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Abstract—Understanding the spatial and temporal dynamics 

of surface concentrations of particulate matter (PM2.5 and PM10) 

is essential in air quality modelling and climate research. 

Forecasting of air pollutants is necessary to understand the 

variation of pollutants and to plan and implement air pollution 

control measures. This work proposes a methodology for 

forecasting PM2.5 concentration using various meteorological 

parameters over multiple time horizons. The proposed deep 

learning-based models forecast the daily average values 

concentration for PM2.5 in Singapore. The performance metrics 

indicate the efficacy of the proposed model in forecasting PM2.5 

concentrations over different horizons. The analysis shows that 

PM2.5 concentrations are best forecasted for the 3-days ahead 

scenario, with RMSE and MAPE being 3.767 µg/m3 and 6.82%, 

respectively. 
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I. INTRODUCTION 

Air quality refers to air contamination by various 
pollutants like dust, smoke, smog, and air impurities. The 
leading cause of air pollutants and poor air quality are 
anthropogenic activities, soaring urbanization, and thriving 
industrialization. Air pollution is among the top five global 
mortality risk factors [1]. In 2012, World Health Organisation 
allocated one out of nine deaths to air pollution [2], among 
them, three million deaths are only due to outdoor air 
pollution. Pollution due to Particulate Matter (PM) is 
considered the third ultimate reason of death for 2017 in India, 
including 56% because of vulnerability to the outdoor PM2.5 

accumulation and 44% allocated for domiciliary air pollution 
[3]. Urban areas like Delhi, Kolkata, and Mumbai, with a 
population exceeding 46 million, face seriously deteriorated 
air quality due to massive-scale expansion in anthropogenic 
activities and population density [4]. The long-term effects of 
air pollution are hazardous diseases like chronic asthma, 
cardiovascular diseases, pulmonary insufficiency, 
cardiovascular mortality, and perinatal disorders, leading to 
infant mortality in adult age [5]. A similar problem persists in 
urbanized areas, which need immediate attention and better 
prediction to reduce the burden of diseases and improve the 
quality of life of their residents. The need to regulate air 
quality is vital in places with high urbanization and smaller 
area, e.g., Singapore, for a better health perspective of the 
residents and visitors.  

The air quality of Singapore is compromised due to 
numerous pollutant sources like forest fires, industries, and 
motor vehicles. The pollutants in the atmosphere include 
Ozone (O3), Particulate matter (PM2.5 and PM10), Nitrogen 
dioxide (NO2), etc. Particulate matters are classified according 
to their size, composition and source of origin. Understanding 
PM2.5 temporal and spatial characteristics demand rigorous in-
situ networks. Integrating the in-situ observations with 
sophisticated machine learning tools helps project the 
variations and trends. Artificial Intelligence (AI) proposes 
modern logical approaches capable of modelling the 
complicated and abridged character of the occupant’s 
interactions with their thermal environment [6]. Machine 
Learning (ML) subset of AI, and thus, ML models make it 
easy to make predictions for large and complex data with more 
accuracy and better results; especially financial time series 
prediction using LSTM model effectively captures the long-
term dependencies in the time series [7]. Many studies 
successfully employed the ML technique to predict PM2.5. 
Some noteworthy ML methods include neural networks, 
Random Forest Method, and the Ensemble method. ML 
models to forecast air quality are popular and extensively 
explored globally. A case study on air quality in Madrid 
predicted using LSTM depicted its efficiency in air quality 
prediction compared to other models [8]. Hussain et al. [9] 
make air quality predictions using the traditional k-NN and 
non-traditional Long Short-Term Memory (LSTM) model. 
The output power of the Photovoltaic system is forecasted by 
[10] using the LSTM model for hourly datasets of a year, and 
the authors concluded that LSTM performs better than other 
models. The number of covid cases is forecasted by [11] using 
the hybrid GWO-LSTM model, and the results are compared 
with the ARIMA model; again, the hybrid model is found to 
give better results. The Multi-step forecasting of Global solar 
radiation of arid zones is performed by [12] using the LSTM 
model, and common statistical errors are observed. The 
authors [13] predicted the Stock Market Price using the LSTM 
model, having multiple inputs and outputs. Also, the LSTM 
model is used for Gold price forecasting [14] along with 
additional convolutional layers. The authors in [15] studied 
the Convolutional LSTM model for Spatiotemporal 
correlation, and it is found that the dual-stage attention 
mechanism can easily abolish extraneous information. The 
author in [16] proposed a hybrid random forest with a linear 
model (HRFLM) for predicting cardiovascular disease. Also, 
techniques like the Random Forest method, Support vector 
machine (SVM), Decision trees, k-NN, etc., are used for the 



