Binod Kumar Sahoo is presently with NIT-Rourkela India This paper is Archived in Dspace@nitr http://dspace.nitrkl.ac.in/dspace

Journal of Combinatorial Theory, Series A Volume 114, Issue 1 (2007), 52–64

A characterization of finite symplectic polar spaces of odd prime order

Binod Kumar Sahoo¹ and N. S. Narasimha Sastry

Statistics and Mathematics Unit Indian Statistical Institute 8th Mile, Mysore Road R. V. College Post Bangalore-560059, India

E-mails: binodkumar@gmail.com, nsastry@isibang.ac.in

Abstract. A sufficient condition for the representation group for a nonabelian representation (Definition 1.1) of a finite partial linear space to be a finite *p*-group is given (Theorem 2.9). We characterize finite symplectic polar spaces of rank *r* at least two and of odd prime order *p* as the only finite polar spaces of rank at least two and of prime order admitting nonabelian representations. The representation group of such a polar space is an extraspecial *p*-group of order p^{1+2r} and of exponent *p* (Theorems 1.5 and 1.6).

 $^{^1\!\}mathrm{Supported}$ by DAE grant 39/3/2000-R&D-II (NBHM fellowship), Govt. of India

1. Introduction

A point-line geometry is a pair S = (P, L) consisting of a nonempty 'point-set' P and a nonempty 'line-set' L of subsets of P of size at least 2. S is a partial linear space if any two distinct points x and y are contained in at most one line. Such a line, if it exists, is written as xy, x and y are said to be collinear and written as $x \sim y$. If x and y are not collinear we write $x \nsim y$. The graph with vertex set P, two distinct points being adjacent if they are collinear in S, is the collinearity graph $\Gamma(P)$ of S. We write d(x, y) to denote the distance between two vertices x and y in $\Gamma(P)$. For $x \in P$ and $A \subseteq P$, we define $x^{\perp} = \{x\} \cup \{y \in P : x \sim y\}$ and $A^{\perp} = \bigcap_{x \in A} x^{\perp}$. S is nondegenerate if P^{\perp} is empty. A subset of P is a subspace of S if any line containing at least two of its points is contained in it. The empty set, singletons, the lines and P are all subspaces of S. For a subset X of P the subspace $\langle X \rangle$ generated by X is the intersection of all subspaces of S containing X. A subspace is singular if each pair of its distinct points is collinear. A geometric hyperplane of S is a subspace of S different from P, that meets every line nontrivially.

1.1. Representations of partial linear spaces. Let p be a prime. Let S = (P, L) be a partial linear space of order p, that is, each line has p+1 points. (Note that, usually, order of a generalized polygon means something else, see [20], Section 1.3, p. 387).

Definition 1.1. (Ivanov [12], p. 305) A representation of S is a pair (R, ψ) , where R is a group and ψ is a mapping from the set of points of S into the set of subgroups of order p in R, such that the following hold:

(i) R is generated by the subgroups $\psi(x), x \in P$.

(ii) For each line $l \in L$, the subgroups $\psi(x)$, $x \in l$, are pairwise distinct and generate an elementary abelian p-subgroup of order p^2 .

The group R is then called the *representation group*. The representation (R, ψ) is faithful if ψ is injective. For each $x \in P$, we fix a generator r_x of $\psi(x)$ and denote by R_{ψ} the union of the subgroups $\langle r_x \rangle, x \in P$. A representation (R, ψ) of S is abelian or nonabelian according as R is abelian or not. Unlike here, 'nonabelian representation' in [12] means that 'the representation group is not necessarily abelian'. A representation (R_1, ψ_1) of S is a cover of the representation (R_2, ψ_2) of S if there exist an automorphism β of S and a group homomorphism $\varphi : R_1 \longrightarrow R_2$ such that $\psi_2(\beta(x)) = \varphi(\psi_1(x))$ for every $x \in P$. Further, if φ is an isomorphism then the two representations (R_1, ψ_1) and (R_2, ψ_2) are equivalent.

We now indicate various possibilities for the representation group. Embeddings of partial linear spaces (like projective spaces, polar spaces, generalized polygons, etc.) of order p in projective spaces over the field F_p of order p are all examples of abelian representations. The representation group is the corresponding vector space considered as an abelian group. Every representation of a projective space is faithful (by Definition 1.1(ii)) and the representation group of a finite projective space of dimension m over F_p is an elementary abelian group of order p^{m+1} . However, a representation of a generalized quadrangle need not be faithful. For example, let S = (P, L) be a (2, 1)-generalized quadrangle, let P_1, P_2, P_3 be three triads partitioning P and let $R = \{1, r_1, r_2, r_3\}$ be the Klein four group. Define $\psi : P \longrightarrow R$ by $\psi(x) = \langle r_i \rangle$ if $x \in P_i$. Then (R, ψ) is an abelian representation which is not faithful.

Root group geometries are some examples of nonabelian representations of partial linear spaces. Let H be a finite simple group of Lie type defined over F_p . Let $\mathcal{G} = (P, L)$ be the root group geometry of H. That is, the 'point set' P is the collection of all (long) root subgroups of H. Two distinct root subgroups $x, y \in P$ are collinear if they generate an elementary abelian subgroup of order p^2 and each subgroup of order p in it is a member of P. The 'line' xy is the set of p + 1subgroups of order p in $\langle x, y \rangle$. The identity map defines a representation of \mathcal{G} in H and H is a representation group of \mathcal{G} . Note that if H is of type E_6, E_7 or E_8 , then \mathcal{G} is a parapolar space (see [4], p. 75); if it is of type G_2 or 3D_4 , then \mathcal{G} is a generalized hexagon with parameters (p, p) and (p, p^3) respectively (see ([6], p. 322 and 328) for p odd and ([7], Lemma 2.2, p. 2) for p = 2); if it is type F_4 or 2E_6 , then \mathcal{G} is a metasymplectic space (see Section 4, [6]); and if it is of type 2F_4 , then \mathcal{G} is a (2,8)-generalized octagon (see [19]). For a discussion of root group geometries including the classical ones, see [5] and [10], Chapter 4.

The following example shows that the representation group for a nonabelian representation of a finite partial linear space could be infinite.

Example 1.2. Let S = (P, L) be a (2, 2)-generalized hexagon. Then S is isomorphic to H(2) (the one admitting an embedding in $O_7(2)$) or its dual $H(2)^*$ (see [20], Theorem 4, p. 402). For each $x \in P$, $H(x) = \{y \in P : d(x, y) < 3\}$ is a geometric hyperplane of S. The subgraph of $\Gamma(P)$ induced on the complement of H(x) in P is connected if $S \simeq H(2)$ and has two components if $S \simeq H(2)^*$ (see [9], section 3). By ([12], Lemma 3.6, p. 310), $H(2)^*$ admits a nonabelian representation whose representation group is infinite. In fact, this representation is the cover of all other representations of $H(2)^*$.

