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The fractal interpolation functions with appropriate iterated function
systems (IFSs) provide a method to perturb and approximate a continuous
function on a compact interval I. This method produces a class of functions
fα, named as α-fractal functions. As essential parameters of the IFS, the
scaling factor α has important consequences in the properties of the function
fα. In this talk, we discuss the α-fractal functions corresponding to the
non-stationary zipper IFS. Here, we present a method to calculate an upper
bound of the box and Hausdorff dimension of the proposed interpolant.
Also, we provide an upper bound of the graph of the fractional integral of
the proposed interpolant.

1



Fractal dimension and fractional calculus of
non-stationary zipper α-fractal functions

Sangita Jha

RMS 2023
IIT Guwahati

This is a joint work with Dr. A.K.B. Chand and Dr. S. Verma

December 23, 2023
Sangita Jha RMS 2023



Overview

Introduction and motivation

Construction of fractal functions .

Non-stationary zipper α-fractal functions.

Fractal dimension and fractional calculus.

Sangita Jha RMS 2023



Introduction

(X, d)-Complete metric space.

H(X) = {A ⊂ X : A 6= φ, A is compact}.
The Hausdorff metric h on H(X) is defined as

h(A,B) = max{d(A,B), d(B,A)},

d(A,B) = max min d(x, y), x ∈ A, y ∈ B.

The space of fractals (H(X), h) is a complete metric space.

Iterated Function System (IFS): {X;wn, n = 1, 2, . . . , N − 1}, wn are
continuous maps on X.

Contractive IFS: The IFS is called hyperbolic if wn are contraction maps
with contractive factors |αn| < 1.
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Attractor

The Hutchinson map on H(X) is defined as W (A) = ∪N−1
n=1 wn(A) 1.

W is a contraction map on (H(X), h) with contractive factor
s = max{|sn| : n ∈ J}, J = {1, 2, . . . , N − 1}.

By Banach’s Fixed Point Theorem, lim
m→∞

Wm(A) = G.

The unique fixed point is known as Attractor or Deterministic Fractal of
the IFS.

Examples: Sierpiński triangle, Cantor set, Koch curve.

1J.E. Hutchinson, Fractals and self-similarity , Indiana Univ. Math. J. 30(5),
713-747, 1981
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Examples of Fractals

(a) Cantor Set (b) Sierpinski Triangle

(c) Fern (d) Cauliflower
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Construction of Fractal Interpolation Functions
(FIFs)

Consider increasing data points: {(xi, yi), i = 1, 2, . . . , N}. Let
Li : I = [a, b] 7→ Ii = [xi, xi+1], i ∈ {1, 2, . . . , N − 1} with
Li(x1) = xi, Li(xN ) = xi+1.

Let K = I × R and wi(x, y) = (Li(x), Fi(x, y)), where Fi : K 7→ R
satisfy Fi(x1, y1) = yi, Fi(xN , yN ) = yi+1 and

|Fi(x, y)− Fi(x, y′)| ≤ αi|y − y′|, ∀ (x, y), (x, y′) ∈ K, 0 ≤ αi < 1.

Theorem (Barnsley, 1986)

The IFS I = {K;wi : i = 1, 2, . . . , N} admits a unique attractor G.
Further, G is the graph of a continuous function f : I 7→ R which obeys
f(xi) = yi for i = 1, 2, . . . , N .
The previous function is called a FIF

Sangita Jha RMS 2023



Construction of Fractal Interpolation Functions
(FIFs)

Consider increasing data points: {(xi, yi), i = 1, 2, . . . , N}. Let
Li : I = [a, b] 7→ Ii = [xi, xi+1], i ∈ {1, 2, . . . , N − 1} with
Li(x1) = xi, Li(xN ) = xi+1.

Let K = I × R and wi(x, y) = (Li(x), Fi(x, y)), where Fi : K 7→ R
satisfy Fi(x1, y1) = yi, Fi(xN , yN ) = yi+1 and

|Fi(x, y)− Fi(x, y′)| ≤ αi|y − y′|, ∀ (x, y), (x, y′) ∈ K, 0 ≤ αi < 1.

Theorem (Barnsley, 1986)

The IFS I = {K;wi : i = 1, 2, . . . , N} admits a unique attractor G.
Further, G is the graph of a continuous function f : I 7→ R which obeys
f(xi) = yi for i = 1, 2, . . . , N .
The previous function is called a FIF

Sangita Jha RMS 2023



Construction of Fractal Interpolation Functions
(FIFs)

Consider increasing data points: {(xi, yi), i = 1, 2, . . . , N}. Let
Li : I = [a, b] 7→ Ii = [xi, xi+1], i ∈ {1, 2, . . . , N − 1} with
Li(x1) = xi, Li(xN ) = xi+1.

