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Abstract

Auscultation is a process where a stethoscope is used to listen to the heart sound signal to analyse the heart’s functionality. Due
to the stethoscope’s non-invasiveness, convenience, and cost-effectiveness, it is the most common primary screening tool medical
fraternities use. However, the scarcity of medical experts and the subjectivity in the analysis hinders the reliability of diagnosis using
auscultation. Therefore, computer-aided analysis of heart sound signals will be helpful in this scenario. This paper presents a hybrid
deep learning-based method to classify the heart sound signal into five classes. The method begins with the signal pre-processing
followed by decomposition using Discrete Wavelet Transform (DWT) up to five levels. The obtained DWT coefficients are used
to train the hybrid model, composed of two Convolution neural network (CNN) layers following one Gated Recurrent Unit (GRU)
network layer. CNN models are suitable for extracting meaningful features, while the GRU exploits the time-dependent features.
This combination helps classify the heart sound signal since they exhibit complex quasi-cyclic features. An overall accuracy of
99.3% is obtained for a publicly available dataset. It shows the proposed method’s efficacy for classifying heart sound signal and
superiority over the existing methods. Such a method will be beneficial in reducing the burden of heart valve diseases by early
detection of diseases and initiating the proper medication.
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1. Introduction

Cardiovascular diseases (CVDs) cause most of the mortality among non-communicable diseases around the globe
[1]. This burden can be reduced by early-stage detection of CVDs and initiating proper medication. Manifestation of
various CVDs, including heart valve disease and arrhythmia, occurs early in the heart sound signals, reflecting the me-
chanical activity of the heart valves and chambers [2]. Auscultation is the most common approach medical fraternities
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use to listen to the signal using a stethoscope and analyse them manually. However, the scarcity of medical experts
and subjectivity in the diagnosis hinders its applicability to a wider population, especially in remote and rural areas.
Considering the scarcity of medical experts, automatic analysis of heart sound signals is crucial.

Several research methodologies have recently focused on heart sound signal analysis and classification. The com-
plex patterns present in these signals pose challenges, leading to the development of various innovative approaches.
Table 1 summarizes some of the recent methods for analysing and classifying heart sound signals proposed in the
literature and are discussed as follows.

In earlier approaches, researchers extracted the time-frequency domain features and used them to train classical
machine learning models for classification. Such a method is proposed in [3] extracted the magnitude and phase
of the spectrogram as a feature to detect heart valve disorders. In [4], a two-stage approach was proposed that em-
ploys tunable-quality wavelet transform features for classifying PCG signals. The first stage detects the abnormality
using the tunable-quality wavelet transform (TQWT) features and support vector machine (SVM). In case of any ab-
normality is detected, the second stage performs the signal classification into four pathological categories using the
same features and KNN method. Other features considered for this purpose are Mel-Frequency Cepstral Coefficients
(MFCC) [5], Shannon energy [6], and Cochleagram features [7].

Recent approaches are focused on deep-learning based machine learning models to classify the heart sound sig-
nal and achieved remarkable results. Devi et al. [8] proposed a method that combines scalogram and deep learning
techniques for classifying unsegmented PCG signals. In [9], a deep Wavenet model-based technique was presented
for heart signal classification. Jain et al. [10] introduced a lightweight 1D-CNN model for categorizing heart sound
signals into five groups. The method first transforms the signal in a multi-resolution domain using DWT, and then
the 1D-CNN model is trained on the transformed signal. In a similar approach, Fan et al. [11] trained a CNN model
on the coefficients of learnable lifting wavelet transform (Le-LWT). N. Bhagel et al. [12] and K. Ranipa et al. [13]
applied CNN models for heart sound signal classification. Bhardwaj et al. [14] transformed the signal into scalogram
images using continuous wavelet transform (CWT) and used these images to train a 2-D CNN model. These advanced
methods and deep learning techniques have significantly improved the accuracy and efficiency of heart sound sig-
nal classification. The development of such innovative methodologies holds the promise of reducing the burden of
cardiovascular diseases and improving patient outcomes.