Our basic tool in this paper (Theorem 2.9) in fact is a sufficient condition on S and on the nonabelian representation of S to ensure that the representation group is a finite p-group.

We refrain from listing several natural questions that suggest themselves regarding the representations and the possible representation groups of finite partial linear spaces. For more on nonabelian representations, see [12].

1.2. Polar spaces. A polar space [2] here is a nondegenerate point-line geometry S = (P, L) with at least three points per line satisfying the 'one or all' axiom:

For each point-line pair $(x, l), x \notin l, x$ is collinear with one or all points of l.

(see [2], Theorem 4, p. 161 and [22], 7.1, p. 102). Rank of S is the supremum of the lengths m of chains $Q_0 \subsetneq Q_1 \subsetneq \cdots \subsetneq Q_m$ of singular subspaces in S. Since L is nonempty, the rank of S is at

least two, but could be infinite. A remarkable discovery of Buekenhout and Shult is that a polar space is a partial linear space ([2], Theorem 3, p. 161). A polar space of rank 2 is a *generalized quadrangle* (GQ, for short). That is, it is a nondegenerate partial linear space such that:

Whenever $x \in P, l \in L$ with $x \notin l, x$ is collinear with exactly one point of l.

If a finite GQ has a line with at least three points and a point on at least three lines then there exist integers s and t such that each line contains s + 1 points and each point is on t + 1 lines ([3], Theorem 7.1, p. 98). In that case we say that it is a (s, t)-GQ.

Building on the work of Veldkamp, Tits classified polar spaces whose rank is finite and at least three [22]. (For polar spaces of possibly infinite rank, see [14].) This implies that a finite polar space of rank $r \ge 3$ and of order p is isomorphic to either the symplectic polar space $W_{2r}(p)$ or one of the orthogonal polar spaces $Q_{2r}^+(p)$, $Q_{2r+1}(p)$ and $Q_{2r+2}^-(p)$. For notation see ([21], p. 329). If r = 2 the above yield (p, p)-,(p, 1)-,(p, p)- and (p, p^2) -GQs respectively. We note the number of points of these polar spaces ([21], Theorem 1, p. 330):

$$|W_{2r}(p)| = (p^{2r} - 1)/(p - 1);$$

$$|Q_{2r}^{+}(p)| = (p^{r-1} + 1)(p^{r} - 1)/(p - 1);$$

$$|Q_{2r+1}(p)| = (p^{2r} - 1)/(p - 1);$$

$$|Q_{2r+2}^{-}(p)| = (p^{r} - 1)(p^{r+1} + 1)/(p - 1).$$

The following inductive property of these spaces is important for us (see [3], section 6.4, p. 90).

Lemma 1.3. Let S be one of the above polar spaces of finite rank $r \ge 3$ and let x, y be two noncollinear points. Then $\{x, y\}^{\perp}$ is a polar space of rank r - 1 and is of the same type as S.

Finite GQs are classified only for s = 2, 3 (see [20], 5.1, p. 401). See [16] for several examples of finite GQs. In [15], Kantor studied finite (p, t)-GQs S with $t \ge 2$ admitting a rank 3 automorphism group G on points and proved that one of the following holds: (i) $t = p^2 - p - 1$ and $p^3 \nmid |G|$; (ii) $G \cong PSp(4, p)$ or $P\Gamma U(4, p)$ and S is one of the natural GQs associated with these groups; (iii) p = 2, G = Alt(6) and S is the GQ associated with PSp(4, 2) ([15], Theorem 1.1). This paper started with a search for new finite (p, t)-GQs embedded in groups and resulted in a characterization of finite symplectic polar spaces $W_{2r}(p)$ of rank $r \ge 2$ for odd primes p (Theorems 1.5 and 1.6).

1.3. Extraspecial *p*-groups and Hall-commutator formula. A finite *p*-group *G* is *extraspecial* if its Frattini subgroup $\Phi(G)$, the commutator subgroup *G'* and the center Z(G) coincide and have order *p*. An extraspecial *p*-group is of order p^{1+2m} for some integer $m \ge 1$, has exponent at most p^2 if *p* is odd and 4 if p = 2, and the maximum of the orders of its abelian subgroups is p^{m+1} (see [8], section 20, p. 78,79). We denote by p_+^{1+2m} an extraspecial *p*-group of order p^{1+2m} if its exponent is *p* when *p* is odd and the abelian subgroups of order p^{m+1} are elementary abelian when p = 2. Note that p_+^{1+2} is isomorphic to the group of 3×3 upper triangular matrices with entries from F_p and 1

on the diagonal. For more on extraspecial p-groups, see ([11], section 3, p. 127 and Appendix 1, p. 141).

For elements g_1, g_2 in a group, we write $[g_1, g_2] = g_1^{-1}g_2^{-1}g_1g_2$ and $g_1^{g_2} = g_2^{-1}g_1g_2$. We repeatedly use the following Hall's commutator formula ([8], 7.2, p. 22), mostly without mention.

Lemma 1.4. Let G be a group. Then for $g_1, g_2, g_3 \in G$,

- (i) $[g_1g_2, g_3] = [g_1, g_3]^{g_2}[g_2, g_3];$
- (*ii*) $[g_1, g_2g_3] = [g_1, g_3][g_1, g_2]^{g_3}$.

1.4. Statement of main results. In this paper we prove:

Theorem 1.5. Let S = (P, L) be a finite polar space of rank $r \ge 2$ and of prime order p. If S admits a nonabelian representation (R, ψ) then:

(i) p is odd;

(*ii*)
$$R = p_{+}^{1+2r}$$
;

(iii) S is isomorphic to $W_{2r}(p)$.

Theorem 1.6. $W_{2r}(p)$, $r \ge 2$, admits a nonabelian representation. Any two such representations are equivalent.

In Section 2 we prove a sufficient condition for a nonabelian representation group to be a *p*-group (Theorem 2.9) which is crucial here and also in [18]. In Section 3 we prove Theorem 1.5(*i*) and that $R \simeq p_+^{1+2m}$ for some $m \ge 1$. In Section 4 we prove Theorem 1.5 when the rank is two. Finally, in Section 5 we prove Theorem 1.5 for the general rank and Theorem 1.6.

