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Abstract— Unmanned aerial vehicles (UAVs)/Drones have 

been broadly used in modern civilization over the past few 

years due to their low cost and ease of accessibility, which has 

raised concerns about privacy and security. It needs to 

classify flying objects, such as helicopters, birds, UAV/drone, 

etc., in order to maintain a watchful eye on the invader 

UAV/drone in the restricted area. In this paper classification of 

the flying object is done using Hybrid Convolutional Neural 

Network-Memetic (CNN-Memetic) Algorithm based on Micro-

Doppler Signature (MDS) for various arrangement of radar 

array in order to verify the significance of direction of signal 

received. The evaluation is done based on data acquired from 

the radar borne on the drone by varying different 

specifications.  
Keywords—Classification, Convolutional Neural Network- 

Memetic (CNN-Memetic) Algorithm, Micro-Doppler Signature 

(MDS), Radar.  

I. INTRODUCTION  

Unmanned aerial vehicles (UAVs) are stimulating industries 

all over the world. By outfitting drones with cutting-edge 

devices like GPS, radar, cameras, and lidar, drone 

technology is constantly developing. Their wide use in 

photography, mapping, agriculture, transportation, military 

surveillance, and leisure activities are only some of their 

many applications. Despite the useful uses of drones, there 

is an increasing amount of misuse of drones that is being 

reported on a global scale [1]. 

    Drone usage presents serious security, privacy, and safety 

risks. Globally, the usage and management of drones has 

faced regulatory problems in recent years. Although there 

are some worldwide guidelines regarding the use of drones, 

these regulations still need to be developed using various 

technologies that could be used to improve their application. 

assisting in the detection and enforcement of any violations.       

Drone study and development are entering a new age thanks 

to the harmful use of drones. The process of determining the 

use or occurrence of drones through the strengthening of 

technology is known as drone detection and is frequently 

referred to as an anti-drone method. The majority of the 

methods for detecting drones that have been recognized in 

recent years use algorithms grounded on modes like sound, 

micro-Doppler Signature (MDS), vision, and Radio 

Frequency (RF) signal. Radar sensors continue to be a vital 

part of drone scrutiny systems [2]. As is well known, this 

method is fundamentally based on the electromagnetic 

principle of backscattering, which ensues when a radar 

beam illuminates an object. The key challenge for tiny 

drones is that its radar cross section is low because of which 

probability of detection decreases. As a result, novel radar 

setups have been designed to analyse MDS by utilising 

backscatter from moving objects such as propellers and 

rotors. The detection problem has been discussed in a few 

works as a component of a larger classification problem [3]. 

A micro-Doppler-based approach is suggested in [3] to 

identify and categorise drones without the use of CFAR 

statistic synthesis. The utilisation of a sensor network made 

up of inexpensive radar sensors allows for the detection and 

differentiation of drones from other target types that are 

prevalent in metropolitan settings. Data is gathered using a 

multistatic radar system (NetRAD) in [4], a follow-up study 

to [5]. In [6] static array of HB100 radar is used for 

categorizing flying object based on MDS with hybrid 

Convolutional Neural Network-Memetic (CNN-Memetic) 

Algorithm. This work is an extension of the previous work 

in a dynamic situation, where the array of radar is placed on 

the UAV. Different configurations of the radar array 

mounted on a UAV, such as the Uniform Linear Array 

(ULA) and the Uniform Rectangular Array (URA), are used 

to categorise flying objects. As the object is being classified 

on a moving platform, the effects of different orientations or 

placements of the radar antenna array are examined. For the 

experimentally obtained data from three different flying 

objects (Drone, Helicopter, Artificial Bird), the accuracy of 

CNN-Memetic algorithm is assessed using HB100 radar 

placed on UAV utilising different array configurations, i.e., 

ULA and URA.       

The rest of the paper is organized as follows. Section II 

contains the description of the dataset Section III, contains 

the explanation of the hybrid CNN-Memetic algorithm. 

