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ABSTRACT 
Incorporation of feature uncertainty during model construction 
explores the real generalization ability of that model. But this factor 
has been avoided often during automatic gait event detection for 
Cerebral Palsy patients. Again, the prevailing vision-based gait 
event detection systems are expensive due to incorporation of high-
end motion tracking cameras. This study proposes a low-cost gait 
event detection system for heel strike and toe-of events. A state-
space model was constructed where the temporal evolution of gait 
signal was devised by quantifying feature uncertainty. The model 
was trained using Cardif classifer. Ankle velocity was taken as 
the input feature. The frame associated with state transition was 
marked as a gait event. The model was tested on 15 Cerebral Palsy 
patients and 15 normal subjects. Data acquisition was performed 
using low-cost Kinect cameras. The model identifed gait events 
on an average of 2 frame error. All events were predicted before 
the actual occurrence. Error for toe-of was ≈ 21% less than the 
heel strike. Incorporation of the uncertainty factor in the detection 
of gait events exhibited a competing performance with respect to 
state-of-the-art. 
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1 INTRODUCTION 
Cerebral Palsy (CP) refers to a set of movement and postural disor-
ders caused by non-progressive injury in fetal or infant brain [15]. 
As per a recent report [19], more than 4 per 1000 children across 
the world sufer from CP. In developing countries, the number of 
CP patients is alarming. Accurate clinical intervention and rehabil-
itation treatment using gait analysis has become a vital issue for 
this population [9]. Annotation of gait events, especially heel strike 
(HS) and toe-of (TO), is a crucial preprocessing step to perform 
these analyses [12]. 

Generally, the manual labeling technique is followed in clinics 
to annotate the events, which is laborious and time-consuming too 
[12]. For pathological gait, like CP, manual annotation becomes 
more challenging for their atypical gait pattern. Again, the force 
plate, which is considered as the "gold standard" for gait event detec-
tion, has been reported to be not suitable in case of CP population 
[3, 12]. 

Recently, some automated gait event detection algorithms based 
on computational intelligence techniques have been proposed [3, 
10, 12, 16]. Miller et al. [12]used a sliding window to feed a neural 
network on an incremental basis and used that model to compute 
gait events. Each variable within the window was converted to 
a standard form that resulted in a feature vector of size 315. The 
proposed model exhibited a competing performance, but the au-
thors did not validate this method quantitatively against the normal 
subjects, which limits its versatility. Kidzińsk et al. [10] proposed 
a Long ShortTerm Memory (LSTM) for event detection (HS and 
TO) in both normal and pathological populations. Lower limb body 
positions and joint kinematics were used as the input vector cor-
responding to each frame. The network consists of a multilayer 
LSTM where a fxed number of frames were used to provide the in-
put. The network mapped the input to a �-dimensional time series. 
Local maxima on the output time series were marked as the gait 
events. But, the usage of a large-size feature vector increased the 
complexity of the system. Lempereur et al. [11] proposed a deep 
neural network named DeepEvent to detect two gait events. Heel, 
toe, and lateral malleolus markers positional and velocity data were 
fed to the model. A set of bidirectional LSTM units was used to 
construct the learning network, which also consisted of a dropout 
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layer and a distributed dense layer. Gait events were encoded using 
one-hot encoding method. The study obtained a competing result 
with an expense of complex network. 

It is noteworthy that almost all of the above mentioned studies 
used a set of salient features where event annotation was mapped to 
binary classifcation problem (i.e., HS and TO frames classifcation). 
But, all selected features may not equally support a specifc classif-
cation decision [8]. Even some may not exhibit any evidence for 
the classifcation, which attributes uncertainty in decision making. 
Consideration of this uncertainty factor during feature analysis 
is essential in clinical decision-making [8]. It creates a signifcant 
impact on model performance and demonstrates a real estimation 
of the model capacity [20]. Although exhibiting a competing per-
formance, the above-mentioned studies have ignored this crucial 
issue while detecting gait events. 

Another vital fact is that most of the vision-based systems for 
CP gait event detection have used expensive sensors (e.g., Vicon, 
etc.), which made the overall system cost high. These systems are 
not afordable for many clinics, especially in developing countries. 
A low-cost solution for this issue is an urgent need. 