2. Initial Results

Let S = (P, L) be a partial linear space. We assume that $\Gamma(P)$ is connected and that with each $x \in P$ is associated a geometric hyperplane H(x) in S containing x. Consider the following conditions on S:

- (C1) If $y \in H(x)$ then $x \in H(y)$.
- (C2) The subgraph $\Gamma(H'(x))$ of $\Gamma(P)$ induced on the complement H'(x) of H(x) in P is connected.
- (C3) If $y \in H'(x)$ then there exist lines l_1 and l_2 containing x and y respectively such that for each $w \in l_1$, H(w) intersects l_2 at exactly one point. Further, this correspondence is a bijection from l_1 to l_2 .
- (C4) The graph $\Sigma(P)$ with vertex set P in which two points x and y are adjacent if $y \in H'(x)$ is connected.

Example 2.1. Let S = (P, L) be a polar space of rank $r \ge 2$. Then $\Gamma(P)$ is connected. For each $x \in P$, associate the geometric hyperplane x^{\perp} of S. Then $(C1), \dots, (C4)$ hold.

Example 2.2. Let S = (P, L) be a near 2n-gon, $n \ge 2$, admitting quads (see [1]). We assume that each line of S contains at least three points. By definition, $\Gamma(P)$ is connected. For each $x \in P$, associate the geometric hyperplane $H(x) = \{y \in P : d(x, y) < n\}$ of S. Clearly (C1) holds. The second corollary to ([1], Theorem 3, p. 155) implies that (C2) holds. Now, ([1], Theorem 2, p. 151) implies that if d(x, y) = n, $x, y \in P$ and l_1 is any line containing x, then there exists a line l_2 containing y such that (C3) holds. This also implies that if $u \sim v$, $u, v \in P$, then there exists $w \in P$ such that d(u, w) = d(v, w) = n. So u, w, v is a path in $\Sigma(P)$. Then connectedness of $\Sigma(P)$ follows from that of $\Gamma(P)$. Thus C(4) holds.

We study nonabelian representations of finite polar spaces of order p here (Theorems 1.5 and 1.6) and that of near hexagons of order two and admitting quads in [18].

Remark 2.3. If S = (P, L) is a generalized 2n-gon and $H(x), x \in P$, is as in Example 2.2, then (C2) need not hold, see Example 1.2.

Let (R, ψ) be a representation of S. For $x, y \in P$, define $u_{xy} = [r_x, r_y]$. Throughout this section we assume that

$$u_{xy} = 1$$
 whenever $x \in P$ and $y \in H(x)$

Proposition 2.4. Assume that (C1) and (C2) hold in S. Then the following hold:

- (i) If $u_{vw} = 1$ for $v, w \in P$ with $v \in H'(w)$, then $r_w \in Z(R)$.
- (ii) If $a \in P$ and $r_a \in Z(R)$, then $r_c \in Z(R)$ for every $c \sim a$.

Proof. (i) Let $y \in H'(w)$, $y \sim v$ and $vy \cap H(w) = \{x\}$. Then $u_{wy} = 1$ because $x \notin \{v, y\}$ and $u_{wx} = u_{vw} = 1$. Now, connectedness of $\Gamma(H'(w))$ implies that $u_{wz} = 1$ for every $z \in H'(w)$. Since $u_{wz} = 1$ for $z \in H(w)$ also, $r_w \in Z(R)$.

(*ii*) By definition, $H(a) \subseteq P$. Let $b \in H'(a)$. By (C1), $a \in H'(b)$. By (*i*), $r_b \in Z(R)$ because $u_{ab} = 1$. Now, $ac \cap H(b)$ is a singleton. Since each line contains at least 3 points, there exists a point z in $ac \cap H'(b)$ different from a. Now, $b \in H'(z)$ by (C1) and $u_{bz} = 1$. So, $r_z \in Z(R)$ by (*i*) again. So the subgroup generated by $\psi(ac)$ is contained in Z(R) and $r_c \in Z(R)$.

Corollary 2.5. Assume that (C1) and (C2) hold in S. If R is nonabelian then the following hold:

- (i) $u_{xy} \neq 1$ whenever $x, y \in P$ and $y \in H'(x)$.
- (*ii*) $R_{\psi} \cap Z(R) = \{1\}.$
- (*iii*) If $x \sim y$ then $y \in H(x)$.
- (iv) If $H(x) \neq H(y)$ for each pair of noncollinear points x and y, then ψ is faithful.

Proof. (i) follows from Proposition 2.4 and the connectedness of $\Gamma(P)$. (ii) and (iii) follow from (i). We now prove (iv). Suppose that $\langle r_x \rangle = \langle r_y \rangle$ for distinct x, y in P. Then $x \nsim y$ by Definition 1.1(ii). By (i), $u \in H(x)$ if and only if $u \in H(y)$. So H(x) = H(y), a contradiction.

Proposition 2.6. Assume that (C3) holds in S. Then for $x, y \in P$, $[u_{xy}, r_x] = [u_{xy}, r_y] = 1$. If $u_{xy} \neq 1$ then u_{xy} is of order p and $\langle r_x, r_y \rangle = p_+^{1+2}$.

Proof. Let $x \in P$, $y \in H'(x)$ and l_1 , l_2 be lines as in (C3). Let x, a, u be three pairwise distinct points in l_1 and y, b, v be points in l_2 such that $y \in H(a)$, $b \in H(x)$ and $v \in H(u)$. By (C3), y, b, v are pairwise distinct. Write $r_x = r_a^i r_u^j$, $r_y = r_v^k r_b^m$ for some $i, j, k, m, (1 \le i, j, k, m \le p - 1)$. Now,

$$u_{xy} = [r_a^i r_u^j, r_y] = [r_u^j, r_y] = [r_u^j, r_v^k r_b^m] = [r_u^j, r_b^m] = [r_x r_a^{-i}, r_b^m] = [r_a^{-i}, r_b^m].$$

Since $[r_a^{-i}, r_b^m] = [r_b^m, r_a^i]^{r_a^{-i}}$,

$$u_{xy} = [r_b^m, r_a^i]^{r_a^{-i}} = [r_y r_v^{-k}, r_a^i]^{r_a^{-i}} = [r_v^{-k}, r_a^i]^{r_a^{-i}} = [r_v^{-k}, r_u^{-j} r_x]^{r_a^{-i}}$$
$$= [r_v^{-k}, r_x]^{r_a^{-i}} = [r_b^m r_y^{-1}, r_x]^{r_a^{-i}} = [r_y^{-1}, r_x]^{r_a^{-i}} = [r_y^{-1}, r_x].$$

So $u_{xy}r_y^{-1} = r_x^{-1}r_y^{-1}r_x = r_y^{-1}[r_y^{-1}, r_x] = r_y^{-1}u_{xy}$. Thus $[u_{xy}, r_y] = 1$. Similarly, $u_{yx} = [r_x^{-1}, r_y]$. This, together with $[r_y, r_x^{-1}] = [r_x^{-1}, r_y]^{-1} = u_{yx}^{-1} = u_{xy}$ implies that $[u_{xy}, r_x] = 1$. Now, $[r_x^i, r_y] = [r_x, r_y]^i = u_{xy}^i$ for all $i \ge 0$. So $u_{xy}^p = 1$ and $\langle r_x, r_y \rangle = p_+^{1+2}$.