Let K = I × R and wi(x, y) = (Li(x), Fi(x, y)), where Fi : K 7→ R
satisfy Fi(x1, y1) = yi, Fi(xN , yN ) = yi+1 and

|Fi(x, y)− Fi(x, y′)| ≤ αi|y − y′|, ∀ (x, y), (x, y′) ∈ K, 0 ≤ αi < 1.

Theorem (Barnsley, 1986)

The IFS I = {K;wi : i = 1, 2, . . . , N} admits a unique attractor G.
Further, G is the graph of a continuous function f : I 7→ R which obeys
f(xi) = yi for i = 1, 2, . . . , N .
The previous function is called a FIF

Sangita Jha RMS 2023



FIF for the data {(0, 0), (0.4, 1), (0.75,−1), (1, 2)}, with αi = 0.8

(e) Linear Interpolation (f) FIF after One Iteration

(g) FIF after Two Iterations (h) FIF after Seven Iterations
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Sequence of Zipper IFSs

Let wi be non-surjective maps on a complete metric space X. Then
the system I = {X;wi : i ∈ NN} is called a zipper 2 with vertices
(v0, v1, . . . , vN ) and signature ε = (ε1, ε2, . . . , εn) ∈ {0, 1}n if for any
i = 1, 2, . . . , n,

wi(v0) = vi−1+εi , wi(vN ) = vi−εi .

Let Pi,ε = aix+ bi, Fi,k(x, y) = αi,k(x)y + qi,k(x). For i ∈ NN−1, we
define Wi,k : K → Ii × R by

Wi,k(x, y) =
(
Pi,ε(x), Fi,k(x, y)

)
,

which forms a sequence of zipper IFSs Ik :=
{
K;Wi,k : i ∈ NN−1

}
.

2V. V. Aseev, On the regularity of self-similar zippers, Materials, 24-30, (2002)
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Sequence of Transformations and Trajectories

Consider a sequence of transformations {Ti}i∈N, Ti : X → X.
For Wk = {w1,k, w2,k, . . . , wnk,k}, consider the sequence of set valued
maps

Wk(A) =

nk⋃
i=1

wi,k(A), A ∈ H(X). (1.1)

Forward and Backward Trajectories: The forward and backward
trajectories are defined as

Φk := Tk ◦ Tk−1 ◦ . . . T1 and Ψk := T1 ◦ T2 ◦ . . . Tk.

3

3M.F. Barnsley, M.F., J.E. Hutchinson, O. Stenfow, V-variable fractals: fractals with
partial self similarity. Adv. Math., 2008
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Convergence of Trajectories

Theorem (Levin, Dyn, Viswanathan)

Let {Wk}k∈N be a family of set-valued maps as described in (1.1), where
Wk = {wi,k : i ∈ Nnk} of contractions on (X, d). Assume that

(i) there exxists a nonempty closed invariant set P ⊂ X for
wi,k, i ∈ Nnk , k ∈ N and

(ii)
∞∑
k=1

k∏
j=1

Lip(Wj) <∞.

Then the backward trajectories {Ψk(A)} converges for any initial A ⊆ P
to a unique attractor G ⊆ P.
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Non-stationary α-fractal functions

Notation: A := {αk}k∈N and s := {sk}k∈N. Let
Cf (I) :=

{
g ∈ C(I) : g(x1) = f(x1), g(xN ) = f(xN )

}
. It is obvious that

Cf (I) is a complete metric space. For k ∈ N, we define a sequence of RB
operators Tαksk,ε : Cf (I)→ Cf (I) by

(Tαksk,εg)(x) = Fi,k(Qi,ε(x), g(Qi,ε(x)) ∀ x ∈ Ii, i ∈ NN−1,

where Qi,ε(x) := P−1
i,ε (x).

Proposition

Let {Tk}k∈N be a sequence of Lipschitz maps on a complete metric space
X. If there exists x∗ ∈ X such that the sequence {d(x∗, Tk(x∗))} is
bounded, and

∑∞
k=1

∏k
i=1 ci <∞ then the sequence {Ψk(x)} converges

for all x ∈ X to a unique limit x.

Sangita Jha RMS 2023
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Theorem

Consider the sequence of operators {Tαksk,ε} on Cf (I). Then for every
g ∈ Cf (I) the sequence {Tα1

s1,ε ◦ T
α2
s2,ε ◦ · · · ◦ T

αk
sk,εg} converges to a map

fAs,ε of Cf (I).