Contribution of the paper: The paper’s main contribution is a novel hybrid CNN and GRU network model for the
heart sound signal classification. This combination helps extract complex quasi-cyclic features from the heart sound
signal, which results in an effective signal classification. Moreover, the proposed method exploits the multi-resolution
characteristics of the signal by decomposing the signal into five levels using DWT. Decomposing the signal into five
levels exhibits a better separation of the S1, S2, and the sound components related to pathological murmurs. Separation
of these components improves the model’s efficacy in classifying the signals. The obtained coeflicients are arranged
in a 1D array and used as input to the model. The experiments are conducted on a publicly available dataset with five
classes.

Organisation of the paper: The paper presents a comprehensive understanding of the proposed method and its
evaluation. Section 2 delves into the details of the proposed method, where each step is thoroughly described. The
pre-processing phase presents essential techniques like downsampling, filtering, resizing, and normalization. Follow-
ing this, the decomposition process is elaborated using DWT. The classification steps involving the application of
the proposed hybrid model are carefully explained. Moving on to Section 3, we showcase the obtained results of our
experiments. We present the performance of individual components, including CNN, GRU, and the hybrid model,
in classifying heart sound signals. Moreover, valuable insights are provided about the hybrid model’s superiority
compared to individual models and existing methods from the literature. Finally, Section 4 offers a concise and com-
prehensive conclusion of the study.

2. Proposed Method

As shown in Fig. 1, the proposed method performs in three steps. The first step is pre-processing the signal,
decomposition using DWT, and classification of the signal using the proposed hybrid deep learning model in five
categories.
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Table 1. Literature review for the classification of PCG signal.

SL. no Author name & year Dataset Methodology used Accuracy
1 Khan et al. [15] (2018) MECC, DWT and SVM. 97.90%
2 Ghosh et al. [3] (2019) Random forest (RF) classifier 98.55%
3 Bhagel et al. [16] (2020) Augmentation, normalization, and filtering 98.6%
4 Ranipa et al. [177(2021) Yaseen Khan Dataset MFCC and CNN 98.5%
5 Shuvo et al. [18] (2021) CardioXNet 98.2%
6 Jain et. al. [10] (2023) 1D CNN and DWT 98.6%
7 Kay and Agarwal [19] (2017) Propagation neural networks 90%
8 S Das et al. [20] (2019) Cochleagram ANN 95%
9 Chen et. al. [21] (2019) Deep Convolutional Neural Networks (DCNNs) 92.47%
10 Arora et al. [22] (2019) Xgboost, RNN 92.9%
11 Chowdhury et al. [6] (2020) . MFCC, DNN 97.2%
2 E Nehary ey( al. 23] (2021) Physionet Challenge 2016 FFT Mel-spectral coeflicients and CNN 97.18%
13 S Tiwari etal.  [24] (2021) Deep learning and ConvNet 96%

PCG Signal

Pre-processi
(Re-sampling, Normalization,
resizing)

DWT decomposition
(‘coif-5, level=5)

Disease Classification

(1-D CNN model)
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(GRU)
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Fig. 1. Block diagram of the proposed method.

2.1. Pre-processing

The study uses a publicly available dataset containing 1000 signals with an 8kHz sampling frequency. The signal
is pre-processed as follows to ensure uniformity and enable effective analysis. First, recognizing that the relevant
frequency range for normal and abnormal heart sounds is below 500 Hz, downsampling is performed to convert the
sampling frequency from 8 kHz to 1 kHz. This downsampling allowed us to focus on the critical frequency com-
ponents while reducing computational load. Next, a high-pass Butterworth filter was used to suppress the frequency
contents below 20 Hz to remove any respiration-related components present in the signals. This step helped isolate
the heart sound-specific information from potential interference. Since the dataset’s signals typically covered three
cardiac cycles but varied in length due to differing heart rates, we made them uniform by padding them with zeros.
However, this padding was later removed during resizing, which ensured that all signals became equal in length. To
eliminate any variations in amplitude range across different signals caused by inter-class differences, z-score normal-
ization is employed. This normalization technique standardized the amplitude values, enabling fair comparisons and
eliminating bias due to signal magnitude. These pre-processing steps standardized the heart sound signals and made
them suitable for subsequent analysis and classification.