Proposition 2.7. Assume that $(C1), \dots, (C4)$ hold in S. Then $R' \leq Z(R)$ and $|R'| \leq p$.

Proof. For $x, y \in P$, let $U_{xy} = \langle u_{xy} \rangle$. Let a, b be adjacent in $\Gamma(H'(x))$ and $ab \cap H(x) = \{c\}$. Now $r_b = r_a^i r_c^j$ for some $i, j, 1 \leq i, j \leq p - 1$. Since $[r_x, r_c] = 1$, we have

$$u_{xb} = [r_x, r_b] = [r_x, r_a^i r_c^j] = [r_x, r_a^i] = [r_x, r_a]^i = u_{xa}^i.$$

So $U_{xb} = U_{xa}$. This, together with (C2), implies that U_{xy} is independent of the choice of y in H'(x). Since $u_{xy} = u_{yx}^{-1}$, we have $U_{xy} = U_{yx}$. So, if $x, y \in P$ with $y \in H'(x)$, then $U_{xy} = U_{yx}$. Now, by (C4), U_{xy} is independent of the edge $\{x, y\}$ in $\Sigma(P)$. We denote this common subgroup by U.

We now show that $U \leq Z(R)$. Let $x \in P$ and $y \in H'(x)$. We show that $[u_{xy}, r_z] = 1$ for each $z \in P$. We may assume that $z \in H'(x) \cup H'(y)$. In this case it is clear from Proposition 2.6 because $U_{xy} = U_{xz}$ if $z \in H'(x)$. Similarly, if $z \in H'(y)$.

Now, since $R = \langle r_x : x \in P \rangle$, $u_{xy} \in Z(R)$ and $u_{xy} = 1$ if $y \in H(x)$, it follows that $R' = \langle u_{xy} : x \in P, y \in H'(x) \rangle = U$ and is of order at most p (Proposition 2.6).

Proposition 2.8. Assume that $(C1), \dots, (C4)$ hold in S. If R is nonabelian then exponent of R is p or 4 according as p is odd or p = 2. In particular, if P is finite then R is finite and $\Phi(R) = R'$.

Proof. Let $r = r_1 r_2 \cdots r_n \in R$, $r_i \in R_{\psi}$. We use induction on n. Let $r = hr_n$, where $h = r_1 r_2 \cdots r_{n-1}$. Since $R' \subseteq Z(R)$, $r_n^i h = hr_n^i [r_n^i, h] = hr_n^i [r_n, h]^i$. So $r^{i+1} = h^{i+1}r_n^{i+1} [r_n, h]^{1+2+\cdots+i}$ for all $i \ge 0$. Now, the result follows because by induction $h^p = 1$ if p is odd and $h^4 = 1$ if p = 2. Note that if p = 2, exponent of R can not be 2 as R is nonabelian.

Now, if P is finite then R/R' and so R are finite and $\Phi(R) = R'\langle r^p : r \in R \rangle = R'$. For p = 2, the last equality holds because $r^2 \in R'$ for every $r \in R$.

We now summarize the above results.

Theorem 2.9. Let S = (P, L) be a connected partial linear space of prime order p. Suppose that for each $x \in P$ there is associated a geometric hyperplane H(x) containing x such that $(C1), \dots, (C4)$ hold. Let (R, ψ) be a nonabelian representation of S such that $[\psi(x), \psi(y)] = 1$ for all $x, y \in P$ with $y \in H(x)$. Then the following hold:

- (i) If $x, y \in P$ with $y \in H'(x)$, then $[\psi(x), \psi(y)] \neq 1$ and $\langle \psi(x), \psi(y) \rangle = p_+^{1+2}$;
- (ii) $|R'| = p, R' \subseteq Z(R), R$ is a p-group, and exponent of R is p or 4 according as p is odd or p = 2.

Further, $R_{\psi} \cap Z(R) = \{1\}$; ψ is faithful if $H(x) \neq H(y)$ whenever $x \nsim y$; and R is finite with $R' = \Phi(R)$ if P is finite.

Remark 2.10. For p = 2, Theorem 2.9(ii) is a consequence of ([12], Lemma 3.5, p. 310) where Ivanov did not assume (C3). Our proof of Proposition 2.7 is similar to that of ([13], Lemma 2.2, p. 526).

Corollary 2.11. Let S and (R, ψ) be as in Theorem 2.9. If P is finite then (R, ψ) is the cover of a representation (R_1, ψ_1) of S where R_1 is extraspecial or p = 2 and $Z(R_1)$ is cyclic of order 4.

Proof. If Z(R) is elementary abelian (this is the case if p is odd), write Z(R) = R'T, $R' \cap T = \{1\}$ for some subgroup T of Z(R). Let $R_1 = R/T$. Then R_1 is extra special. Define ψ_1 from P to R_1 by $\psi_1(x) = \langle r_x T \rangle$, $x \in P$. Since $r_x \notin Z(R)$, $\langle r_x T \rangle$ is a subgroup of R_1 of order p for each $x \in P$. Then (R_1, ψ_1) is a nonabelian representation of S and (R, ψ) is a cover of (R_1, ψ_1) .

If Z(R) is not elementary abelian, then p = 2. Write $Z(R) = \langle a \rangle K$, $\langle a \rangle \cap K = \{1\}$ where $K \leq Z(R)$ and a is of order 4. Since $r^2 \in R'$ for every $r \in R$, it follows that $R' = \langle a^2 \rangle$. Now taking $R_1 = R/K$, the above argument completes the proof.

3. Nonabelian Representation Group of a Polar Space

If a polar space of rank $r \ge 2$ and of order p admits a faithful abelian representation then the polar space is necessarily classical (for rank 2 case, see [17], 4.4.8, p. 76) and the representation is, up to a projective linear transformation, a standard one. The following proposition shows that a polar space of finite rank and of order p admits a nonabelian representation only if p is odd. For any representation (R, ψ) of S, Definition 1.1(ii) implies that $[r_x, r_y] = 1$ if $y \in x^{\perp}$. By Example 2.1, all the results of the previous section hold.

Proposition 3.1. Let S = (P, L) be a polar space of finite rank $r \ge 2$ and of order three. Then every representation of S is abelian.