This study proposes a state-space model, in a low-cost environ-
ment, by exploring the temporal evolution of gait signal. Dempster-
Shafer theory of evidence (DST) [6, 17] was used to quantify feature 
uncertainty. Signal segmentation between two consecutive states 
was mapped to a binary classifcation problem. Gait velocity of 
both ankle joints was given as the input feature to the model. The 
4-state model annotates gait events for both limbs individually. Gait 
phases were also estimated following the detection of events. The 
contributions of this study are summarized as: 

• Construction of a low-cost system for data acquisition on 
overground. 

• Detection of gait event and phase for CP patients using the 
aforementioned architecture. 

• Proposing a state-space model where feature uncertainty 
was quantifed to allocate frames to a state. Gait events were 
detected by identifying the state transition frames. 

The rest of the paper is divided into the following parts: sec-
tion 2 describes the study populations, the architecture of the data 
acquisition system, construction of the proposed model, and data 
analysis. Model outputs and corresponding discussions are elabo-
rated in sections 3 and 4, respectively. Finally, the study concluded 
by providing some future research directions in section 5. 

2 METHODS 

2.1 Population 
Fifteen children and adolescent with CP (CAwCP) (age (years): 
12.55 ± 2.13, height (cm): 130.15 ± 14.87, gender(M/F): 8/7, GMFCS 
levels: I and II) with having no other diseases or surgical history 
which can afect their gait were recruited from the Indian Insti-
tute of Cerebral Palsy (IICP), Kolkata. CP types were: Diplegic (5), 
Hemiplegic (right side) (5), Hemiplegic (left side) (3), and Athetoid 
(2). Along with that, 15 typically developed children and adoles-
cent (TDCA) (age (years): 12.45 ± 3.51, height (cm): 132.06 ± 14.09, 
gender(M/F): 9/6) were recruited from REC School, NIT Rourkela, 

Odisha. Approval to conduct this research was taken from the com-
petent authority. Informed consent was taken from the subjects or 
their guardians for conducting the experiment. 

2.2 Experimental setup 
A set of Kinect v2 sensors were used for data acquisition. Due to 
the limited feld of view (FoV), a single sensor can not track body 
joints for a long walking path (i.e., 10m or 8m) which is generally 
used in the clinical setting [7]. Hence, Inspired by the work of 
Geerse et al. [7], a 3-Kinect-based architecture was established for 
data acquisition (see fgure 1). Client-server protocol was used to 
control the sensors. Kinects v2, having horizontal FoV 70◦, were 
placed at 35◦ angle with the walking path on tripods at 0.8� height. 
Tilt angle of the Kinects was 0◦. The common tracking volumes 
for the successive Kinects was set to ≈ 0.5� which was empiri-
cally tested to be acceptable for the next Kinect to recognize the 
human skeleton. Each Kinect was connected to separate comput-
ers which were controlled by a server. Greyware’s DomainTime 
II (Greyware Automation Products, Inc.) was used to synchronize 
the clocks of the computers. Participants were asked to walk at 
self-selected speed (barefoot) from 4� distance of the 1�� Kinect. 
Data (skeletal data stream) were started to collect after 1� walk-
ing. The walking path length was 12�, out of which the efective 
length of data acquisition was 10�. For each subject, 5 consecutive 
trials were taken. The approximate sampling rate of the system was 
30 Hz. We have followed the protocol described in [7, 14] to pre-
process and combine the time series data collected from the three 
Kinects. 

Figure 1: Data acquisition system 

2.3 Model Construction 
Considering the variety of CP types, this study estimated gait events 
individually for each limb. Gait cycle was segmented into 4 phases; 
frst double limb support (FDLS), single limb support for the left 
limb (LSL), second double limb support (SDLS), and single limb 
support for the right limb (RSL). Phase FDLS was marked when the 
left foot is in the forward position. Hence, the sequence of phases 
should be: FDLS -> LSL -> SDLS -> RSL. We assumed that the 
above temporal sequence would be true for both populations. Based 
on the above assumption, a hypothetical model was constructed 
(see fgure 2). Each state in the model corresponds to individual 
phases. In subsequent discussions, state and phase have been used 
interchangeably. 

