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Abstract. This paper proposes optimized architectures for AES sub-
stitution boxes using functional decomposition techniques. Functional
decomposition techniques are logic synthesis approaches useful in reduc-
ing the support size of complex Boolean functions with more literals. The
functional decomposition techniques in this work are applied to the mul-
tiplicative inverse function of the AES S-box constructed using sub-field
arithmetic based on a normal basis. Three architectures are proposed;
the first is based on single-variable decomposition, while the second and
third are based on double-variable decomposition techniques. The pro-
posed architectures exhibit high throughput and less area than AES’s ex-
isting architectures. It is observed that the best of our proposed designs
has a reduction of around 18% in the number of slices and nearly 50%
in power consumption compared with the state-of-the-art architectures
for the FPGA platform. Again, for standard cell libraries, our proposed
design exhibits a delay reduction of around 41%, making them useful for
resource-constrained applications.

Keywords: composite field · AES · logic synthesis · Shannon’s expan-
sion · Boolean decomposition · normal basis

1 Introduction

Hardware and software optimization and implementations are necessary for al-
gorithms and functions tailored to a particular application. The designer chooses
the parameter to be optimized, which is purely based on the application where
the design must be applied. RAM size, execution time, latency, etc., should be
determined for software implementations of a design. In contrast, area, delay,
power, throughput, etc., should be evaluated for hardware implementations to
understand how efficient a design is compared to others. Several software tools
and computer-aided design tools aid in achieving the design implementations
along with optimizing the required design parameters in the background. How-
ever, this optimization imparted by the tools may not always meet the specifica-
tions. Therefore, the designers follow several techniques to optimize the metrics,
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either at the algorithmic level, logic level, circuit level, etc., to successfully at-
tain the design functionality and standards. Targeting algorithms for hardware
implementations, among several techniques, logic synthesis is a step in the VLSI
Design flow, which converts a high-level code to a gate-level netlist. Usually, this
step is carried out by Electronic Design Automation (EDA) tools. However, sev-
eral logic synthesis approaches can be applied to the algorithms before feeding
them to the tools. This improves the design mapping with the tool libraries and
increases resource utilisation efficiency. Apart from this, the performance of the
designs is enhanced significantly. Another aspect of logic optimization is that the
techniques perform differently when the designs are aimed at ASIC or FPGA
platforms; care has to be taken by the designers while selecting or proposing
such techniques.

Functional decomposition or Boolean decomposition is one of the logic syn-
thesis methods that can be applied to logic designs constructed solely by Boolean
functions. Logic tree-based decomposition and implementation using majority
gates designed using XOR logic is proposed in [4]. In [7], it has been demon-
strated how the number of literals is reduced after the application of decom-
position techniques. An automated software-based tool popularly called ABC is
proposed in [2], which automatically minimizes the Boolean functions. Another
approach for synthesizing logic functions for optimum use of resources is given
in [6]. The re-substitution of logic functions method [14] is also one of the ap-
proaches by which the area occupied by design can be minimized. Numerous
implementations of AES (Advanced Encryption Standard) [5] S-box in software
and hardware platforms aim for different design and performance objectives. One
of the compact and high-speed implementations for AES S-box using composite
fields (using polynomial basis) was given by Satoh et al. [13]. Another archi-
tecture for AES S-box in [9] targeted low-power applications with good results.
Canright et al. [3] proposed an area-optimized S-box using both polynomial and
normal basis for composite field architectures. Again, S-box architecture was de-
signed in [17] for high-speed applications. AES S-boxes redesigned for reducing
the number of LUTs of FPGA resources were described in [11]. Recently, novel
linear transformations [10] have been proposed for the AES S-box for the en-
cryption and decryption process. This work focuses on logic synthesis techniques
applied to the composite field-based architecture of AES S-box. Its implementa-
tions are evaluated both for FPGA and ASIC platforms with the motivation to
optimize the design and performance parameters.

