
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 

Design and FPGA Implementation of an Efficient 
Architecture for Noise Removal in ECG Signals 

Using Lifting-Based Wavelet Denoising   
 

Anusaka Gon  
Department of Electronics and Communication Engineering 

National Institute of Technology Rourkela 

Rourkela, India 
anusaka_gon@nitrkl.ac.in

Atin Mukherjee 
Department of Electronics and Communication Engineering  

National Institute of Technology Rourkela 

Rourkela, India 
mukherjeea@nitrkl.ac.in 

Abstract—Noise removal is the most crucial pre-processing 

step for present-generation biomedical wearable 

electrocardiogram (ECG) patches and devices to provide 

efficient detection and monitoring of cardiac arrhythmias. This 

paper proposes a hardware-efficient and multiplier-less FPGA-

based ECG noise removal architecture based on lifting-based 

wavelet denoising that employs a universal threshold level-

dependent function in combination with soft thresholding to 

produce a noise-free ECG signal. The paper also proposes a 

modified lifting-based discrete wavelet transform (DWT) 

algorithm that is multiplier-less and provides a one-step 

equation for the calculation of the forward output coefficients 

and the inverse output coefficients. Since a comparator circuit 

is a very complicated circuitry in VLSI implementation, an 

optimized median calculation and soft thresholding block with 

no compare operations for wavelet-based thresholding is 

proposed. The ECG data is collected from the MIT-BIH 

arrhythmia database and the ECG noises from the MIT-BIH 

noise stress database. The proposed denoising technique for the 

ECG signal is tested on MATLAB which achieves an average 

improvement in SNR of 7.4 dB and an MSE of 0.0206. The 

FPGA implementation is performed on the Nexys 4 DDR board, 

and the proposed wavelet-based denoising architecture results 

in lower hardware utilization and a relatively high operating 

frequency of 166 MHz when compared to existing ECG 

denoising architectures. 
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I. INTRODUCTION  

The electrocardiogram (ECG) is a non-invasive standard 
technique for capturing electrical impulses in the heart using 
12-leads, and it is also the most effective medical tool for 
determining heart health. In today's generation of medical 
advancements, wearable and remote biomedical electronic 
devices like ECG patches or devices have simplified the 
standard method of acquiring ECG in care units to at-home 
ECG data monitoring, detecting abnormal heart rhythms and 
cardiac arrhythmias. Such devices employ a range of signal-
processing techniques to provide real-time ECG monitoring 
and efficient arrhythmia detection. Wearable ECG devices or 
mobile cardiac telemetry (MCT) patches are mostly small 
portable devices that require hardware-efficient signal-
processing algorithms to provide cardiac monitoring. The 
most significant steps in such ECG devices are noise removal 
and the detection of QRS and R-peaks to provide any kind of 
cardiac arrhythmia detection. The noises associated with an 
ECG signal can be categorized into two parts, the first being 
the high-frequency powerline interferences (PLI) with a 

frequency of 50-60 Hz and the second being the low-
frequency noises namely the baseline wander (BW) with a 
frequency range of 0.5-0.6 Hz and the motion artifacts (MA) 
with a frequency range of 10-30 Hz. The removal of the ECG 
noises plays an important role in pre-processing as these 
noises can lead to misinterpretation of the ECG features which 
can further degrade the efficiency of arrhythmia detection.  