+ 
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Figure 2: Hypothetical model 

The movement of gait signal across the phases was modeled by 
quantifying the underlying uncertainty of input features. Velocity 
was reported as one of the most important features for CAwCP 
[4]. Hence, the velocity of both ankles (anterior-posterior (A-P) 
and vertical (V) directions) was taken as input. DST used these 
features as the source of evidences to construct a classifer, often 
termed as Cardif Classifer [2], which allocated frames between two 
consecutive states. In-sample group (i.e., training set) was formed 
using 11 TDCA and 10 CAwCP, while the remaining subjects were 
used for the out-of-sample group (i.e., test set). During construction 
of the classifer, the elementary hypotheses for frame allocation 
were defned as: { present state (PS), next state (NS) }. So, the 
hypothesis space became: {{∅}, {��}, {��}, {��, ��}}. Using the 
Kolmogorov-Smirnov test, the Fréchet distribution was found to ft 
the best for the input features, and thus, it was used to convert the 
input features into confdence factor. Inspired by the work of Jones 
et al. [8], expert knowledge was used to set the control parameters 
for the in-sample group. Dempster’s rule of combination [6, 17] 
was used to construct the fnal body of evidence (�) from each 
source of evidence (i.e., each input feature). The decision on frame 
allocation between two consecutive phases was guided by � . The 
free movement of probability mass across the hypothesis space, 
specifcally to the subset {��, ��}, quantify and associates feature 
uncertainty in decision making [8]. The model learned the control 
parameters from the in-sample group to classify the frames in the 
out-sample group. 

Since a gait cycle could start from any one of the 4 phases, for 
the initial frame, � corresponding to all four states were computed. 
The phase having the highest value for � was marked as the initial 
phase. The frame allocation rules between two consecutive phases 
are stated below: 

• �  : if �({��} {��� ) > �( � �}) + �({��, ��}), OR if �({��}) > 
�({��}) but �({��}) < �({��}) + �({��, ��}), then the cor-
responding frame will stay at present phase; 

• �    : if � ({ � {� ��}) > ( ��}�� ) but � ({��}) < � ({��}) + � ({��, ��}), 
then the corresponding frame will transit to the immediate 
next phase. 

2.4 Event detection 
Events were detected for individual limbs by marking the transition 
frames. We have marked 4 events as: 

• FDLS − > LSL = Right foot TO (RTO) 
• LSL − > SDLS = Right foot HS (RHS) 

• SDLS − > RSL = Left foot TO (LTO) 
• RSL − > FDLS = Left foot HS (LHS) 

Right foot toe-of was identifed by the last frame of frst double 
limb support, whereas, the right foot heel strike was marked by 
the frst frame of second double limb support. Similar, strategy was 
adopted for the other the limb also. Following Xu et al. [21], we 
have approximated HS and TO from the ankle data. Like [1, 10, 18], 
ground truth (GT) was generated by manual annotation with an 
expert. Kinect skeleton video (≈ 30 Hz) and a stopwatch were used 
during the annotation. 

2.5 Data analysis 
The detected gait events and phases were evaluated on the basis of 
mean relative diference (MRD) and mean absolute diference (MAD) 
[13], which were computed using the time diference between GT 
and model prediction. For gait event, relative diference ��� was 
computed as: 

��� = ��� − ������ (1) 
In equation 1, ������ and ��� are event detection time (ms) for 

the proposed model and GT, respectively. A positive value indicates 
that the model predicts the event before the actual occurrence, 
whereas a negative value indicates that the prediction was after the 
actual occurrence. The absolute value of ��� , i.e., ��� (equation 2) 
refers the magnitude of error. 

��� = |��� − ������ | (2) 
Phase duration (PD) was estimated using the detected events. 

The same metrics were used for evaluation of the PD. In this case, 
the relative diference (��� ) and absolute diference (��� ) were 
computed as: 

��� = ���� − ������� (3) 
��� = |���� − ������� | (4) 

In equations 3 and 4, ���� and ������� refer to phase duration 
for GT and the proposed model respectively. A positive value means 
that the estimated value for PD (by the model) is less than the GT, 
whereas a negative value indicates that the estimated value for PD 
(by the model) is higher than the GT. In addition, the distribution 
of errors (in the case of ��� ) for the 4 phases was also assessed. 