The remainder of the paper is organized as follows. Section 2 imparts pre-
liminary ideas on composite field arithmetic applied to the S-box architectures.
The motivation and key contribution of this work are highlighted in Section 3.
The proposed logic decomposition-based S-box architectures are illustrated in
Section 4. Section 5 explains the results of the proposed architectures compared
with the existing designs. The conclusions are drawn in Section 6.
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Fig. 1: Composite Fields for GF (28).

2 Overview of Composite Fields

2.1 Finite Field Notations

A finite field, referred to as a Galois field (GF ) [1], is included in field theory and
has a finite number of elements. The Galois field is vital in cryptography since
the data is represented here as a vector and can be permuted successfully. It
is a set onto which mathematical operations, specifically binary operations, can
be applied by predetermined rules. A finite field is said to be of order, s = rn,
where r is a prime number and n is supposed to be a positive integer number. For
example, GF (2) represents either a ’0’ or ’1’ element, whereas GF (28) comprises
’8’ binary elements. So the generic representation of finite field can be denoted
as GF (2n).

2.2 Composite Field Arithmetic applied to AES S-box Architectures

Data encryption in AES is carried out on blocks of bytes using GF (28) represen-
tation with a particular polynomial as described in [3], [15], [16]. The I/O’s of the
AES S-box are 8-bit. The S-box function is applied to an 8-bit input data, and
this substitution function has two sub-operations, i.e., the Multiplicative Inverse
(MI) of the 8-bit input and then the Affine Transformation, i.e. mathematically,
the S-box output function [16] is given by

f = Mf−1 ⊕ b (1)

where ’M ’ is the binary matrix of dimension ’8 × 8’, f−1, is the MI of the
8-bit input, and ’b’ is an 8-bit array whose combined operation gives the S-
box output. The MI unit may be effortlessly implemented using look-up tables
(LUTs). However, the LUT method of implementation on hardware consumes
more area. Therefore, composite arithmetic is used for compact implementations
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of the S-box. The composite field for GF (28) can be obtained as GF ((24)2) or as
GF (((22)2)2), where GF ((24) and GF ((22)2) are the subfields. These composite
fields are produced iteratively from the lower-order fields using certain irreducible
polynomials. Following are the equations Eq. (2-4) representing the construction
of composite fields using the subfields [16]:

GF (2) ⇒ GF (22) (2)

GF (22) ⇒ GF ((22)2) (3)

GF ((22)2)) ⇒ GF (((22)2)2) (4)

A general block diagram of this approach is illustrated in Fig. 1. In the figure,
IP0, IP1, and IP2 are the polynomials which are validated to be irreducible over
the respective subfields depending on the coefficients ’1’, ’c0’ and ’c1’. The details
of the construction of these fields can be referred from [3] and [16]. This paper
focuses on implementing MI in GF (28) using normal basis. The MI module in
GF (28) consists of other submodules: field additions, multiplications, inverse,
and modulo-2 additions that are XOR operations in the subfields. The mod-
ules follow the same hierarchy as in Fig. 1, i.e., GF (28) can be decomposed to
GF (24) then to GF (22)2) and finally to GF (2) which will serve as the basic
module to execute all the operations required to obtain the MI. The substitu-
tion boxes of AES or any other encryption algorithm can be implemented via
subfield arithmetic [3] and [13].

3 Motivation and Key Contributions

The conventional encryption algorithm AES (Advanced Encryption Standard)
[5] is a symmetric block cipher that meets several applications’ security and
privacy requirements for generalized applications. However, the size of the in-
put plaintext (128 bits) and the key (128/192/256 bits) is larger, affecting the
architecture’s area, power, and delay when targeted for resource-constrained
applications. Therefore, there is a requirement to optimize these parameters,
which is the primary motivation of the work reported in this paper. AES en-
cryption comprises four operations: substituting input with corresponding bytes
in the S-box (SubBytes), shifting of rows (ShiftRows), mixing of columns (Mix-
Columns), and generation/addition of round keys (AddRoundKey) [16]. Among
these stated operations, the byte substitution using S-boxes and inverse S-boxes
are non-linear. They play a vital role in the implementation of AES, along with
determining the security and performance of the architecture. The remaining op-
erations are linear and can be implemented with fewer resources when hardware
implementation is considered. Therefore, this work focuses on the substitution
unit in detail, which is modified due to its higher resource utilization among the
other functional units.