Related research work on ECG noise removal includes 
different signal processing techniques like conventional 
filtering using low-pass, high-pass, and notch filters [1], 
adaptive filters [2], empirical mode decomposition (EMD) 
[3], and wavelet transform [4]. Conventional filtering 
techniques suffer from signal leakage, resulting in the loss of 
ECG features in the stop band. The adaptive filters work by 
eliminating noise with a reference signal that is correlated with 
the original signal. The requirement of the reference signal is 
not very suitable for real-time applications, and adaptive 
filtering techniques suffer from high computational 
complexity due to their feedback paths. EMD suffers from the 
mode-mixing problem, which occurs when a particular 
decomposition level contains frequency components from 
other decomposition levels, making it difficult to estimate the 
frequency range of the decomposition levels [5]. Denoising 
using wavelet transform works well not only with the removal 
of all kinds of noises but also with simultaneous R-peak and 
QRS detection. The output signal from the above-mentioned 
denoising techniques especially the adaptive filters and 
conventional filtering requires complex signal processing 
techniques that needs extra processing steps like derivative, 
squaring, etc to intensify and detect R-peak and the QRS 
complex in the ECG signals. The R-peak detection technique 
in [6] uses five stages including pre-processing using a band-
pass filter and subsequent processing with differentiation and 
Shannon energy envelope. The resulting hardware utilized is 
extremely high because of the use of so many signal-
processing techniques. Kalman filtering and adaptive 
thresholding are used for QRS complex detection which 
results in a good detection rate but utilizes large amounts of 
registers and LUTs [7]. In terms of noise-removal in ECG 
signals, the wavelet packet transform and wavelet-based 
thresholding are used in [4] and implemented using MATLAB 
Simulink. Area overhead is quite high in [4] since the noise-
removal architecture is not optimized and includes complex 
arithmetic operations. On the other hand, the use of the 
canonical signal decomposition (CSD) technique to 
implement the DWT filter in [8] results in zero multipliers and 
low resource utilization. ECG signal denoising using a 
wavelet-based thresholding technique will offer an efficient 
pre-processing stage with efficient hardware requirements. 



This paper aims to design an efficient, and optimized 
wavelet-based noise-removal architecture for the ECG signal 
that can be used as a pre-processing step for MCT and 
wearable cardiac monitoring devices. The proposed noise-
removal algorithm is simulated in MATLAB which results in 
an average improvement in SNR of 7.4 dB and an average 
MSE of 0.0206. The resulting architecture from the proposed 
noise-removal algorithm is implemented in VIVADO using 
Verilog-HDL and verified on the Nexys 4 DDR FPGA board. 
The proposed FPGA-based ECG noise-removal architecture 
consists of a modified lifting-based forward and inverse DWT 
algorithm for signal decomposition that is multiplier-less, a 
median calculation block that employs an optimized and 
multiplier-less sorting algorithm to calculate the threshold 
value using the universal level-dependent technique and a 
soft-thresholding technique that does not involve any compare 
operations. The CSD method is adopted to make the complete 
architecture multiplier-less and hardware-efficient. 

The remaining paper is arranged as follows. A description 
of the lifting-based DWT and wavelet-denoising technique is 
shown in Section 2. The proposed MATLAB algorithm for the 
ECG signal noise-removal using the wavelet denoising 
technique and the FPGA implementation of the denoising 
architecture are described in Section 3. Section 4 describes the 
results obtained from the MATLAB and FPGA 
implementation and their comparisons with the existing noise-
removal techniques for the ECG signal. The conclusion of the 
paper is reported in Section 5. 