2.2. DWT decomposition

DWT is a discrete version of the continuous wavelet transform, where the scaling and translation parameters’
values are discrete and differ with a power of two. For the cost-effective implementation of the DWT, Mallat proposed
a subband coding method called the Mallat tree [25], as shown in Fig. 2. In this technique, a multiresolution analysis
is performed on the signal to decompose it into different levels of detail. The process begins by applying high and
low-pass filters and then decimating the obtained filtered signals using both filters by a factor of two to compress
the signal while preserving the essential information effectively. The next step involves subjecting the approximation
coefficients to the same filtering and downsampling process. The analysis filters can be applied to the approximation
coeflicients to generate the next-level coefficients. This decomposition process can be repeated multiple times, creating
a hierarchy of approximation coefficients at different levels of resolution. Each level provides a progressively lower
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frequency representation of the original signal, capturing different levels of detail. This hierarchical decomposition is
what constitutes the multiresolution signal analysis. By decomposing the signal into various levels of approximation
and detail coefficients, this technique allows for a comprehensive and detailed analysis of the original signal at different
frequency scales.

This work uses ‘coif-5’ (coiflet wavelet with five vanishing moments) as the mother wavelet to decompose the
signal upto five levels. Decomposing a signal using DWT divides the frequency range of the signal into two halves,
and hence detailed levels (1 to 5) will cover the frequency range 250-500 Hz, 125-250 Hz, 63-125 Hz, 32-63 Hz,
and 16-32 Hz, for a signal with 1 kHz sampling frequency. Such a decomposition separates the fundamental heart
sounds (typical range 20-120 Hz) with murmur sounds (150-400 Hz), which helps in effective signal classification.
The approximation level signal composed of less than 16 Hz frequency generally contains the noise and is discarded.
The obtained coeflicients are used to form a 1D array, which is used as a sample of the model.

D1

G: high-pass Down A
H: low-pass Sampling E_’

Fig. 2. Mallat tree for decomposition of the signal.

2.3. Disease classification

For the classification, a novel hybrid deep-learning model based on CNN and GRU networks has been proposed,
as shown in Fig. 3. CNN network helps to identify the relevant patterns from the signal. At the same time, the GRU
exploit the long-range time dependencies of patterns effectively and requires fewer parameters than more complex
models like LSTMs (Long Short-Term Memory). Table 2 depicts the details of each layer used in the model. In
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Fig. 3. Architecture of the proposed hybrid deep learning model.

the CNN network, there are two pairs of convolution, max-polling and dropout layers. The flattened output of CNN
network is applied to the GRU network with 64 hidden units. In the end, a fully-connected layer with five neurons is
present since there are five classes to classify. The softmax layer converts the output produced by the fully-connected
layer to a probability associated with each class.

2.4. CNN network

The CNN network, which originated with the design of the LeNet by Y LeCun et al. [26], is primarily designed for
visual data like images and videos. It has been widely used for various applications, including classification, object
detection, segmentation, and more. CNN network automatically and adaptively processes the input and extracts valu-
able information to distinguish between multiple classes. CNN learns the kernel functions through backpropagation
using different layers, such as convolution, pooling, and fully connected layers.
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Table 2. Description of each layer used in the proposed hybrid model.

Layer Learnable Properties Number of Learnable

Convolution-1 Weight 1x33x1x32 1088

32 filters 1x33, stride [1,1], padding same Bias 1x1x32

Maxpooling-1 - 0

max pooling [2x2], stride [1,1], padding same

Dropout-1 (50%) B 0

Convolution-2 Weight 1x13x32x16 6672

16 filters 1x13, stride [1,1], padding same Bias 1x1x16

Maxpooling-2 — 0

max pooling 2x2, stride [1,1], padding same

Dropout-2 (50%) - 0

Flatten 0

GRU (64 units) Input (192x47) RecurrenWeight (192x64) 9050304
Bias 192x1

Dropout-3 (50%) B 0

FullyConnected (5 classes) Weights 5x64 325
Bias Sx1

Softmax - 0

classification - 0

In the proposed model, two layers of CNN have been used, as shown in Fig. 3. Each layer consists of a convolution,
max-pooling, and dropout layer. The input size for the first layer is 2942, the number of DWT coeflicients for each
sample. The extracted features are first flattened and then applied as input to the GRU network.

