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Abstract—Some environmental factors like haze or fog de-
grades the quality of the image. These factors affect some
real time processes such as object detection and recognition,
automated vehicles and remote sensing which needs clear visible
images for making critical decisions. Therefore, restoring the
true image from the foggy image becomes significant. Now with
the advancement in image processing, many image defogging and
dehazing algorithms has been developed to improve the quality of
the image. Many standard filtering techniques such as high boost
filter, homomorphic filter can be used for image defogging but
it fails to restore the foggy images completely so some advanced
techniques like dark channel prior, decomposition techniques,
convolution network-based algorithms are used. Image quality
assessment (IQA) is done to measure the quality of the defogged
image. These performance metrics mainly includes mean squared
error (MSE), structural similarity index metric (SSIM),peak
signal to noise ratio (PSNR).

Index Terms—defogging, image enhancement, dark channel
prior (DCP), convolution neural network (CNN), sparse gradient
minimization (SGM), atmospheric scattering model (ASM).

I. INTRODUCTION

The most frequent atmospheric phenomena are haze and
fog. They both absorb and disperse the reflected light as well
as the ambient light that is directed towards the camera [11].
Physical or non-physical are the most widely used types of
model to improve the image quality. Three sorts of image de-
hazing algorithms exist: image enhancement, image restoration
and learning-based. Image quality is mostly improved through
image enhancement techniques in accordance with the image
information. It is based on non-physical model. It uses a vari-
ety of methods, including CLAHE, histogram analysis, and im-
age filtering. Image restoration is a representation of a physical
model where the problem is solved by applying an atmospheric
light scattering model after taking into account the cause of
the degradation. A single image haze removal method utilising
the DCP algorithm was proposed by He et al [8]. Using the
atmospheric scattering model, they calculated the ambient light
and the transmittance map and finally produced the recovered
image. This approach is efficient, but the recovered image will
exhibit severe colour distortion for images with huge white
spaces, like sky or snow. KeYan Wang et al [7] employed
a sky detection and segmentation technique to partially de-
fog the sky region. However colour distortion persisted in
some regions of the defogged image due to border restrictions

and regularisation of the transmission map. Although the
aforementioned conventional image defogging techniques have
advanced greatly and produced excellent results, many of
them depend on different prior knowledge. There is a high
chance of getting inaccurate results. These issues are addressed
utilising a range of deep learning-assisted techniques that
recreate high-quality de-hazed images using end-to-end learn-
able networks. For a single foggy image reconstruction, Li
et al. [8] offered a learning-based method. They collectively
approximated the ambient light and the transmission map by
using a combined CNN and an atmospheric scattering model.
Multi scale convolution neural networks were used by Cai et
al [14] to determine the transmittance pattern of the hazed
image and learn the hazy features. They then did the inverse
operation on the fog-free image. Since the data-set was a
localized image after cutting and the network’s characteristics
lacked global representation, the defogged image only showed
partial defogging. AOD network is a learning-based defogging
technique that builds defogging maps from fog maps in a
single process while also using CNN to estimate ambient light
and transmittance of the hazy images, as proposed by Li et al.
[8]. The quality of the recovered pictures was hampered by the
network model’s shallow topology and inability to effectively
grasp the attributes of the hazy images. Overall, these learning-
based methods demonstrated exceptional performance for im-
age dehazing issues. However, some of them were developed
using artificial hazy data, which has drawbacks when applied
to real-world hazy pictures and some of them also raises the
overall computing cost and complexity. Our suggested tech-
nique differs from the current deep learning-based approaches.
The first component is a sparse gradient minimization (SGM)
module, which boosts contrast and maintains edges in the
recovered image. This is combined with the ASM and CNN
architecture which approximates both the transmittance map
and the dark channel. This lowers the overall computational
cost and complexity. The remaining of the paper is structured
as follows. In section II, SGM is employed as a pre-processing
step, and we then go over the atmospheric scattering model
and the CNN-based architecture that were both used in this
study. Section III provides a description of the data-set used,
the results, and a comparison of performance metrics. We give
our final conclusions in section IV.



Fig. 1. Block diagram of the proposed learning based method.

Fig. 2. Darknet architecture

Fig. 3. Transnet architecture

II. PROPOSED METHOD

In this section, first a sparse gradient module is explained
followed by the scattering model and finally the CNN based
architecture used for dark channel and transmission map
optimization is described. Figure 1 displays the suggested
method’s overall block diagram.

A. Sparse Gradient Minimization

Sparse gradient minimization’s key contribution is to limit
the discrete number of intensity variations between nearby
pixels, which logically connects to the L0 norm for infor-
mation sparsity search. It mainly preserves the major edges
and removes the low amplitude structures [15]. The input
discrete signal is represented as i and the smoothed output as
y. The approach counts discrete amplitude changes, denoted
as

c(y) = #{x| |yx − yx+1| ≠ 0} (1)

where x and x + 1 are nearby samples. A gradient with respect
to x is represented by the forward difference |yx − yx+1|.
The counting operator # results the number of x that satisfy

|yx − yx+1| ≠ 0. The related objective function is expressed
as:

miny

∑
x

(yx − ix)
2 subject to c(y) = q (2)

The expression c(y) = q denotes that the result has q non-
zero gradients. Equation (2) has a great deal of capability
for structural information abstraction. A bigger q results in
a closer approximation that yet captures the most pronounced
contrast. In real-world situations, the value of q in equation
(2) could vary from tens to thousands. In order to manage it,
we use a generic form shown in equation (3) to try to strike
a compromise between flattening the structure and producing
results that are similar to the input.

miny

∑
x

(yx − ix)
2 + λ.c(y) (3)

where c(y), which is actually a smoothing parameter, is
directly controlled by the weight λ. The result has extremely
few edges when λ is large. This optimization problem is
solved using a unique optimization technique that involves the
introduction of auxiliary variables [15].