Proof. Let (R, ψ) be a representation of S. By Lemma 1.3, there exists a chain of subspaces $Q_0 = P \supseteq Q_1 \supseteq Q_2 \supseteq \cdots \supseteq Q_{r-2}$ such that Q_i is a polar space of rank r - i. Thus Q_{r-2} is a

(2, t)-GQ. Let $x, y \in Q_{r-2}, x \nsim y$, and T be a (2, 1)-GQ in Q_{r-2} containing x and y. Such a T exists because each line has 3 points. Let $\{x, y\}^{\perp} = \{a, b\}$ in T. For $u \sim v$, we define $u * v \in P$ by $uv = \{u, v, u * v\}$. In T, since $[r_b, r_y] = [r_b, r_x] = 1$ and $r_{(a*x)*(b*y)} = r_{(a*y)*(b*x)}$, it follows that $r_x r_y = r_y r_x$. Now, Corollary 2.5(i) completes the proof.

For the rest of this paper we assume that p is an odd prime.

Let S = (P, L) be a polar space of finite rank $r \ge 2$ and of order p and (R, ψ) be a nonabelian representation of S. Note that if $r \ge 3$, then finiteness of P and that of r are equivalent. However, if S is a GQ with s + 1 points per line, then finiteness of P is not known except when s = 2, 3, 4(see [3], p.100). The rest of this section is devoted to prove that R is extraspecial if P is finite.

Lemma 3.2. ψ is faithful and $[r_x, r_y] \neq 1$ if $x \nsim y$.

Proof. This follows from Corollary 2.5(i) and (iv).

Given a line l and two distinct points a and b on it, we write

$$\psi\left(l\right) = \left\{\left\langle r_{a}\right\rangle, \left\langle r_{b}\right\rangle, \left\langle r_{a}r_{b}\right\rangle, \left\langle r_{a}^{2}r_{b}\right\rangle, \cdots, \left\langle r_{a}^{p-1}r_{b}\right\rangle\right\}.$$

Let $x, y \in P$, $x \nsim y$ and $u, v \in \{x, y\}^{\perp}$, $u \nsim v$. Then $[r_x, r_y] \neq 1$ and $[r_u, r_v] \neq 1$. Let $l_0 = xu$, $l_1 = vy$, $m_0 = xv$ and $m_1 = uy$. Consider the lines l_0 and l_1 . By 'one or all' axiom, each point of l_0 is collinear with exactly one point of l_1 and vice-versa. Let $l_0 = \{x, u, x_1, x_2, \dots, x_{p-1}\}$ and $\langle r_{x_i} \rangle = \langle r_x^i r_u \rangle$ for $1 \leq i \leq p-1$. Let $x_i \sim v_i$ in l_1 . Then $l_1 = \{v, y, v_1, v_2, \dots, v_{p-1}\}$. Replacing the generator r_v by r_v^j for some j ($2 \leq j \leq p-1$), if necessary, we may assume that $\langle r_{v_1} \rangle = \langle r_v r_y \rangle$. So $[r_x r_u, r_v r_y] = 1$. Then $[r_x^i r_u, r_v^i r_y] = 1$ for all $i \geq 0$ because $R' \subseteq Z(R)$. By Lemma 3.2, $\left[r_x^i r_u, r_v^j r_y\right] \neq 1$ if $i \neq j$. So $\langle r_{v_i} \rangle = \langle r_v^i r_y \rangle$. Let m_{i+1} be the line such that $\psi(m_{i+1}) = \langle r_x^i r_u, r_v^i r_y \rangle$, $1 \leq i \leq p-1$.

Let $z \in m_i \setminus (l_0 \cup l_1)$ and $w \in m_j \setminus (l_0 \cup l_1)$ for $i \neq j, 0 \leq i, j \leq p$. If i = 0, then $\langle r_z \rangle = \langle r_x^{k_1} r_v \rangle$ and if i > 0 then $\langle r_z \rangle = \left\langle \left(r_x^{i-1} r_u \right)^{k_1} \left(r_v^{i-1} r_y \right) \right\rangle$ for some $k_1, 1 \leq k_1 \leq p-1$. Similarly, $\langle r_w \rangle = \langle r_x^{k_2} r_v \rangle$ or $\left\langle \left(r_x^{j-1} r_u \right)^{k_2} \left(r_v^{j-1} r_y \right) \right\rangle$ for some $k_2, 1 \leq k_2 \leq p-1$, according as j = 0 or j > 0. Now, from $R' \subseteq Z(R)$, the identity $[r_x, r_y] = [r_v, r_u]$ (a consequence of $[r_x r_u, r_v r_y] = 1$) and the fact that each point of m_i is collinear with exactly one point of m_j for $i \neq j$ (a consequence of 'one or all' axiom), the following lemma is straight forward.

Lemma 3.3. $z \sim w$ if and only if $k_1 + k_2 = p$.

Proposition 3.4. If $a, d \in R_{\psi}$ then $ad [a, d]^{(p-1)/2} \in R_{\psi}$.

Proof. Let $a, d \in R_{\psi} - \{1\}$. Let $x_1, x_2 \in P$ be such that $\langle r_{x_1} \rangle = \langle a \rangle$ and $\langle r_{x_2} \rangle = \langle d \rangle$. We may assume that $x_1 \nsim x_2$. Then $[a, d] \neq 1$ by Lemma 3.2. We show that $\langle ad [a, d]^{(p-1)/2} \rangle$ is the image of some element of P. Let $y_1, y_2 \in \{x_1, x_2\}^{\perp}$ be such that $y_1 \nsim y_2, \langle r_{y_1} \rangle = \langle b \rangle$ and $\langle r_{y_2} \rangle = \langle c \rangle$. Consider

the lines $l_0 = x_1y_1$ and $l_1 = x_2y_2$. Let $z_1 \in l_0$ be such that $\langle r_{z_1} \rangle = \langle ab \rangle$ and let $z_1 \sim z_2 \in l_1$. Replacing the generator c by c^j for some j, if necessary, we may assume that $\langle r_{z_2} \rangle = \langle cd \rangle$. Let $m_0 = x_1y_2$ and $m_1 = z_1z_2$. Let $u \in m_0$ be such that $\langle r_u \rangle = \langle a^{(p-1)/2}c \rangle$. Then $x_1 \neq u \neq y_2$. Let $u \sim v$ in m_1 . By Lemma 3.3, $\langle r_v \rangle = \langle (ab)^{(p+1)/2} (cd) \rangle$. If $y_1 \sim w$ in the line uv, then $\langle r_w \rangle = \langle (a^{(p-1)/2}c)^k (ab)^{(p+1)/2} (cd) \rangle$ for some k $(1 \leq k \leq p-1)$. Now $\left[b, (a^{(p-1)/2}c)^k (ab)^{(p+1)/2} (cd) \right] = 1$. So, $[b, c]^{k+1} = 1$ and k+1 = p. The subgroup $\langle b^{(p-1)/2} (a^{(p-1)/2}c)^{p-1} (ab)^{(p+1)/2} (cd) \rangle$ is the image of some point of y_1w . But $b^{(p-1)/2} (a^{(p-1)/2}c)^{p-1} (ab)^{(p+1)/2} (cd) = ad [b, c]^{(p+1)/2} = ad [a, d]^{(p-1)/2}$. In the last equality we have used $[a, d] = [b, c]^{-1}$, a consequence of [ab, cd] = 1. Thus, $ad [a, d]^{(p-1)/2} \in R_{\psi}$.