3 RESULTS 
Figure 3 demonstrates the allocation of frames to consecutive phases. 
The transition frames (marked by red dot), used to detect gait events, 
fall in the uncertainty zone of the simplex plot. For the subsequent 
frames, the uncertainty value decreases. The transition frames as-
sociate the highest uncertainty value. As the signal travels through 
the states, the frames keeps on moving (in time line) from the deter-
ministic zone to the uncertainty zone. For example, when the state 
transits from FDLS to LSL, the corresponding frame (marked by 
red dot) moves to the uncertainty zone of LSL (see Figure 3(a)). The 
green crosses represent the previous frames of the transition frame. 
All the green labeled frames are situated in the deterministic zone 
of FDLS state. Similarly, during the transition from LSL to SDLS 
(Figure 3(b)) the transition frame falls in the uncertainty zone of 
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Figure 3: Simplex plots showing the allocation of frames 
throughout a gait cycle (subj #1 CAwCP). (a) FDLS to LSL, (b) 
LSL to SDLS, (c) SDLS to RSL, (d) RSL to FDLS. 

SDLS and all its previous frames are situated in the deterministic 
zone of LSL. Similar phenomenon keeps on happening for all the 
subsequent transition periods and cycle to cycle. Note that when a 
frame is in the uncertainty zone of the present state, it can not be 
termed as a transition frame. 

Table 1 demonstrates the evaluation metrics for the gait events 
and corresponding phases. The proposed model was evaluated 
for both normal and pathological (i.e., CAwCP) populations. For 
gait events, on average, the model prediction error (i.e., absolute 
frame diference) was approximately 2 frames (considering the 
average frequency of Kinect 30 Hz and average MADs for CAwCP 
and TDCA, i.e., 92.78 ms (≈ 3 frames) and 67.84 ms (≈ 2 frames) 
respectively). It can be seen that all the events were predicted by 
the model before the actual occurrence. Figures 4 and 5 exhibit 
the frequency distributions of ��� for all predicted gait events 
for CAwCP and TDCA, respectively. In the case of CAwCP (see 
fgure 4), the model performed the best for RTO and LTO, where 
on average, 46% of frames encountered 0 frame error. In the case 
of TDCA (see fgure 5), LTO exhibits the best result with 57% of 0 
frame error, whereas moderate results were observed for the other 
events. 

The estimated PDs were higher than GT for double limb supports 
(CAwCP) and single limb supports (TDCA) (see table1). In the case 
of CAwCP, the distribution of ��� demonstrates comparatively low 
error and variance for the double limb support phases (see fgure 
6(a)), whereas, for TDCA, the variance is comparatively low for 
FDLS (see fgure 6(b)). It is to be noted that the higher magnitude of 
time diference is due to the low frequency of Kinect, which was not 
altered to keep originality of data pattern. Hence, when comparing 
the proposed model, more emphasis might be given to the frame 
error than the time diference. 

4 DISCUSSION 
This study proposes an automatic gait event detection model for 
TDCA and CAwCP patients using a low-cost system setup. It carries 
a multifaceted clinical signifcance. First, the proposed model deter-
mines gait events separately for each limb which could facilitate 

Figure 4: Frequency distribution of RD (for CAwCP). (a) RTO, 
(b) RHS, (c) LTO, and (d) LHS. 

Figure 5: Frequency distribution of RD (for TDCA). (a) RTO, 
(b) RHS, (c) LTO, and (d) LHS. 

the diagnosis of gait abnormality individually for each limb. Sec-
ond, for pathological gait, detection of gait events using force plate 
encounters a serious problem [12]. Patients often fail to place their 
foot properly on the force plate, which consequences unreliability 
for the acquired data. The proposed automated system presents a 
solution to this problem. The unobtrusiveness of the acquisition 
system makes it more subject-friendly. Third, the model was build 
based on a single feature, i.e., ankle velocity, which can be easily 
extracted from gait signal. This simplicity could make it attractive 
for the clinical staf. Fourth, consideration of uncertainty during 
model building improves the likelihood of interpretability of results 
which is vital for clinical decision making [5]. Finally, this study 
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Table 1: Relative and absolute errors for diferent events and phases. Data were represented in mean ± 1 standard deviation 
form 

Evaluation Metric Population Events (mean ± standard deviation) Phases (mean ± standard deviation) 
RTO RHS LTO LHS FDLS LSL SDLS RSL 

MRD (ms) 

MAD (ms) 