Proof: Step 1: Construct the backward trajectories.
Step 2: Define the RB operator using it.
Step 3: Use the convergence result and find a bound of ‖Tαksk,εf − f‖∞.
Then apply previous theorem.

Sangita Jha RMS 2023
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Qn: Can we compute the box and Hausdorff dimension of the
proposed fractal functions?

Answers: Known for stationary cases.

1 Box-dimension of linear FIFs: dimB(G) = s ∈ (1, 2),
N∑
i=1

as−1
i |di| = 1,

when
N∑
i=1

|di| > 1, partition points are not collinear

(Barnsley-Elton-Hardin-Massopust, SIAM J.M.A, 1989).
2 Hausdorff dimension of an affine FIF: min{2, l} ≤ dimH(G) ≤ u,

where l, u are the positive solutions of
N∑
n=1

tln = 1,
N∑
n=1

sun = 1, when

t1.tN ≤ min(a1, aN )

(
N∑
n=1

tln

)
(Barnsley, Const. Approx., 1986).

3 A particular class of FIF: dimH(G) = s, where s is the unique solution

of
k∑
i=1

|µ|λs−1
i = 1 (Gibert-Massopust, JMAA, 1992).

4 Bilinear FIFs: dimB(G) = 1 + log γ
N , γ =

N∑
n=1

sn+sn−1

2 > 1

(Barnsley-Massopust, JAT, 2015).
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Box and Hausdorff dimension

Let F be a nonempty bounded subset of Rn and let Nδ(F ) denote
the smallest number of sets of diameter less than or equal to δ which
covers F .
The lower and upper box-counting dimension of F is defined as

dimB(F ) = lim inf
δ→0+

Nδ(F )

− log δ
, dimB(F ) = lim sup

δ→0+

Nδ(F )

− log δ
.

The s-dimensional Hausdorff measure is defined as

Hs(F ) = lim
δ→0

inf{
∞∑
i=1

|Ui|s : F ⊂ ∪∞i=1Ui, |Ui| < δ}

The Hausdorff dimension of F is defined by
dimH(F ) = inf{s ≥ 0 : Hs(F ) = 0} and for any bounded subset F
of Rn,

dimH(F ) ≤ dimB(F ) ≤ dimB(F ).
4

4K. Falconer, Fractal Geometry, 2nd ed., Mathematical Foundations and
Applications, John Wiley and Sons, 2003.Sangita Jha RMS 2023
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Computation of Fractal Dimension

For Hölder continuous (HC) functions f with exponent σ, let us define σth
Hölder seminorm as

[f ]σ = sup
x 6=y

|f(x)− f(y)|
|x− y|σ

.

Consider the Hölder space
Hσ(I) := {g : I → R : g is HC with exponent σ}.

Theorem

Let f and αi,k be HC with exponent σ1 and σ2 respectively for every
k ∈ N. Let sk be HC with exponent σ3 satisfying sk(xi) = f(xi) for

i ∈ {1, N}, k ∈ N. If max
{
‖αk‖σ, ‖αk‖∞

(min{|ai|})σ

}
< 1, ∀ k ∈ N, then

1 ≤ dimH

(
Graph(fAs,ε)

)
≤ dimB

(
Graph(fAs,ε)

)
≤ 2− σ,

where σ = min{σ1, σ2, σ3} and ‖αk‖σ = max{‖αi,k‖σ : i ∈ NN−1}.
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Let
BV(I) := {f : I → R; f is of bounded variation on I}.

Then (BV(I), ‖.‖BV) is complete, where ‖f‖BV := |f(t0)|+ V (f, I).

Theorem (Liang, 2010)

If f ∈ C(I) ∩ BV(I), then

dimH(Graph(f)) = dimB(Graph(f)) = 1.

Theorem

Let f ∈ BV(I). Suppose that 4 is a partition of I, sk ∈ BV(I) satisfying
sk(x1) = f(x1), sk(xN ) = f(xN ), and αi,k (i ∈ NN−1, k ∈ N) are
functions in BV(I) with

‖αk‖BV := max{‖αi,k‖BV : i ∈ NN−1} <
1

2(N − 1)
, ∀ k ∈ N.

Then, fAs,ε ∈ BV(I) and dimH

(
Gf(fAs,ε)

)
= dimB

(
Gf(fAs,ε)

)
= 1.
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Then (BV(I), ‖.‖BV) is complete, where ‖f‖BV := |f(t0)|+ V (f, I).

Theorem (Liang, 2010)

If f ∈ C(I) ∩ BV(I), then

dimH(Graph(f)) = dimB(Graph(f)) = 1.