1. In this work, we propose efficient architectures based on functional decom-
position approaches to the AES S-box constructed using subfield arithmetic.
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Fig. 2: Architectural Representation of Logic decomposition

To be specific, we modify the multiplier module and the multiply and scale
module of the Multiplicative inverse function of the AES S-box in the GF (22)
subfield to achieve the field multiplications in GF (28).

2. We have also evaluated and compared the proposed S-boxes with the existing
architectures by constraining the design to operate at RFID frequency, i.e.,
13.56 MHz on the FPGA platform, which enables the design to be compatible
with communication and IoT applications. Such an application-based study,
to the best of our knowledge, has not been carried out before. We have also
evaluated the designs using standard cell libraries for the ASIC platform.

4 Logic Decomposition of AES Boolean Functions and
Proposed Architectures

4.1 Logic Decomposition of AES Boolean Functions

Boolean functions having more variables and a large number of literals can be
simplified by logic decomposition. This is achieved by the Shannon decomposi-
tion theorem, which helps represent a long Boolean function in terms of small
functions, a literal, or a bit. Let us consider a Boolean function with ’n’ input
variables, i.e., BF (xn, ..xi, ..x1, x0) and then consider one of the variables, xi as
constant. The resulting function can be expressed as

BFxi
= xi.BF (xi = 1) + (xi)

′.BF (xi = 0) (5)

Here, the logic functions obtained for xi = 1 are called positive cofactors,
and those obtained for xi = 0 are called negative cofactors. These cofactors are
independent of the variable xi. A common architecture for this type of decompo-
sition is shown in Fig. 2. It is observed that the constant variable(s) serve as the
select lines to the multiplexer structure. The variable to be kept fixed is decided
according to the requirement and can be single or multiple.

In this work, we have chosen the composite field architecture using a normal
basis for designing the AES S-box. The choice of the normal basis rather than
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Fig. 3: Block Diagram for Multiplicative Inverse using Normal Basis

Algorithm 1 Proposed Algorithm for Logic Decomposition of Boolean Func-
tions
Require: (xi ). //Input Variables
Ensure: ( BFxi).//Output Boolean Functions
1: nl= literal count
2: Assign xm = fv //xmϵxi, fixed variable which can be >= 1 depending on SVD/DVD
3: for All i do
4: Assign fv = ’0’
5: Compute BFx′

i
//Substituting xm=’0’

6: Assign fv = ’1’
7: Compute BFxi//Substituting xm=’1’
8: end for
9: Repeat till nl = 0/1/2 or < i

10: BFxi is optimized.

polynomial or mixed basis stems from the fact that the obtained architectures
have compact representation due to more shared factors [3]. The overall archi-
tecture of the normal basis architecture used for Multiplicative Inverse (MI)
implementation is shown in Fig. 3. The MI unit is interfaced with input and
output transformation matrices to obtain the complete AES S-box. The input
and output bits to this block diagram are 8 bits, which are further split into
4 bits and fed as input to the subsequent modules. The ⊕ and ⊗ denote the
field additions and multiplications, respectively. In Galois field arithmetic, ⊕ are
generally modulo-2 additions, which are XOR operations. The squaring, scal-
ing, and inverter units are the X2, λ, and X−1. The proposed architectures are
based on the algorithm proposed in Algorithm 1, which can be applied to any
design utilizing Boolean functions. The technique proposed is utilized for the
multiplier unit and the multiply and scale unit in GF (22) of the complete archi-
tecture shown above. In contrast, the other blocks need less hardware, like one
or two gates or only wiring, so the other blocks were implemented as it is. The
Boolean functions are derived for the multiplier in GF (22) using the Canright
architectures [3]. This block M2 has four inputs a, b, x0, x1, and one output
y, where a, b, and y are of two bits split as a1, a0, b1, b0, p and q, respectively.
While the other inputs x0 and x1 are 1-bit each. Eq. (6 - 7) are the equations
for the multiplier block, which will be further utilized for decomposition steps
and implementation in the overall architecture of the S-box.
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Fig. 4: Proposed GF (22) Multiplier Architecture using Logic Decomposition

p = (a′1 + b′1)⊕ (x′
1 + x′

0) (6)

q = (a′0 + b′0)⊕ (x′
1 + x′

0) (7)