2.5. GRU network

Long Short-Term Memory (LSTM) networks generally encounter the vanishing gradient problem. Cho et al. [27]
proposed the Gated Recurrent Unit (GRU) as a solution. The GRU has demonstrated its effectiveness in capturing
long-term dependencies. Fig. 4 shows a single unit of a GRU network. It consists of several gates, including the reset
and update gates. These gates have a specific role in updating the network’s hidden state at each time step during
sequential data processing. The reset gate adaptively identifies which information from the past should be retained
and which should be discarded, thus overcoming the vanishing gradient problem. At the same time, the update gate
adds new information to the hidden state. By incorporating these additional gates, the GRU architecture effectively
manages information flow, making it more robust and computationally efficient than traditional LSTM networks. The
GRU’s output is then calculated based on the updated hidden state. What sets GRUs apart is their ability to retain
information from distant past steps without subjecting it to excessive temporal processing, as well as their capability
to discard irrelevant information for accurate predictions.

N ﬁj‘l’*ﬁ " @
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Fig. 4. One unit of GRU network [27]

3. Results and Discussion

The experiments are conducted on the Yaseen Khan dataset [5]. This dataset consists of a total of 1000 audio
samples of five classes: 200 samples for each class, including Aortic Stenosis (AS), Mitral Valve Prolapse (MVP),
Mitral Regurgitation (MR), Mitral Stenosis (MS), and Normal (N). Each pathological category contains 200 samples,
resulting in a balanced dataset. Fig. 5 illustrates these different categories. Each audio sample has the following
specifications: format (.wav), Bit Rate (128 kbps), quantization bits (16 bits per sample), and Duration (Approximately
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three seconds). The Matlab software (MathWorks Inc.) was used to conduct the experiments. Matlab offers a versatile
and powerful environment for signal processing, data analysis, and machine learning tasks, making it well-suited for
investigating heart sound signals in this study.
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Fig. 5. Heart sound signal: Aortic stenosis, Mitral Stenosis, Mitral Regurgitation, Mitral Valve Prolapse, and Normal

3.1. Results using proposed model

A random partitioning of the dataset is performed to divide it into two sets: training (70%) and test (30%). The
model’s training process spans 100 epochs using SGDM optimization with a 0.01 learning rate and employing a batch
size of 128 instances. Fig. 6 describes the training and validation phase of the model and the obtained accuracy and loss
curve during these phases. Training of the module consumes 39 seconds on a single GPU (8GB RAM) system. The
figure is indicating that the model gets trained satisfactorily around 100 iterations. However, training was performed
till the 400 iterations to check if the model was getting overfitted. Since the validation loss decreased continuously, no
overfitting was observed. It is possible due to the incorporation of the dropout layers helping the model to be better
regularized.

- ————u —. ~®Fina  Results

Validation accuracy: 99.26%
. Training Time
£ Start time: 25-Jul-2023 14:40:56
g Elapsed time: 39 sec
< Training Cycle
Epoch: 100 of 100
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T w0 150 200 250 300 350 400 Leaming rate: 0.01
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Fig. 6. Accuracy and loss curve during the training and validation of the model

The experiments are performed with the proposed hybrid model, as well as for the CNN model and GRU model
individually. The confusion matrix obtained using these models is provided in Fig. 7. CNN model achieved 96.6%
accuracy, the GRU model achieved 51.7% accuracy, and the hybrid model achieved 99.3% accuracy. It shows that the
hybridization of CNN and GRU networks produces better results than the individual models. It is expected because
the hybrid of CNN and GRU networks helps extract relevant patterns and exploit their time dependency. The CNN
model alone produces satisfactory results. However, the GRU model’s performance degrades drastically. These results
indicate that the hybridization of the different models.
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Fig. 7. Confusion matrix obtained for the hybrid model