prediction. Sarkar et al. [17] presented ML techniques, like 
SVM, ANN, GA, etc., to predict occupational accidents. Air 
pollution forecasting for pollutants like PM2.5 and various 
harmful gases in Taiwan is done by Y.T. Tsai et al. [18] using 
LSTM and Recurrent Neural Network techniques (RNN). R. 
Casado-Vara et al. [19] developed a deep-learning-based 
platform to forecast the online web traffic of a web server with 
an LSTM network. M.L. Shen et al. [20] propose a study using 
the deep learning method to predict multinational trade data.  

The air quality of Singapore is explored using various in-
situ observations and numerical models employed for its 
prediction. However, ML techniques are yet to mark their 
importance in air quality prediction over a region like 
Singapore. The LSTM network is one of the most prior 
recurrent networks and is efficient in most time series learning 
problems [21]. The present work uses an LSTM model for the 
multi-horizon forecast of PM2.5 in Singapore. The input data 
consists of meteorological parameters like Temperature, 
Pressure, Relative Humidity, and wind speed, with PM10 and 
PM2.5. 

II. DATASET DESCRIPTION 

Singapore city-state is situated on the southern tip of the 
Malay Peninsula (1° 17' 24.97'' N and 103° 51' 7.05'' E), 
consisting of Singapore Island in the shape of a diamond and 
some small islets. Singapore experiences a hot and humid 
climate throughout the year, with rainfall occurring almost 
every month [22]. This study selects in-situ sites that spatially 
cover Singapore's air quality dynamics, as shown in Fig. 1. 

In Singapore, the National Environmental Agency (NEA) 
monitors the air quality and is responsible for daily measures 
of ambient air pollutants PM2.5 and PM10. This study focuses 
on predicting PM2.5 using the LSTM model for the year 2019 
to bring out the model potential in prediction. Table I shows 
the maximum and minimum ranges of the variables. The 
correlation between the parameters PM2.5, PM10, Wind Speed 
(WS), Temperature (T), Relative Humidity (RH), and 
Pressure (P) is shown in Table II and Table III for north and 
south sites, respectively [23].  

It can be observed in Table I that the range of PM2.5 value 
is different from Relative Humidity (RH) and Wind Speed 
(WS); hence, PM2.5 is found to be poorly correlated with RH 
and WS, as shown in Table II and III. 

TABLE I.  STATISTICAL VARIABLES AND VALUES RANGE AT THE NORTH 

AND SOUTH SITES 

Parameters 
Value Ranges 

North South 

PM2.5 (µg m–3) 19 – 233  15 – 267 

PM10 (µg m–3) 11 – 165 10 – 158 

T (°C) 23 - 29 23 – 29 

P (hPa) 1002 – 1011 1002 – 1-11 

RH (%) 60 – 94  60 – 94 

WS (ms–1) 0 – 6 0 – 6 

While PM2.5 is highly correlated with PM10 from value ranges, 
it is evident that PM2.5 and PM10 lie around the same ranges. 
While PM2.5 is poorly correlated with RH, as observed from 
the correlation matrix.  