4.2 Proposed Architecture using Single Variable Decomposition
(SVD), Psvd

In the proposed architecture, we first decompose the equation Eq. (6) using a
single variable, i.e. x1, since it is considered to be the MSB (Most Significant
Bit). The MSB can be selected as the fixed variable for a set of more variables.
So the reduced Boolean functions are derived as given in Eq. (8) and (9). The
functions px′

1
and px1

are the negative (x1 = 0) and positive (x1 = 1) cofactors
which, when combined, give the total function as shown in Eq. (5). As a result
of the decomposition, the number of functional input literals is reduced. While
designing the architecture for this Boolean function, we can observe that the
complement of Eq. (8) gives the first minterm of Eq. (9) that is shown in the
architecture of Fig. 4a. The architecture utilizes one 2:1 MUX to realize the
cofactor functions, one AND gate and a NOT gate. This reduces the number
of AND gates required when counted for the complete design. Similarly, the
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decomposed functions can be derived for q where only a1 is replaced by a0. After
determining p and q, we concatenate the two bits to obtain the final output bit
y of the multiplier.

px′
1
= (a′1 + b′1)⊕ (1 + x0) = (a′1 + b′1)⊕ 1 = a1.b1 (8)

px1
= (a′1 + b′1)⊕ (0 + x0) = (a′1 + b′1)⊕ x′

0 = (a1.b1)
′ ⊕ x′

0 (9)

4.3 Proposed Architecture using Double Variable Decomposition
(DVD), Pdvd

The approach here extends the idea of the previous Psvd design by further de-
composing Eq. (8) and (9) with two variables. In this case, x1 and x0 will be the
fixed variables, but in any other complex Boolean functions, the first two MSB
bits can be considered as the constant variables. The equations obtained after
decomposition are depicted in Eq. (8-9). We also decompose the Boolean equa-
tions for obtaining the cofactors for q and have designed their architectures. The
architectures of these functions can be designed by either using only 2:1 MUX
(MUX21) denoted as PdvdM21 or by utilizing only 4:1 MUX (MUX41) denoted
as PdvdM41. This exploration aims to establish the unique utility of these MUXes
for various requirements. Mapping these multiplexers with the FPGA resources
varies accordingly, with varying results discussed in the next section.

px′
1x

′
0
= a1.b1 (10)

px′
1x0

= a1.b1 (11)

px1x′
0
= a1.b1 (12)

px1x0
= (a1.b1)

′ (13)

The above architectures and Boolean equations were discussed for the multi-
plier unit of the overall architecture of the MI. We have also similarly designed
the multiply and scale unit but have not illustrated it here in detail since it has
equivalent architectures to the multiplier. The only difference is that the input
variables are shuffled and rearranged. We have then included both the multiplier
(M2) and scaler (Mλ) in GF (22) subfield, which are further combined with the
squarer (X2) unit to build the inverter (I4) and multiplier (M4) unit in GF (24)
as shown in Fig. 5, where the complete hierarchy of the multiplicative inverse
in GF (28) as I8 is illustrated. Then I4, M4, and the transformation matrices,
designed using multiplexers, are combined to obtain the complete AES S-box
for composite field architectures using a normal basis. The modified MI module,
which plays a significant role in the design and performance aspects, is then
substituted in the overall S-box design of the AES algorithm.
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Fig. 5: Modules Hierarchy for Multiplicative Inverse of AES S-box in GF (28)