Proposition 3.5. R_{ψ} is a complete set of coset representatives of R' in R.

Proof. Let $r_1R' = r_2R'$ for some $r_1, r_2 \in R_{\psi}$. Since $R' \subseteq Z(R)$, r_1 and r_2 are both trivial or are both nontrivial (Corollary 2.5(*ii*)). Assume that the later holds and that $r_1 = r_2w$ for some $w \in R'$. Let $x_1, x_2 \in P$ be such that $\langle r_{x_1} \rangle = \langle r_1 \rangle$ and $\langle r_{x_2} \rangle = \langle r_2 \rangle$. Since $[r_1, r_2] = 1$, either $x_1 = x_2$ or $x_1 \sim x_2$ (Lemma 3.2). If $x_1 \sim x_2$ then $w \neq 1$ by Definition 1.1(*ii*) and $\langle w \rangle$ would be the image of some point in the line x_1x_2 , a contradiction to Corollary 2.5(*ii*). So $x_1 = x_2$ and $r_1 = r_2^i$ for some $i \ (1 \leq i \leq p - 1)$. Then $r_2^{i-1} = w \in R' \subseteq Z(R)$. Now, Corollary 2.5(*ii*) implies that i = 1 and so w = 1 and $r_1 = r_2$.

Now, let $sR' \in R/R'$. Write $s = r_1r_2 \cdots r_k$, $r_i \in R_{\psi}$. Let $R' = \langle z \rangle$. Since $R' \subseteq Z(R)$, there is some integer j such that $r_1r_2 \cdots r_kz^j$ is an element, say r, of R_{ψ} by Proposition 3.4. Then sR' = rR', completing the proof of the proposition.

Proposition 3.6. Assume that P is finite. Then |R| = p(1 + (p-1)|P|) and $R = p_+^{1+2m}$ for some $m \ge 1$.

Proof. Since |R'| = p (Proposition 2.7), the first assertion follows from Proposition 3.5. Also, R' = Z(R) because $R_{\psi} \cap Z(R) = \{1\}$ and $R' \subseteq Z(R)$. Now, Proposition 2.8 completes the proof.

Corollary 3.7. If S is a finite classical polar space of rank $r \ge 2$ admitting a nonabelian representation, then S is isomorphic to $W_{2m}(p)$ or $Q_{2m+1}(p)$.

Proof. By Proposition 3.6, $|P| = (p^{2m} - 1)/(p - 1)$ for some m > 0. So the corollary follows from the number of points of classical polar spaces (see 1.2).

By proposition 3.5, S admits a faithful abelian representation with representation group R/R'. Considering R/R' as a vector space over F_p , it has dimension 2m. Since $Q_{2m+1}(p)$ does not possess faithful abelian 2m-dimensional representation, the only possibility is that S is isomorphic to $W_{2m}(p)$. We thank the referee for this remark. In the next sections, we prove this fact giving a geometrical argument involving triads of points of a generalized quadrangle.

4. Rank 2 Case

Let S = (P, L) be a finite (s, t)-GQ. A triad of points in S is a triple T of pairwise noncollinear points. An element of T^{\perp} is a center of T. A pair of distinct points $\{x, y\}$ in S is regular if $x \sim y$ or if $x \nsim y$ and $|\{x, y\}^{\perp \perp}| = t + 1$. A point x is regular if $\{x, y\}$ is regular for each $y \in P \setminus \{x\}$. The pair $\{x, y\}, x \nsim y$, is antiregular if $|z^{\perp} \cap \{x, y\}^{\perp}| \leq 2$ for each $z \in P \setminus \{x, y\}$. A point x is antiregular if $\{x, y\}$ is antiregular for each $y \in P \setminus x^{\perp}$. Dually, we define a triad of lines, center of a triad of lines, regularity and antiregularity of a line.

Proposition 4.1. Let S = (P, L) be a (p, t)-GQ. If S admits a triad of lines with at least 3 centers then every representation of S is abelian.

Proof. Let $\{l_1, l_2, l_3\}$ be a triad of lines in S with centers m_1, m_2, m_3 . Let $\{x_{ij}\} = l_i \cap m_j, 1 \leq i, j \leq 3$. Consider the lines l_1 and l_2 . Replacing $r_{x_{11}}$ by $r_{x_{11}}^k$ for some k, if necessary, we may assume that the point a of l_1 with $\langle r_a \rangle = \langle r_{x_{11}} r_{x_{12}} \rangle$ is collinear with the point b with $\langle r_b \rangle = \langle r_{x_{21}} r_{x_{22}} \rangle$. So $[r_{x_{11}} r_{x_{12}}, r_{x_{21}} r_{x_{22}}] = 1$. Then $[r_{x_{11}}^i r_{x_{12}}, r_{x_{21}}^i r_{x_{22}}] = 1$ for $0 \leq i \leq p-1$. Let $\langle r_{x_{13}} \rangle = \langle r_{x_{11}}^i r_{x_{12}} \rangle$ and $\langle r_{x_{23}} \rangle = \langle r_{x_{21}}^j r_{x_{22}} \rangle$ for some $i, j, 1 \leq i, j \leq p-1$. If $i \neq j$ then R is abelian (Corollary 2.5(i)). So assume that i = j. Let $\langle r_{x_{31}} \rangle = \langle r_{x_{11}}^k r_{x_{21}} \rangle$ and $\langle r_{x_{33}} \rangle = \langle (r_{x_{11}}^i r_{x_{12}})^n (r_{x_{21}}^i r_{x_{22}}) \rangle$ for some $k, n, 1 \leq k, n \leq p-1$. If $n \neq p-k$, then R is abelian by Lemma 3.3. So, we assume that $\langle r_{x_{33}} \rangle = \langle (r_{x_{11}}^i r_{x_{12}})^{p-k} (r_{x_{21}}^i r_{x_{22}}) \rangle$. By a similar argument, we assume that $\langle r_{x_{32}} \rangle = \langle r_{x_{21}}^p r_{x_{22}} \rangle$. Now, Lemma 3.3 implies that R is abelian because $x_{32} \sim x_{33}$ and $p-k \neq p-(p-k)$.