TABLE II.  CORRELATION MATRIX OF VARIABLES FOR THE NORTH SITE 

North PM10 T P RH WS PM2.5 

PM10 1      

T 0.07 1     

P 0.06 –0.32 1    

RH –0.06 –0.34 –0.11 1   

WS  –0.08 –0.12 0.29 –0.41 1  

PM2.5 0.88 0.07 0.03 –0.07 –0.11 1 

TABLE III.  CORRELATION MATRIX OF VARIABLES FOR THE SOUTH SITE 

South PM10 T P RH WS PM2.5 

PM10 1      

T 0.05 1     

P 0.13 –0.32 1    

RH –0.12 –0.34 –0.11 1   

WS  0.06 –0.12 0.29 –0.41 1  

PM2.5 0.84 0.06 0.09 –0.09 –0.05 1 

Fig. 2 represents the variation of data that is used for 
LSTM modelling. For improved model predictions, in 
addition to the primary predictor (PM2.5), the analysis is 
enriched by incorporating basic meteorological conditions 
that impact the ambient air quality. 

 

Fig. 1. Site map of Singapore with corresponding in-situ/analysis 
sites (red marked) used in the study. 

 

Fig. 2. Input data used for the model. 



The meteorological data: temperature (T, ºC), Pressure (P, 
hPa), relative humidity (RH, %) and wind speed (WS, m s–1) 
is extracted from ECMWF Reanalysis 5th Generation (ERA5) 
bounded to its site location. 

III. METHODOLOGY FORMULATION 

Through the meteorological sites of Singapore, 
informative data is obtained for the north and south sites of 
Singapore. Then, the LSTM model is applied, which is 
divided in three steps. The flowchart of the model is shown in 
Fig.3. The steps involved are as follows in the subsection. 

A. Data Pre-processing 

Firstly, a dataset is acquired with the help of data collected 
from different sites and then combined in a proper format. 
Then, python libraries like NumPy, Pandas, and Matplotlib 
are imported to handle the data accordingly. From the 
obtained dataset, missing values are identified and handled, 
including finding the mean for missing values or deleting 
some particular row/column as per requirement. For Machine 
learning models, it is necessary to encode the categorical data; 
hence the data is encoded. Then, the entire dataset is split into 
training and testing datasets in the ratio of 80:20. Lastly, 
feature scaling is done to put the values in a specific range; in 
this model, normalization is used for feature scaling.  

B. Formation of LSTM Model 

The LSTM model is used for forecasting, which stands for 
Long Short-Term Memory from deep learning [24]. LSTM 
comes under various recurrent neural networks (RNNs), 
which tend to learn long-term dependencies such as sequence 
prediction problems. An LSTM network comprised of input, 
hidden and output layers. Also, it consists of the cell which 
helps in remembering the past, which consists of three gates: 
(a) input gate, (b) forget gate and (c) output gate. The 
functions of these three gates: 

(a) The input gate declares the part of the new input 
which can be appended to the cell state. 

(b) The forget gate determines which part of the cell 
state should be removed depending on the hidden 
state, current input and forget gate weights. 

(c) Based on output gate weights, hidden state, and 
current input, the output gate determines how current 
output gets affected due to cell state [25]. 

Weights are essential in helping the model which part of 
the cell to be forgotten and remembered. It helps the LSTM 
model to successfully detain long-term dependencies in their 
cell and solve the problem of vanishing gradients that the 
traditional RNN models face. 

The hidden layer holds memory cells with input and output 
gates, and these gates are sigmoid activation functions where 
the output value ranges between 0 and 1. An output of 0 
indicates that the gates block every information, while 1 
means that the gates allow every piece of information [26].  

The structure of the memory block is shown in Fig. 4. 
below, and the memory block is a fundamental element of the 
hidden layer. The sequence of input in the time frame given 

as, {x (1), x (2), ………, x (M)}∈RKxM, here x (τ)∈RK 

represents the feature vector for time step τ. 

The following equations (Eq. (1 – 3)) represents the gates 
of LSTM, 

 iτ = σ (wi [hτ–1, xt] + bi) (1) 

 fτ = σ (wf [hτ–1, xt] + bf) (2) 

 oτ = σ (wo [hτ–1, xt] + bo) (3) 

where iτ denotes the input gate, fτ denotes the forget gate and 
oτ denotes the output gate. wi represents the weight in case of 
input gate, wf  represents weight in case of forget gate and wo 

represents weight in case of output gate, each for ‘x’ number 
of neurons. Whereas σ is known as the sigmoid function. The 
output from the previous block of LSTM is represented by hτ–

1. For the timestamp τ–1, the input for the ongoing timestamp 
is xt. The bias for the input, forget, and output gates is bi bf and 
bo, respectively.  