5 Results and Discussion

The architectures described above and the complete AES S-box are designed us-
ing Verilog HDL. Initially, to show the efficiency of the proposed architectures,
we evaluated the multiplier module for SAED 90nm standard cell libraries simu-
lated using the Synopsys Design Vision tool. The synthesis results are shown in
Table. 1. It can be observed that the area evaluated in terms of gate equivalents
(GEs) and power is more for our proposed designs due to the use of multiplexers.
But our proposed architectures PdvdM21 and PdvdM41 exhibit minimized delay
of about 41 % reduction, thereby increasing the throughput of the design. The
delay referred to here is the critical path delay (CPD) of the design, which plays
a significant role in the performance of the design, affecting both the energy and
throughput performance parameters. In contrast, the architectures in [3] are de-
signed using only logic gates. We observe similar metrics when calculated for the
complete AES S-box when evaluated for 180nm standard libraries. Architectures
designed in [8] and in [12] have fewer gate equivalents when compared to our
proposed designs but have considerably high critical path delay. The best case
for PdvdM41 has a delay reduction of around 69% and 96% when compared to
[12] and [8], respectively. Also, they have not evaluated the power consumption
of their designs, which is an important performance parameter for resource-
constrained applications. Again, the CPD is reduced by 5 % for Psvd and 7 %
for PdvdM41 when compared with [3] due to the utilization of multiplexers, but
PdvdM21 gives similar CPD due to two-stage multiplexer architecture.

We then evaluated the complete AES S-box on the Nexys4 DDR FPGA plat-
form, illustrating the design parameters, area of LUTs and slices, critical delay,
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Table 1: Synthesis Results of Multiplier Architectures in GF (22)for 90nm Stan-
dard Cell Libraries

Design Area (GE) Power (mW) CPD (ns)

Canright et.al., [3] 7.95 0.08 0.12

Psvd 11.9 0.1 0.12

PdvdM21 15.96 0.2 0.08

PdvdM41 15.9 0.1 0.07

Table 2: Synthesis Results of AES S-box for 180nm Standard Cell Libraries

Design Area (GE) Power (mW) CPD (ns)

Canright et al., [3] 639 2.84 0.43

Mentens et al., [8] 272 - 10

Rashidi et al., [12] 211 - 1.28

Psvd 705 3.09 0.41

PdvdM21 694 3.02 0.43

PdvdM41 745 3.46 0.40

and power. This is shown in Table 3. The dynamic power is calculated only after
constraining the S-box design with a 13.56 MHz clock frequency. This frequency
is chosen because it is the standard frequency applicable to RFID applications
in IoT environments. All the parameters were obtained by simulating the design
in the Vivado tool, and the results were noted after the Place and Route step
of the design implementation. It is observed that the number of slices of our
proposed designs is reduced by around 18 % due to the efficient mapping of
the multiplexers with the FPGA resources as compared to the logic gates-based
design of [3]. The dynamic power consumption has been reduced by around 50
%. Also, the delay has been minimized by an average reduction of around 10 %,
thereby increasing the maximum frequency of operation by 10 %, 6 %, and 19 %
of Psvd, PdvdM21, and PdvdM41, respectively when compared to the state-of-the-
art designs. This results in increasing the throughput of the proposed designs as
well.
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Table 3: AES S-box using Composite Field Architectures on Nexys4 DDR FPGA

Design LUT (#) Slices (#) Power (W) Delay (ns) Fmax (MHz)

Canright et al., [3] 55 16 0.002 14.81 68

Psvd 40 13 0.001 13.23 75

PdvdM21 48 13 0.001 13.86 72

PdvdM41 49 14 0.001 12.35 81

6 Conclusions

This work concludes with a note that the logic decomposition-based architecture
for composite field S-box is unique, with the possibility of optimising more than
one design metric. These techniques can be applied to any logic design utilizing
complex Boolean functions. The proposed techniques reduce the number of liter-
als in the Boolean equations used to implement the AES S-box. The techniques
were applied to the multiplier and multiply and scale units in GF (22) subfield
and then substituted in the overall multiplicative inverse unit in GF (28) and
then in the complete AES S-box of Canright architecture using normal basis.
Our proposed designs were designed using multiplexers, proving them best for
FPGA-based applications, where the design metrics are optimized to their best.
Also, the designs are suitable for standard cell libraries in ASIC platforms if high-
speed applications are targeted. The proposed designs can be selectively chosen
depending on the requirement of the target applications and the availability of
the resources both for FPGA tools and standard cell libraries.
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