Corollary 4.2. If S admits a nonabelian representation then every line of S is antiregular and no line of S is regular.

Proposition 4.3. Let S = (P, L) be a finite (p, t)-GQ. If S admits a nonabelian representation (R, ψ) , then t = p and $R = p_{+}^{1+4}$.

Proof. We have |P| = (p+1)(pt+1) ([17], 1.2.1, p. 2). So $|R| = p^2 (t (p^2 - 1) + p)$ (Proposition 3.6). By Corollary 4.2, $t \ge 2$. So, $p^2 (t (p^2 - 1) + p) \ge p^4$. Now, $|R| = p^{2m+1}$ for some integer $m \ge 1$. Thus,

$$t = p\left(p^{2(m-2)} + p^{2(m-3)} + \dots + p^2 + 1\right).$$

Since $t \le p^2$ ([17], 1.2.3, p. 3), m = 2, t = p and $R = p_+^{1+4}$.

In $Q_5(p)$ all lines are regular ([17], 3.3.1(*i*), p 51). So every representation of $Q_5(p)$ is abelian. On the other hand, since *p* is odd, $W_4(p)$ is not self-dual and is isomorphic to the dual of $Q_5(p)$ ([17], 3.2.1, p. 43). No point of $Q_5(p)$ is regular ([17], 1.5.2(*i*), p. 13), so no line of $W_4(p)$ is regular. Again, all points of $Q_5(p)$ are antiregular ([17], 3.3.1(*i*), p. 51), so all lines of $W_4(p)$ are antiregular. We prove

Proposition 4.4. Let S = (P, L) be a (p, p)-GQ. If S admits a nonabelian representation then S is isomorphic to $W_4(p)$.

Proof. Since $W_4(p)$ is characterized by the regularity of each of its point ([17], 5.2.1, p. 77), it is enough to show that if $x, y \in P$ and $x \nsim y$ then $\{x, y\}^{\perp \perp}$ contains $\{a, b\}^{\perp}$ for distinct $a, b \in \{x, y\}^{\perp}$. Let (R, ψ) be a nonabelian representation of S. Let $z \in \{a, b\}^{\perp}$ and $w \in \{x, y\}^{\perp}$. We claim that $z \sim w$. Write $H = C_R(r_a) \cap C_R(r_b)$. Then

$$|H| = \frac{|C_R(r_a)| |C_R(r_b)|}{|C_R(r_a) C_R(r_b)|} = \frac{p^4 p^4}{p^5} = p^3.$$

Let $K = \langle r_x, r_y \rangle$. By Proposition 2.6, $|K| = p^3$. So K = H because $K \leq H$. Then $[r_w, r_z] = 1$ because $[r_w, K] = 1$. So $z \sim w$ by Theorem 2.9(*i*).

5. Proof of Theorems 1.5 and 1.6

Proof of Theorem 1.5. By Proposition 3.1, p is an odd prime. By Lemma 1.3 and Proposition 4.4, S is isomorphic to $W_{2r}(p)$. Proposition 3.6 implies that $R = p_+^{1+2r}$. This completes the proof of Theorem 1.5.

We prove Theorem 1.6 in Propositions 5.2 and 5.3. In view of Proposition 3.4, we first prove

Proposition 5.1. Let $G = p_+^{1+2r}$. There exists a set T of coset representatives of Z(G) in G such that if $t_1, t_2 \in T$ then $t_1t_2[t_1, t_2]^{(p-1)/2} \in T$. Further, T is unique up to conjugacy in G.

Proof. Let $Z = Z(G) = \langle z \rangle$ and V = G/Z. We consider V as a vector space over F_p . The map $f: V \times V \longrightarrow F_p$ taking (xZ, yZ) to i, where $[x, y] = z^i$ $(0 \le i \le p - 1)$, is a nondegenerate symplectic bilinear form on V. Write V as an orthogonal direct sum of r hyperbolic planes K_i $(1 \le i \le r)$ in V and let H_i be the inverse image of K_i in G. Then H_i is generated by 2 elements x_{i_1} and x_{i_2} such that $[x_{i_1}, x_{i_2}] = z$. Let $A_j = \langle x_{i_j}, 1 \le i \le r \rangle$, j = 1, 2. Then A_j is an elementary abelian p-subgroup of G of order p^r , $A_j \cap Z = \{1\}$ and $A_1Z \cap A_2Z = Z$. Set

$$T = \left\{ xy \left[x, y \right]^{\frac{p-1}{2}} : x \in A_1, y \in A_2 \right\}.$$

We show that T has the required property. Let $\alpha = xy [x, y]^{\frac{p-1}{2}}$, $\beta = uv [u, v]^{\frac{p-1}{2}}$ be elements of T where $x, u \in A_1$ and $y, v \in A_2$. If $\alpha Z = \beta Z$, then $u^{-1}xZ = y^{-1}vZ$ and is equal to Z because $A_1Z \cap A_2Z = Z$. So x = u and y = v because $A_j \cap Z = \{1\}$. Thus $\alpha Z = \beta Z$ if and only if x = u, y = v. So, $|T| = p^{2r}$ and T is a complete set of coset representatives. Since G' = Z, a routine calculation shows that $\alpha\beta [\alpha,\beta]^{(p-1)/2} = (xu) (yv) [xu, yv]^{(p-1)/2} \in T$. Thus, T has the stated property. Now we prove the uniqueness part. In fact, we show that the group of inner automorphisms of G acts regularly on the set \mathcal{X} of all sets of coset representatives of Z in G, each of which is closed under the binary operation $(t_1, t_2) \mapsto t_1 t_2 [t_1, t_2]^{(p-1)/2}$.

Fix an ordered basis $\{v_1Z, \dots, v_{2r}Z\}$ for V. Each $T \in \mathcal{X}$ is determined by the sequence (x_1, \dots, x_{2r}) , where $T \cap v_iZ = \{x_i\}$. In fact, if $aZ = x_{i_1}^{j_1} \cdots x_{i_n}^{j_n}Z \in V$, where $i_1 < \dots < i_n$ and $1 \leq j_k \leq p-1$, then $aZ \cap T = \{x_{i_1}^{j_1} \cdots x_{i_n}^{j_n}z^m\}$, where

$$z^{m} = [x_{i_{1}}^{j_{1}}, x_{i_{2}}^{j_{2}}]^{(p-1)/2} [x_{i_{1}}^{j_{1}} x_{i_{2}}^{j_{2}}, x_{i_{3}}^{j_{3}}]^{(p-1)/2} \cdots [x_{i_{1}}^{j_{1}} \cdots x_{i_{n-1}}^{j_{n-1}}, x_{i_{n}}^{j_{n}}]^{(p-1)/2}.$$

Thus, $|\mathcal{X}| \leq p^{2r}$. Further, for $T \in \mathcal{X}$ and $g \in G$, $g^{-1}Tg = T$ implies $g \in Z$. To see this, let $t \in T$ and $g^{-1}tg = t' \in T$. Then, $tZ = g^{-1}tgZ = t'Z$. Since T contains exactly one element from each coset, it follows that t = t' and $g \in C_G(t)$. Thus, $g \in C_G(T) = Z$. Since $|G : Z| = p^{2r}$, $|\mathcal{X}| = p^{2r}$ and G acts transitively on \mathcal{X} .