The input gate stores new instructions in the cell and 
further, for timeframe 'τ’, the output gate provides activation 
to the LSTM block's final output, whereas the forget gate lets 
us know which information is not necessary and throw away. 

 ĉτ = tanh (wc [hτ-1, xτ] + bc) (4) 

 

Fig. 3. Flowchart representing the processes adapted for the 

prediction using LSTM. 

 

Fig. 4. Structural aspect of an LSTM neural network memory 
block. 



 cτ = fτ * cτ–1 + iτ * ĉτ (5) 

 hτ = ot * tanh (cτ) (6) 

The cell state (memory) is represented by cτ for timestamp (τ), 
ĉτ represents a candidate for cell state at timestamp (t). LSTM 
model is quite good for air quality prediction as the input data 
is sequence data with long-range dependencies. 

C. Prediction of Particulate Matter 

Then, at last, the cell state is filtered and passed to the 
activation function, which anticipates the portion for the 
output of the present LSTM unit at timestamp t. Then, h_{τ} 
output is passed from the present block of LSTM via the 
softmax layer to obtain the predicted output (y {τ}) from the 
present block. The multivariate LSTM model is implemented, 
and prediction is made for PM2.5 with meteorological variables 
as secondary inputs. The model is trained with a validation 
split of 0.2 and a training split of 0.8. The forecasting horizon 
is dynamically changed from 1 to 30 to compare the forecast.  

Statistical errors like The Mean Absolute Percentage Error 
(MAPE) and Root Mean Square Error (RMSE) are calculated 
to stabilise the results and check the model's accuracy. The 

square root of the average error is defined as RMSE (Eq. (7), 
while MAPE (Eq. (8) is the total of the individual absolute 

error divided by the demand (each period separately), which 
are given as,  

                        RMSE = �∑ �������	
���
                                  (7) 

                          MAPE =  
∑ �������� �
���

                           (8) 

where, At represents actual or measured value, Ft represents 
forecasted value, and n indicates evaluated data point’s 
number.  

IV. RESULTS AND DISCUSSIONS 

This study uses the LSTM model to predict PM2.5 for 
Singapore's north and south sites for the year 2019. The 
multivariate model is implemented with layers (1 layer) and 
neurons (50 neurons). The forecasting horizon is varied from 
1 to 30 to observe the results for months across two sites. This 
means that the analysis is done using 1 day ahead, 3 days 
ahead, 5 days ahead, 7 days ahead, 14 days ahead, 21 days 
ahead and 30 days ahead for the two sites. Predictions for 
PM2.5 are made with the assistance of input weather 

parameters.  

 

Fig. 5. Monthly predicted values of PM2.5 for the north site in Singapore with 1 horizon. The red line represents actual values and the blue line 
represents the predicted values. 



The predicted value of PM2.5 is found to be varied from 20 
to 160 µg m–3 per day for the north site, while 25 to 180 µg m–

3 per day for the south site. The lowest and highest predicted 
values are observed for both sites during December and 
September, respectively. Table IV highlights the statistical 
errors for the predicted values of PM2.5 for each site of horizon 
3. Mostly, the statistical errors are significant for the monsoon 
season (JJA) for the north site and the winter season for the 
south site (DJF). The errors are relatively proportional to the 
number of horizons where the minimum RMSE is observed 
for horizon 5 (north site) and horizon 3 (south site). Likely, for 
MAPE minimum is horizon 3 (both the sites).  