Section IV contains the results and discussion and finally, 

section V concludes the work.   

II. DATASET DESCRIPTION 

Fig. 1 shows the block diagram of the experimental setup 

for locating the flying object. The micro-Doppler effect of 

flying objects (such a bird, a helicopter, or a drone) is 

recorded by HB100 radar placed on a UAV. After capturing 

the micro-Doppler effect from the designated objects, the 

transmitted signal returns to the radar and is available at the 

IF terminal of the device. The radar is linked to the amplifier 

circuit to strengthen the signal because its output is in 

microvolts. The amplifier circuit’s output is connected to the 

Zigbee module in order to transmit the data to the Personal 

Computer (PC) for further processing in MATLAB. λ/2 is 

considered as the spacing because it has the ideal mutual 

coupling between the antenna elements since < 0.3λ inter-



element spacing affects the directivity of antenna array and 

degrades the performance of the system [7]. 20000 samples 

were collected, where 7500, 7500, and 5000 are collected 

from drones, helicopter and artificial bird, respectively for 

ULA and URA arrangement mounted on UAV and at three 

different angles 0°, 30° and 45° individually. So, the total 

collected samples were 120000. Finally, attributed to the 

experimental setup, in order to detect the object, UAV 

mounted radar was at a distance of 15 m with a speed of 25 

m/s. Fig 2 - 7 shows the representation of the experimental 

setup. The artificial bird dataset collection utilising the ULA 

and URA HB100 radar configuration is shown in Fig 2 and  

and 3. The dataset for the drone employing the ULA and 

URA configuration is shown in Fig 4 and 5. The collection 

of helicopter datasets employing ULA and URA setups is 

shown in Fig 6 and 7. 

 

 
Fig. 2: Experimental set up for Artificial Bird with ULA 

arrangement 

 

 
Fig. 3: Experimental set up for Artificial Bird with URA 

arrangement 

 

 
Fig. 4: Experimental set up for Drone with ULA 

arrangement 

III. HYBRID CNN-MEMETIC ALGORITHM 

In this section CNN-Memetic Algorithm [6] is used to 

extract flying object categorization features from real-time 

data collected by the experimental setup through the radar-

based data obtained from the moving platform (i.e., UAV 

mounted radar). The algorithm is depicted in Algorithm 1. 

 
Fig. 5: Experimental set up for Drone with URA 

arrangement 

 
Fig. 6: Experimental set up for Helicopter with ULA 

arrangement 

Fig.1. Block Diagram  



 
Fig. 7: Experimental set up for Helicopter with URA 

arrangement 

 

 

Algorithm 1 Hybrid CNN-Memetic Algorithm 

1: Initialize the number of filters and its size, for � and � 

     number of iterations and generations respectively. 

2: Randomly initialization of population of weight � 

                � =  ��, �	, . . . , �� 

3: for ℎ =  1 �� ������ 

4:        for � =  1 �� � 

5:               Evaluation:  

                     (a) CNN: 

                          for � = 1 to 6 

                          Convolution: � =  �� . � +  � 

 

                          ReLU: �� = �0 ��� ≤  0
� ��� >  0 

                          Pooling: " =  �#$(&′) 

                          end for 

                     (b) Output Prediction: TP, TN, FP, FN 

 (c) Fitness Function: Calculate the accuracy  

using (13) in [6]. 

                             )(�)  =  [++�(�), ++	(�), . . . , ++�(�)] 
6:         end for 

7: Selection: - ./0123 =  [-�(�), . . . , -4(�)] 
8:Crossover: 

- 5 =  [-�(��(67)), -	(��(68)), . . . , -4(��(69:8))] 
9: Local Search: 

             (a) ;< = reshape(��) (Convert matrix to vector) 

            (b) ;�.4=>  = �� (randperm(length(��)))(shuffle 

                                    randomly the weight vector) 

10: Mutation: ;<2? = @[;�.4=>] 