CAwCP 
TDCA 

CAwCP 
TDCA 

86.87 ± 80.69 102.57 ± 74.76 56.85 ± 73.83 106.35 ± 84.74 
77.62 ± 76.92 25.24 ± 74.63 59.81 ± 82.33 32.17 ± 82.46 

88.46 ± 78.95 105.75 ± 70.19 57.84 ± 73.82 119.07 ± 65.68 
81.94 ± 71.36 60.06 ± 50.58 60.04 ± 81.06 69.33 ± 54.87 

-16.23 ± 83.17 44.03 ± 12.30 -48.39 ± 69.13 20.06 ± 26.57 
51.55 ± 81.22 -33.17 ± 11.27 26.13 ± 78.36 -45.39 ± 17.39 

69.32 ± 49.77 115.36 ± 67.21 71.34 ± 44.67 103.51 ± 75.68 
73.53 ± 62.88 103.37 ± 60.91 62.77 ± 53.33 91.36 ± 6.39 

Figure 6: Distribution of relative errors for each phases. (a) 
CAwCP, (b) TDCA 

proposes an afordable gait event detection system, especially for 
the CAwCP population, which is an urgent clinical need. 

The proposed model was compared with the work of Kidzińsk et 
al. [10] and Salazar et al. [16], where CP patients were treated as one 
of the main pathological populations. All of them used expensive 
cameras having high sampling frequency (i.e., 120 Hz). Kidzińsk et 
al. [10] reported ≈ 2.20 (18.3 ms) and ≈ 1.50 (12.5 ms) frame errors 
(averaged over all subjects) for HS and TO events, respectively. 
Salazar et al. [16] reported ≈ 1.92 (15.95 ms) and ≈ 4.25 (35.45 ms) 
frame errors (averaged over all subjects) for HS and TO events, 
respectively. In the case of HS event, the proposed method closely 
resembles [10] with ≈ 2.65 (88.55 ms) frame error (averaged over 
all subjects), while for TO even, it performs better than [16] with 
≈ 2.15 (72.07 ms) frame error which is also close to [10]. Compared 
to [10, 12], where a multi-dimensional feature vector was used for 
training, our model uses only a single feature. Moreover, on the 
issue of afordability, the proposed system beats the others (i.e., 
[10, 16]). 

The model demonstrated comparatively low error (on average) 
for the normal subjects (2.03 frame error (TDCA) vs 2.78 frame 
error (CAwCP)). This might be due to the atypical gait pattern of 
CAwCP patients, which caused some incorrect state transitions 
for some subjects. In the case of CAwCP, frame error for the TO 
event was 34% less than the HS. Specifcally, LTO was detected 35% 
more accurately than RTO (see table 1). This might be due to the 
left alignment of sensors with respect to the walking path, which 
allowed the system to track the left ankle more accurately than 
its counterpart. It is observable from table 1 that the magnitude of 
error is comparatively high for single limb support time (for both 
populations). This might be due to overall 18% higher detection 
error for HS events than TO. Figures 4 and 5 also confrm the results 

of table 1. Higher magnitude of frequencies for time diferences 
was observed in HS events compared to TO events, especially for 
the CAwCP group. 

This study proposes a gait event detection model dedicatedly 
for CP patients. However, it was tested for normal population also. 
Although providing a competing performance, the system comes up 
with some limitations. The placing of Kinects only on a single side of 
the walking track introduced a partial self-occlusion problem which 
might impact the model performance to some extent. Placement 
of Kinects on both sides of the track could be a solution to this 
problem. But, it requires more cameras which will account for 
more expenditure. Again, the low frequency of Kinect introduced 
a comparatively high magnitude of time diference. Up sampling 
could be a solution, but it could alter the original gait pattern. 
Approximation of HS and TO from the ankle data could impact 
the results. But, that process was necessary to avoid the noisy 
foot marker data [21]. Moreover, due to unavailability constraints, 
adult CP subjects were not included in this study, and experimental 
sample size was not so large also. 

5 CONCLUSION 
This study proposes a low-cost solution for automated gait event 
detection and phase estimation considering the feature uncertainty 
embedded in gait signal. The model demonstrated a competing 
performance for both CAwCP and TDCA populations. In future, 
this model could be tested for some other pathological populations 
to prove its versatility. Again, some other arrangement of Kinect 
which could reduce the self-occlusion problem can be investigated 
with this model. 
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