For 1 day ahead, RMSE is varied from 0.38 to 1.80 for the 
north site, relatively from 0.20 to 2.14 µg m–3 per day for the 
south site. Synoptically, the overall RMSE is less for the north 
site when compared to the south for horizon 1. Similar to 
RMSE, MAPE is varied from 0.80 to 2.77 µg m–3 per day for  

the north site, whereas from 0.27 to 1.96 µg m–3 per day for 
the south. The prediction for PM2.5 with 1 day ahead over the 
selected sites of Singapore is shown in Fig. 5. For 1 day ahead, 
it can be further inferred that the north site exhibits the highest 
MAPE during December. On the other hand, the best 
forecasting is made during February (south site) with 
minimum RMSE and MAPE. The statistical errors for the 
horizon revealed the highest RMSE for September across the 
sites with 3.12 and 4.48 µg m–3 per day for north and south, 
respectively. MAPE is highest in winter with 8.01 (December, 
north) and 5.82 (November, south) µg m–3 per day. Matching 
with 1 day ahead, the pre-monsoon season (February) 

exhibited minimum statistical errors for 3 days ahead and are 
found to be in good fit with the observation compared to 1 day 
ahead predictions. The LSTM prediction for monthly PM2.5 
with 3 day ahead over the north site of Singapore is 
represented in Fig. 6.  

Following the track of 3 days ahead, RMSE for 5 days 
ahead is observed with a maximum for November, with 3.767 
and 3.93 µgm–3 per day for the north and south sites, 
respectively. Similarly, the north (south) site exhibited higher 
MAPE in December (November) with 7.83 (6.82) µg m–3 per 
day. Deviating from the earlier horizon's trend, the best 
prediction is made for the monsoon season (July) for the north 
site. Comparing the track of 1, 3 and 5, 3 days ahead is found 
to produce the best forecast with minor errors. For 7 days 
ahead, the RMSE is found to be maximum for the post-
monsoon with values 5.89 (November, north) and 4.87 
(October, south) µg m–3 per day and is dilutional towards the 
monsoon/winter season. But MAPE retains its highest errors 
for the winter season with 8.65 and 7.40 µg m–3 per day for 
north and south sites, respectively.  

Whereas, the best-fitted forecast is observed for the 
monsoon season with minimal RMSE and MAPE. But, 7 days 
ahead is not the best-projected value when compared to 3 days 
ahead. The monthly statistical values for the sites for 1 and 3 
days ahead are represented in Table IV. For 14 days ahead, the 
maximum RMSE is observed over the north (November) at 
6.69 and south (September) at 13.34 µg m–3 per day. Similar 
to RMSE, MAPE exhibited lower significance with 10.09 and 
11.14 µg m–3 per day for north (December) and south 

 

Fig. 6. Monthly predicted values of PM2.5 for the north site in Singapore with 3 horizon. The red line represents actual values and the blue line 

represents the precdicted values. 



(November), respectively. Though horizon 14 is significant 
during monsoon season, the errors offset the overall 
projections. The number of horizons is directly proportional 
to the insignificance of the projection, and this, in turn, is 
coherent for 21 days ahead as well. Higher error values of 
RMSE (MAPE) were observed over the winter season, with 
11.51 (32.85) for north and 14.15 (25.89) µg m–3 per day for 
south sites of Singapore. Similarly, for 30 days ahead, the 
maximum error is observed for the post-monsoon season 
(September) with the variability of 15.48 (17.94) µg m–3 per 
day for north (south).  

TABLE IV. STATISTICAL ERRORS FOR CORRESPONDING PREDICTED 

VALUES OF PM2.5 FOR THE SITES IN SINGAPORE WITH HORIZONS 1 AND 3. 
SIGNIFICANT STATISTICAL FIGURES ARE HIGHLIGHTED (R: RMSE AND M: 

MAPE) 

 