                �� = reshape(;<2?) (Convert vector to matrix) 

11: end for  

 

 
 

Fig. 8: Confusion Matrix for ULA arrangement at 0° 

 
Fig. 9: Confusion Matrix for ULA arrangement at 30° 

 

 

 
 

Fig. 10: Confusion Matrix for ULA arrangement at 45° 

 

 
Fig. 11: Confusion Matrix for URA arrangement at 0° 

 

 
 

Fig. 12: Confusion Matrix for URA arrangement at 30° 

 

 
 

 

Fig. 13: Confusion Matrix for URA arrangement at 45° 

 

 



 

Firstly, the filter weights are generated randomly with 

known weights and considered as initial population. The 

MDS data of flying object is passed through the 

convolutional layer same as in [6]. Followed by the max 

pooling and ReLU is considered as the activation layer.  

 

 

 

 

 

 

 

Based on the fitness function (FF) sorting is done until the 

required number of parents are required. Crossover is 

performed in the weight matrix to search locally. Then with 

the new configuration of the population called mutation, 

accuracy is analysed until the maximum number of 

iterations. 

 

               

 
 

 

 

 

 

Batch Iterations                   0°                 30°                  45° 

ULA URA ULA URA ULA URA 

32 100 63.4% 85.4% 88.1% 85.8% 89.61% 86.8% 

32 250 70.59% 86.04% 88.5% 86.2% 90.03% 87.2% 

32 500 72.76% 90.83% 93.4% 91.04% 93.43% 91.7% 

32 1000 76% 91.6% 94.2% 91.8% 95.2% 92.4% 

64 100 77.6% 91.9% 94.5% 92.1% 95.7% 93.01% 

64 250 78.72% 92.09% 95.3% 92.8% 96.01% 93.1% 

64 500 81.3% 94.04% 96.6% 93.08% 97.11% 93.36% 

64 1000 83.24% 94.22% 96.72% 93.7% 97.2% 94.03% 

128 100 83.5% 94.4% 96.81% 94% 97.41% 95.04% 

128 250 83.8% 94.72% 97% 94.1% 97.53% 95.09% 

128 500 84% 95.26% 97.6% 95.06% 98.06% 95.2% 

128 1000 84.04% 95.14% 97.23% 95.01% 96.74% 95.06% 

Batch Iteration ULA URA 

MR=0.01 MR=0.1 MR=0.01 MR=0.1 

   0°               30° 45°    0°               30° 45°    0°               30° 45°    0°               30° 45° 

32 100 60.2

% 

87.7

% 

88.9

5% 

63.7

% 

88.1

% 

89.6

1% 

84.32

% 

85.78% 86.43% 85.4% 85.8% 86.8% 

32 500 63.7

6% 

92.77

% 

93.3

5% 

72.76

% 

93.4

% 

94.4

3% 

85.35

% 

86.9% 87.45% 90.83% 91.04% 91.7% 

64 100 69.5

9% 

94.46

% 

95.6

7% 

77.6

% 

94.5

% 

95.7

1% 

86.09

% 

87.58% 88.4% 91.9% 92.1% 93.01% 

64 500 75.0

9% 

96.4

% 

96.0

3% 

81.3

% 

96.6

% 

97.1

1% 

87.49

% 

88.09% 89.4% 94.04% 93.08% 93.36% 

128 100 80.0

7% 

96.73

% 

97.1

4% 

83.5

% 

96.8

1% 

97.4

1% 

88.03

% 

89.53% 90.11% 94.4% 94% 95.04% 

128 500 82.6

% 

96.07

% 

97.0

6% 

84% 97.6

% 

98.0

6% 

89.68

% 

90.47% 91.27% 95.26% 95.06% 95.2% 

Table. 1. Classification accuracy based on Batch size with various iterations for experimental dataset 

Table. 2. Classification Accuracy based on Mutation Rate (MR) for experimental dataset 
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Table. 3. Classification Accuracy based on Initial population size for experimental dataset 

 



 
Fig. 14: Classification Accuracy for Batch Size=128 at 

various angles 

IV. RESULT AND DISCUSSION 

MATLAB 2022b software is used to analyse the MDS data. 