Table 3 depicts the performance parameters obtained for the CNN, GRU and hybrid models. The results obtained
using the hybrid model are superior for all five categories compared to the CNN and GRU models. The hybrid model
achieved 100% F1-score for the classes AS, MS, and MVP, while 98.36% for MR and 98.08% for N. These results
demonstrate the efficacy of the proposed hybrid model classifying all five heart sound signal categories. Such a system
will be helpful for automatically analysing the heart sound signal.

Table 3. Obtained performance parameters using CNN+GRU model

Model Class itivity (%) ificity (%) ision (%) recall (%) F1-score (%)
AS 100 98.98 95.59 100 97.74
MR 94.44 99.30 97.14 94.44 95.77
CNN MS 93.42 100 100 93.42 96.60
MVP 97.18 97.91 92 97.18 94.52
N 98.65 99.65 98.65 98.65 98.65
AS 55 86.03 40.74 55 46.81
MR 0.3827 84.04 50.82 38.27 43.66
GRU MS 3279 87.02 42.55 32.79 37.04
MVP 61.76 85.53 38.18 61.76 47.19
N 84.91 96.76 86.54 84.91 85.71
AS 100 100 100 100 100
MR 98.36 99.52 98.36 98.36 98.36
CNN+GRU MS 100 100 100 100 100
MVP 100 100 100 100 100
N 98.08 99.54 98.08 98.08 98.08

3.2. Comparison with existing methods

Table 4 comprehensively compares the proposed model’s performance with the latest methods presented in the
literature, all using the same dataset. The hybrid deep-learning model produces an impressive 99.3% accuracy, which
is superior to the compared methods. While some existing methods also show prominent results, the superior accuracy
of the proposed model highlights its effectiveness in classifying heart sound signals. The proposed model’s ability to
achieve such high accuracy indicates its potential for providing reliable and precise diagnoses of heart valve disorders
and other cardiac conditions. Its accuracy may reduce misdiagnoses and improve patient care, benefiting individuals
with heart valve diseases and other cardiac disorders.

Table 4. Comparison with existing methods

Author (Year) Feature extraction Classification method Accuracy
Khan et al. (2018)[15] MECC and DWT SVM, KNN, and DNN 97.9%
Ghosh et al. (2019) [3] wavelet synchrosqueezing transform Random forest (RF) classifier 98.5%
Bhagel et al.(2020)[16] Data augmentation CNN 98.6%
Ranipa et al.(2021)[17] MFCC, Mel Spectrum, and Spectrum contrast CNN 98.5%
Shuvo et al.(2021)[18] CNN based features Bi-LSTM sequence residual learning 98.2%
Jain et. al. (2023) [10] DWT CNN 98.6%
Proposed hybrid model DWT CNN and GRU 99.3%
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4. Conclusion

This paper proposed an innovative hybrid model combining two powerful deep learning approaches, CNN and
GRU, to classify heart sound signals. The experimental results strongly support the effectiveness of the method. Two
key factors are observed for these prominent results. First, using DWT to decompose the signal provides distinct
and informative features that effectively differentiate heart sound categories. Secondly, the hybrid nature of the deep-
learning model contributes significantly to the achieved results. As discussed, the CNN aims to extract meaningful
patterns in the input, while the GRU uses time-dependent information to produce the output at present. This com-
bination empowers the model to extract quasi-cyclostationary features which are exhibited in a typical heart sound
signal. Such a system will be a boon for patients, especially the elderly and those in rural areas, to diagnose CVD early
without visiting a medical expert. They will need to visit the medical expert only in case of abnormality is detected,
thus reducing unnecessary visits. In future, the proposed model can be fine-tuned to effective classification even in
environments contaminated by everyday noises, demonstrating its practicality beyond clinical settings.
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