Month 

Horizon 1 Horizon 3 

North South North South 

R M R M R M R M 

Jan 0.42 0.80 1.01 1.96 0.48 0.96 0.53 0.93 

Feb 0.53 1.21 0.20 0.27 0.30 0.54 0.15 0.21 

Mar 1.03 1.63 0.43 0.59 0.50 0.81 0.33 0.36 

Apr 0.72 1.23 0.51 0.60 0.37 0.41 0.61 0.82 

May 0.78 1.59 0.79 1.85 0.66 1.17 0.94 2.13 

Jun 0.38 0.83 0.34 0.75 0.39 0.81 0.37 0.77 

Jul 1.12 1.84 0.38 0.59 0.24 0.36 0.38 0.52 

Aug 1.53 2.31 0.65 0.54 0.53 0.58 0.54 0.52 

Sep 1.80 1.22 2.14 1.22 3.12 1.67 4.49 3.25 

Oct 1.43 2.12 0.80 1.16 2.31 3.24 2.38 3.03 

Nov 0.64 1.32 0.67 1.25 2.40 4.86 2.76 5.82 

Dec 1.14 2.77 0.76 1.70 2.97 8.02 1.41 3.38 

 

From the analysis, synoptically, it can be inferred that 30 
days ahead holds the maximum error variability, whereas 3 
days ahead is considered a good fit in predictions. In general, 
the south site of Singapore exhibited a better forecast during 
the post-winter (February) in accordance with the observation, 
whereas higher statical errors are observed during the onset of 
winter (December).  

As it is observed that increasing horizon is leading to 
higher errors and worst prediction, this is due to overfitting of 
the model with increment in batch size. LSTM network uses a 
reduced number of hidden units, lags, and also a minimum 
number of training iterations; when training iteration is 
increased, learning increases and hence better forecast is 
obtained. But at a certain point, LSTM begins to overlearn; 
hence forecast accuracy maximizes at that number only. 
Likewise, the results are obtained for horizon 3, where 
accuracy is maximum. Beyond horizon 3, the estimating 
capabilities get weak, and hence model gets stuck to the input 
responses from input data more often and leads to the 
increment of errors. And this is observed for the horizons with 
21 and 30, where estimating capabilities are weak, and MAPE 
and RMSE are found to be maximum.  

For horizon 14, the maximum RMSE is observed over the 
north (November) at 6.69 and south (September) at 13.34 µg 
m–3 per day. Similar to RMSE, MAPE exhibits lower 
significance with 10.09 and 11.14 µg m–3 per day for north 
(December) and south (November), respectively. Though 14 
days ahead is significant during monsoon season, the errors 
offset the overall projections. The number of horizons is 
directly proportional to the insignificance of the projection, 
and this, in turn, is coherent for horizon 21 as well. 

Higher error values of RMSE (MAPE) are observed over 
the winter season with 11.51 (32.85) for north and 14.15 
(25.89) µg m–3 per day for south sites of Singapore. Similarly, 

for 30 days ahead, the maximum error is observed for the post-
monsoon season (September) with the variability of 15.48 
(17.94) µg m–3 per day for north (south). So, forecast accuracy 
is mainly dependent on the number of hidden units, training 
iterations, and value of lag; depending on each other, the 
optimum values of these three increase the accuracy of the 
model. 

V. CONCLUSION 

This work has presented an LSTM-based model to 
forecast daily PM2.5 levels over Singapore over multiple time 
horizons, a major pollutant to the atmosphere, over the 
selected sites of Singapore. Firstly, the correlation between the 
input variables is obtained and then the model is trained with 
50 neurons and 1 layer. Multiple horizon forecasts are 
obtained with changing the horizons from 1 to 30 concerning 
the model's accuracy and forecasting capabilities. The 
statistical errors RMSE and MAPE were computed to evaluate 
the model. For the sites of Singapore, it has been found that 
better results are obtained for the 3-day ahead forecast, 
whereas the model is non-significant for the maximum 
horizons like 21 and 30. When the number of horizon 
increases, the model starts overfitting, which reduces the 
forecast's accuracy.  

From the forecasted analysis, it is inferred that PM2.5 is 
better projected in the pre-monsoon season (mostly in 
February), and a comparatively weaker forecast is observed 
for the winter season. On comparing our model performance 
with the existing literature [18], the proposed algorithm can 
perform predictions with marginal bias, exhibiting the 
suitability to forecast air quality in real time. This preliminary 
study in the projection of PM2.5 over Singapore is anticipated 
to assist policymakers in framing better decisions for 
preventing and timely air pollution control over Singapore. 
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