Theorem

Let f ∈ BV(I). Suppose that 4 is a partition of I, sk ∈ BV(I) satisfying
sk(x1) = f(x1), sk(xN ) = f(xN ), and αi,k (i ∈ NN−1, k ∈ N) are
functions in BV(I) with

‖αk‖BV := max{‖αi,k‖BV : i ∈ NN−1} <
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, ∀ k ∈ N.

Then, fAs,ε ∈ BV(I) and dimH

(
Gf(fAs,ε)

)
= dimB

(
Gf(fAs,ε)

)
= 1.

Sangita Jha RMS 2023



Fractional Calculus

Let 0 < α < 1. The Riemann-Liouville fractional integral of order of an
integrable function g : [a, b]→ R is

aJ
αg(x) =

1

Γ(α)

∫ x

a
(x− t)α−1g(t) dt.

In 2007, Liang proved that

dimB

(
Graph(aJ

αf)
)

= 1, whenever f ∈ BV(I).

Recently, using covering method, he obtained the following:

dimB

(
Graph(aJ

αf)
)

= 1, whenever dimB

(
Graph(f)

)
= 1.

Apart from these works, Ruan et al. established a linear relationship
between the order of fractional integral and box dimension of two linear
FIFs.
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Box dimension of fractional integral

Theorem

Let f ∈ BV(I) and consider an increasing partition of I. Let sk ∈ BV(I)
be such that sk(x1) = f(x1), sk(xN ) = f(xN ), and
αi,k (i ∈ NN−1, k ∈ N) are functions in BV(I) with
‖αk‖BV < 1

2(N−1) ∀ k ∈ N. Then,
dimH

(
Gf(aJ

αfAs,ε)
)

= dimB

(
Gf(aJ

αfAs,ε)
)

= 1.
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Bounds of the dimension

Theorem

Let f and αi,k be Hölder continuous with exponent σ1 and σ2 respectively
for every k ∈ N. Let sk be Hölder continuous with exponent σ3 satisfying
sk(xi) = f(xi) for i ∈ {1, N}, k ∈ N. If
max

{
‖αk‖σ, ‖αk‖∞

(min{|ai|})σ

}
< 1 ∀ k ∈ N, then

1 ≤ dimH

(
Gf(aJ

αfAs,ε)
)
≤ dimB

(
Gf(aJ

αfAs,ε)
)
≤ dimB

(
Gf(aJ

αfAs,ε)
)

≤ min{2− α, 2− σ},

where σ = min{σ1, σ2, σ3}.

5

5S. Jha,S. Verma, A.K.B. Chand, Non-stationary zipper α-fractal functions and
associated fractal operator. Fract. Calc. Appl. Anal., 2022
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Idea of the proof

Step 1: fAs,ε ∈ Hσ(I).

Step 2: Let 0 < a ≤ x < x+ h ≤ b. We have

aI
αfAs,ε(x+ h)−a IαfAs,ε(x) =

1

Γ(α)

∫ x+h

a
(x+ h− t)α−1fAs,ε(t)dt

− 1

Γ(α)

∫ x

a
(xρ+1 − tρ+1)α−1fAs,ε(t)dt.

= I1 + I2,

Step 3: Find bound of I1, I2.

Find bound of Nδ(Gf(aI
αfAs,ε)).
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Proof continues

Nδ(Gf(aI
αfAs,ε)) ≤ 2

⌈
b−a
δ

⌉
+
∑d b−aδ e

i=1
2M

Γ(α+1)δ
α−1.

Consequently,

dimB

(
Graph(aI

αfAs,ε)
)

= lim
δ→0

logNδ(Graph(aI
αfAs,ε))

− log δ
≤ 2− α.

To show dimB

(
Graph(aI

αfAs,ε)
)
≤ 2− σ, find

aI
αfAs,ε(x+ h)−a IαfAs,ε(x).
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Note

In 6, for a linear FIF g, which is determined by

{Li(x), Fi(x, y)}N−1
i=1 , where Li(x) = aix+bi and Fi(x, y) = diy+qi(x)

are such that
∑N−1

i=1 |di| > 1, dimB(Gf(g)) = D({ai, di}) and∑N−1
i=1 |di|a

D({ai,bi})−1
i = 1, it is shown that

dimB(Gf(aI
αg)) = dimB(Gf(g))− α,

for any 0 < α < D({ai, di})− 1.

6H.-J. Ruan, Su, W.-Y., Yao, K.: Box dimension and fractional integral of linear
fractal interpolation functions. J. Approx. Theory, 2009
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Thank you for your attention
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