Fig. 4. Sample images each from MRFID, BeDDe and HazeRD data-set and their SGM smoothed image and final defogged image respectively.

B. Dark Channel Prior

Dark channel prior algorithm is the basic mathematical
model for image defogging. In DCP algorithm, a minimum
filter of window size 15 is used to obtain the DCP image.

IDark = min
w∈Ω(x)

(minC∈(R,G,B)(I
C)) (4)

I(dark) is the obtained dark channel, I(c) is the pixel inten-
sity value of individual channels of image I, c is the individual
color channel of RGB. The greatest intensity value in each
colour channel is individually determined from the locations
of the 0.1% pixels of highest intensity for the purpose of
calculating ambient light. These three RGB channel intensity
values are used to represent ambient light A. The initial
transmittance map is calculated by normalising the scattering
model equation and applying the minimum filter as shown by
the following equation.

t(x) = 1− f
1

3
(

3∑
C=1

IC

AC ) (5)

Where f is the correction factor set between [0,1] which
makes the image look more natural, I is the input blurry
image, while A is the ambient light. For the refinement of
the transmittance map, a guided filter has been used. This
dark channel and transmission map is optimized using CNN

architecture which is discussed in the next subsection. Finally,
the reconstructed image is estimated by the DCP model
equation.

I(x) = J(x)t(x) + (1− t(x))A (6)

Where I(x), A, t(x) and J(x) denotes the input foggy image,
ambient light, transmission map and defogged image respec-
tively.

C. CNN based Architecture

Most of the CNN based architecture developed in this field
tries to optimize the combined atmospheric light and transmis-
sion map, however here we have developed two CNN based
architectures called Darknet and Transnet shown in figure 2
and 3 to optimize initial dark channel and transmittance map
obtained from atmospheric scattering model.

Convolution layers:The filters or the kernels that are con-
voluted with the input feature maps make up this layer. Only
one filter of size 1x1 is present in the final convolution layer;
all other layers have nine filters of size 7x7.

Pooling Layer: With a stride of 2, the pool size used for
this layer is 2x2. This layer largely keeps the crucial data
while lowering the parameters, dimensions and resolution of
the feature maps.



Transposed Convolution Layer: It slides the input over the
kernel and conducts element-wise multiplication and summa-
tion in place of sliding the kernel over the input and conducting
these operations. All these layers contain 9 filters of size 7x7.

Batch Normalization Layer: It normalizes a small batch
of all the data. Between convolution layers and non-linear
activation functions, this layer speeds up convolution neural
network training.

Regression layer: The regression layer computes the half
mean squared error loss for regression problems.

III. RESULTS

Several data-sets have been used to test the proposed ap-
proaches. To start, foggy images from the Multiple Real-World
Foggy Image data-set (MRFID) [3] are used. The clear and
hazy MRFID images cover 200 outdoor scenarios. Benchmark
Data-set (BeDDe) for dehazing Assessment [6] is another
natural data-set included in this study. The BeDDE has 208
pairs of natural pictures, each of which mainly consists of a
naturally blurred image and a clear reference image. Lastly, we
used a synthetic data-set named HazeRD to test the suggested
method. To test dehazing techniques, fifteen different real-
world outdoor images with artificial haze in five different
weather settings are included in the Haze Realistic Data-set
[9]. The input foggy image from each of these three data-sets
is shown in Figure 4, along with the smoothed output produced
by applying SGM and the corresponding defogged result. It
can be observed that the suggested technique recovers a haze-
free image while maintaining every semantic of the original
image.

A. Quantitative Analysis

Various authors adopted various criteria to assess their
findings. Table. 1 shows the quantitative analysis with different
parameters measured on images from HazeRD synthetic data-
set and Table.2 shows the same for MRFID natural data-set. It
can be observed from the tables that our proposed SGM with
CNN architecture method gives better PSNR, SSIM and RMS
Contrast as compared to various other methods listed. Here
higher values of RMS contrast corresponds to more contrast. A
popular objective statistic for evaluating images is PSNR. Less
distortion occurs as the PSNR value increases. A reference
image that is initially distortion-free serves as the basis for
the SSIM index. The general principle is that as the SSIM
value increases, the image becomes less distorted.

TABLE I
AVERAGE PSNR, SSIM AND RMS CONTRAST VALUES OF VARIOUS

METHODS ON HAZERD DATASET.

Method PSNR SSIM RMS Contrast
DCP [29] 18.53 0.8337 18.42
AOD-Net [29] 19.69 0.8478 19.84
VMD [1] 23.24 0.9172 16.97
Proposed method 30.85 0.9285 26.04

TABLE II
AVERAGE PSNR, SSIM AND RMS CONTRAST VALUES OF VARIOUS

METHODS ON MRFID DATASET.

Method PSNR SSIM RMS Contrast
DCP 12.36 0.344 9.43
AOD-Net 16.84 0.6253 15.27
VMD 14.16 0.5923 14.25
Proposed method 22.77 0.8197 19.69

IV. CONCLUSION AND FUTURE SCOPE
The proposed work produces better and faster results than

traditional DCP and some other methods like VMD. The
performance metrics like PSNR and SSIM and RMS contrast
has also improved. Once the network is trained, it produces
the defogged output in 8.07s as compared to 99s from DCP
based method and 86s from variational mode decomposition
method [1]. The method can be further optimized more to
produce result in lesser time.
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