] = z. Let Aj = 〈xij , 1 ≤ i ≤ r〉, j = 1, 2. Then Aj is an elementary
abelian p-subgroup of G of order pr, Aj ∩ Z = {1} and A1Z ∩A2Z = Z. Set

T =
{

xy [x, y]
p−1
2 : x ∈ A1, y ∈ A2

}
.

We show that T has the required property. Let α = xy [x, y]
p−1
2 , β = uv [u, v]

p−1
2 be elements

of T where x, u ∈ A1 and y, v ∈ A2. If αZ = βZ, then u−1xZ = y−1vZ and is equal to Z because
A1Z ∩ A2Z = Z. So x = u and y = v because Aj ∩ Z = {1}. Thus αZ = βZ if and only if
x = u, y = v. So, |T | = p2r and T is a complete set of coset representatives. Since G′ = Z, a
routine calculation shows that αβ [α, β](p−1)/2 = (xu) (yv) [xu, yv](p−1)/2 ∈ T . Thus, T has the
stated property.
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Now we prove the uniqueness part. In fact, we show that the group of inner automorphisms of
G acts regularly on the set X of all sets of coset representatives of Z in G, each of which is closed
under the binary operation (t1, t2) 7→ t1t2[t1, t2](p−1)/2.

Fix an ordered basis {v1Z, · · ·, v2rZ} for V . Each T ∈ X is determined by the sequence (x1, · ·
·, x2r), where T ∩ viZ = {xi}. In fact, if aZ = xj1

i1
· · · xjn

in
Z ∈ V , where i1 < · · · < in and

1 ≤ jk ≤ p− 1, then aZ ∩ T = {xj1
i1
· · · xjn

in
zm}, where

zm = [xj1
i1

, xj2
i2

](p−1)/2[xj1
i1

xj2
i2

, xj3
i3

](p−1)/2 · · · [xj1
i1
· · · xjn−1

in−1
, xjn

in
](p−1)/2.

Thus, |X | ≤ p2r. Further, for T ∈ X and g ∈ G, g−1Tg = T implies g ∈ Z. To see this, let t ∈ T

and g−1tg = t′ ∈ T . Then, tZ = g−1tgZ = t′Z. Since T contains exactly one element from each
coset, it follows that t = t′ and g ∈ CG(t). Thus, g ∈ CG(T ) = Z. Since |G : Z| = p2r, |X | = p2r

and G acts transitively on X . ¤

Proposition 5.2. W2r(p), r ≥ 2, admits a nonabelian representation and the representation group
is p1+2r

+ .

Proof. Let G = p1+2r
+ and T be as in Proposition 5.1. Consider the partial linear space S = (P, L),

where P = {〈x〉 : 1 6= x ∈ T} and a line is of the form
{〈x〉 , 〈y〉 , 〈xy〉 , · · ·, 〈xp−1y

〉}
for distinct

〈x〉, 〈y〉 in P with [x, y] = 1. Note that xiy ∈ T for each i and |P | = (p2r − 1)/(p − 1). We show
that S is a polar space of rank r.

Since T ∩ Z(G) = {1}, S is nondegenerate. Let 〈x〉 ∈ P , l ∈ L and 〈x〉 /∈ l. Then, 〈x〉 is
collinear with one or all points of l because CG (x) intersects nontrivially with the subgroup H of
G generated by the points of l. Note that H is a subgroup of order p2 and disjoint from Z(G).
Rank of S is r because singular subspaces in S correspond to elementary abelian subgroups of G

which intersect Z(G) trivially and pr is the maximum of the orders of such subgroups of G. Thus
S is a polar space of rank r.

Clearly G is a representation group of S. So, S is isomorphic to W2r (p) (Theorem 1.5(iii)). ¤

Proposition 5.3. Any two representations of W2r (p), r ≥ 2, are equivalent.

Proof. Let (R1, ψ1) and (R2, ψ2) be two representations of W2r (p). By Theorem 1.5(ii), we may
assume that R1 = R2 = R. By Proposition 3.5, each Rψi is a set of coset representatives of Z(R)
in R. Let ϕ ∈ Aut(R) be such that ϕ(Rψ1) = Rψ2 (Proposition 5.1). Define β : P −→ P by
β = ψ−1

2 ϕψ1. Now, Lemma 3.2 implies that β is an automorphism of W2r (p). Now, (R,ψ1) and
(R, ψ2) are equivalent with respect to ϕ and β. ¤
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