The suggested approach is used to train the MDS datasets in 

order to determine classification accuracy. The dataset is 

divided into 70:30 with 50 epochs for training and testing. 

Initially, the weights are considered at random. The 

confusion matrix depicted from Fig 8-13, as well as the 

impact of the original population and MR, are evaluated for 

assessing classification accuracy. The MR is the number of 

times the response must be modified in order to produce the 

new progeny, i.e., a more correct result. The mutation is 

preferred in order to minimise trapping at a local minimum. 

Mutation following crossover and local search increases 

variety and prevents premature convergence. The mutation 

rates of 0.01 and 0.1 were used in the analysis. 

   Table 1 represents the classification accuracy based on the 

batch size. For evaluation three batch sizes are considered 

i.e., 32, 64, and 128 with various iterations, targets located 

at 0°, 30°, and 45°. It became apparent that towards the end- 

fire direction, i.e., 0°, ULA configuration accuracy is more 

acute than in other directions, i.e., 30° and 45°. Whereas 

URA excels in the end-fire direction. This is due to the fact 

that in ULA, all of the elements of the antenna do not 

operate evenly. It makes better use of edge components. As 

a result, is not treated equitably. This restricts the ULA’s 

field of view. It is unable to identify or detect adequately 

from all angles. URA, on the other hand, has a symmetry 

array construction, therefore the field of view is nearly 360 

degrees with no variation in beamwidth or sidelobe level. 

An additional finding is that as the assortment of batch sizes 

increases, so does the accuracy up to 128 batch sizes and 

500 iterations, after which the accuracy declines in all 

circumstances. At 128 batch size (500 iterations), this 

experimental analysis achieves greater accuracy. This is due 

to the proposed algorithm’s weight being updated both 

locally and globally. 

Then, different values of the MR are used to analyse the 

accuracy, such as MR=0.01 and 0.1. From Table 2, it can be 

shown that classification accuracy is higher at MR=0.1 than 

it is at MR=0.01. After crossover, mutation is crucial in 

creating variety in the search space and allowing for further 

exploration. Accuracy is poor at MR=0.01, possibly as a 

result of the early convergence. Premature convergence may 

be avoided by high MR in order to obtain good accuracy.  

Similar to Table 1, Table 3 analyses the effect of initial 

population size from several perspectives. There are three 

various population sizes taken into account, including 

PS=25, 50, and 60. According to Table 3, the initial 

population size of 50 offers the best accuracy in every 

situation. Accuracy for PS=25 is lower than PS=50 or 

PS=60. The lack of diversity in the search space is to blame 

for this. The difficulty of classification rises with population 

size, resulting in lower accuracy at PS=60 than PS=50.  

Comparison is done for the CNN-Memetic Algorithm with 

the existing algorithms as depicted in Fig. 14. It is observed 

that CNN-Memetic Algorithm outperforms in all the 

scenarios mentioned above. The best accuracy obtained is 

95.26 % (URA 0°), 97.6% and 98.06% (ULA 30° and 45° 

respectively) at PS =50, and batch size =128 at 500 

iterations. From the analysis it could be said that CNN-

Memetic Algorithm is robust in both static [7] and dynamic 

condition for classification of flying object. 

V. CONCLUSION 

The intruder surveillance system in the restricted region 

depends on the classification of the flying object. With 

respect to this application, the CNN-Memetic Algorithm, 

which performs better than the existing algorithms, is used 

to classify the flying object. The experimental evaluation is 

conducted for both ULA and URA towards the various 

directions, with URA performing better in the 30° and 45° 

and ULA performing better in the end-fire direction 0°. The 

CNN-Memetic Algorithm is reliable for classifying flying 

objects in both static as well as dynamic data acquisition 

conditions. 
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