Proposition 5.2. $W_{2r}(p), r \ge 2$, admits a nonabelian representation and the representation group is p_+^{1+2r} .

Proof. Let $G = p_+^{1+2r}$ and T be as in Proposition 5.1. Consider the partial linear space S = (P, L), where $P = \{\langle x \rangle : 1 \neq x \in T\}$ and a line is of the form $\{\langle x \rangle, \langle y \rangle, \langle xy \rangle, \cdots, \langle x^{p-1}y \rangle\}$ for distinct $\langle x \rangle, \langle y \rangle$ in P with [x, y] = 1. Note that $x^i y \in T$ for each i and $|P| = (p^{2r} - 1)/(p - 1)$. We show that S is a polar space of rank r.

Since $T \cap Z(G) = \{1\}$, S is nondegenerate. Let $\langle x \rangle \in P$, $l \in L$ and $\langle x \rangle \notin l$. Then, $\langle x \rangle$ is collinear with one or all points of l because $C_G(x)$ intersects nontrivially with the subgroup H of G generated by the points of l. Note that H is a subgroup of order p^2 and disjoint from Z(G). Rank of S is r because singular subspaces in S correspond to elementary abelian subgroups of G which intersect Z(G) trivially and p^r is the maximum of the orders of such subgroups of G. Thus S is a polar space of rank r.

Clearly G is a representation group of S. So, S is isomorphic to $W_{2r}(p)$ (Theorem 1.5(*iii*)).

Proposition 5.3. Any two representations of $W_{2r}(p)$, $r \ge 2$, are equivalent.

Proof. Let (R_1, ψ_1) and (R_2, ψ_2) be two representations of $W_{2r}(p)$. By Theorem 1.5(*ii*), we may assume that $R_1 = R_2 = R$. By Proposition 3.5, each R_{ψ_i} is a set of coset representatives of Z(R)in R. Let $\varphi \in Aut(R)$ be such that $\varphi(R_{\psi_1}) = R_{\psi_2}$ (Proposition 5.1). Define $\beta : P \longrightarrow P$ by $\beta = \psi_2^{-1}\varphi\psi_1$. Now, Lemma 3.2 implies that β is an automorphism of $W_{2r}(p)$. Now, (R, ψ_1) and (R, ψ_2) are equivalent with respect to φ and β .

References

- A. E. Brouwer and H. A. Wilbrink, The structure of near polygons with quads, *Geom. Dedicata* 14 (1983), no. 2, 145–176.
- [2] F. Buekenhout and E. Shult, On the foundations of polar geometry, Geom. Dedicata 3 (1974), 155–170.

- [3] P. J. Cameron, "Projective and polar spaces", available from http://www.maths.qmul.ac.uk/pjc/pps/
- [4] A. M. Cohen and B. N. Cooperstein, A characterization of some geometries of Lie type, Geom. Dedicata 15 (1983), 73–105.
- [5] B. N. Cooperstein, Geometry of long root subgroups in groups of Lie type, Proc. Sympos. Pure Math., 37, 243–248, Amer. Math. Soc., Providence, R.I., 1980.
- [6] B. N. Cooperstein, The geometry of root subgroups in exceptional groups I, Geom Dedicata 8 (1979), 317-381.
- [7] B. N. Cooperstein, The geometry of root subgroups in exceptional groups II, Geom Dedicata 15 (1983), 1-45.
- [8] K. Doerk and T. Hawkes, "Finite soluble groups," de Gruyter Expositions in Mathematics 4, Walter de Gruyter & Co., Berlin, 1992.
- [9] D. Frohardt and P. M. Johnson, Geometric hyperplanes in generalized hexagons of order (2, 2), Comm. Algebra 22 (1994), no. 3, 773–797.
- [10] R. Gramlich, On graphs, geometries, and groups of Lie type, PhD Thesis, Technische Universitieit, Eindhoven, 2002.
- [11] R. L. Griess, Jr., The Monster and its nonassociative algebra, in "Finite groups—coming of age" (Montreal, Que., 1982), 121–157, Contemp. Math., 45, Amer. Math. Soc., Providence, RI, 1985.
- [12] A. A. Ivanov, Non-abelian representations of geometries, in "Groups and combinatorics—in memory of Michio Suzuki", 301–314, Adv. Stud. Pure Math., 32, Math. Soc. Japan, Tokyo, 2001.
- [13] A. A. Ivanov, D. V. Pasechnik and S. V. Shpectorov, Non-abelian representations of some sporadic geometries, J. Algebra 181 (1996), no. 2, 523–557.
- [14] P. M. Johnson, Polar spaces of arbitrary rank, Geom. Dedicata 35 (1990), no. 1-3, 229-250.
- [15] W. M. Kantor, Generalized quadrangles having a prime parameter, Israel J. Math. 23 (1976), no. 1, 8–18.
- [16] S. E. Payne, A census of finite generalized quadrangles, in "Finite geometries, buildings, and related topics" (Pingree Park, CO, 1988), 29–36, Oxford Sci. Publ., Oxford Univ. Press, New York, 1990.
- [17] S. E. Payne and J. A. Thas, "Finite generalized quadrangles," Research Notes in Mathematics, 110, Pitman (Advanced Publishing Program), Boston, MA, 1984.
- [18] B. K. Sahoo and N. S. N. Sastry, On the order of a non-abelian representation group of a slim dense near hexagon, communicated.
- [19] J. Sarli, The geometry of root subgroups in Ree groups of type ${}^{2}F_{4}$, Geom. Dedicata **26** (1988), 1–28.
- [20] J. A. Thas, Generalized polygons, in "Handbook of incidence geometry," 383–431, North-Holland, Amsterdam, 1995.
- [21] J. A. Thas, Projective geometry over a finite field, in "Handbook of incidence geometry," 295–347, North-Holland, Amsterdam, 1995.
- [22] J. Tits, "Buildings of spherical type and finite BN-pairs," Lecture Notes in Mathematics, Vol. 386. Springer-Verlag, Berlin-New York, 1974.