II. LIFTING-BASED WAVELET DENOISING TECHNIQUE 

A. Lifting-Based DWT 

In wavelet transform, a signal can be analyzed at different 
frequency resolutions using a mother wavelet, whose 
characteristics should correlate to that of the original signal.  
DWT has the unique property of preserving both the time and 
frequency component in a signal and hence is a very suitable 
technique for the non-stationary ECG signal. The 
conventional DWT architecture consists of two sets of filters 
to perform signal decomposition namely the high-pass filter 
with a downsampling operation to produce the detailed 
coefficients (D) and the low-pass filter with a downsampling 
operation to produce the approximation coefficients (A). 
Similarly, for the inverse DWT, the detailed and 
approximation coefficients are upsampled and added to 
produce the reconstructed signal. In Fig. 1 the architectures of 
the forward and inverse DWT are shown where ym refers to 
the input signal and y�� refers to the reconstructed signal. The 
standard DWT is considered inefficient because of the 
downsampling operation that is performed after filtering 
resulting in a loss of half of the output coefficients. The lifting-
based DWT is termed as the second-generation wavelet-based 
signal processing technique which overcomes the inefficiency 
of the standard DWT by splitting the input signal into odd and 
even parts and then employs a polyphase matrix of the filter 
bank to produce the output coefficients. In this work, the 
Daubechies 2 (db 2) wavelet is used for signal decomposition 
because of its similarity in characteristics with the ECG signal. 
In [9], a complete description of the working of the lifting-
based DWT using the polyphase matrix of the filter bank is 
given and a brief description is shown in Fig. 2. Fig. 2 shows 
the lifting-based DWT which consists of four steps, first is the 
split step which separates the input signal into its even and odd 
parts, the predict and the update steps which are obtained after  

 

 

 

 

 

 

 

 

 
Fig. 1. Architecture of (a) Forward DWT and (b) Inverse DWT 

 

 

 

 

 

 

Fig. 2. Architecture of Lifting-Based (a) Forward DWT and (b) Inverse 
DWT 

factorizing the polyphase matrix associated with the wavelet 
filter bank using the Euclidean algorithm, and scaling step. 
The db 2 forward lifting-based DWT equations to obtain the 
approximation and the detailed coefficients are as follows [9]: 

                                   ��� = �	�
� − √3�	�                                 (1) 

                     ��� = �	� + √3 4� ��� + √��	� ��
��                         (2) 

                                         ��	 = ��� + �����                                     (3) 

                                             �� = √�
�√	 ���                                         (4) 

                                            �� = √���√	  ��	                                         (5) 

And, the db 2 inverse lifting-based DWT equations to 
obtain the reconstructed signal are as follows: 

 

                                ��	 = √�
�√	  ��                                       (6) 

                                  ��� = √���√	 ��                                  (7) 

                                ��� = ��	 − �����                                  (8) 

               ��	� = ��� − √3 4� ��� − √��	� ��
��                      (9) 

                            ��	�
� = ��� + √3��	�                            (10) 

where ��� , ���  and ��	  are the intermediate values, ��  and  ��  are the obtained detailed and approximation 
coefficient, ��  indicates the input signal, the even and odd 
parts of the input signal is described as �	�  and �	�
� 
respectively, ��� indicates the reconstructed output signal and 
m is the size of the input signal. 
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B. Wavelet-Based Denoising Technique 

Wavelet-based denoising approach is based on the concept 
of applying thresholding to the required number of 
decomposition levels to suppress or remove the noise 
component in a signal while preserving the signal of interest. 
Donoho and Johnson proposed two types of thresholding 
techniques namely hard thresholding (HT) and soft 
thresholding (ST) [10]. ST is preferred over HT because in HT 
the signal coefficients below the threshold value are directly 
replaced by zero. HT leads to a loss of signal of interest, 
especially at the finer decomposition levels [11]. The ST is 
defined as [10]: 

                  ���(�) = � � −    !" � >  � +     !" � < − 0          !" |�| ≤  (                       (11) 

where λ refers to the threshold value and D are the detailed 
coefficients. The value of the threshold, λ for the wavelet-
denoising method is calculated using the universal threshold 
level-dependant function. There are different ways to 
calculate the threshold value using various threshold functions 
[12]. In this paper, the universal threshold level-dependent 
function is considered because it is low in complexity and is 
directly proportional to the number of samples at a selected 
decomposition level. According to the universal threshold 
level dependant function, λ is defined as: 

                               ) = *)+2-./0)                                 (12) 

where n is the number of samples at a selected decomposition 
level, j and 

                                   *) = 1234.67�8                                     (13) 

where MAD refers to the median absolute deviation and is 
estimated using: 

               9�� = :;�!<0=>�) − :;�!<0(�))>?                    (14) 

III. PROPOSED METHODOLOGY FOR ECG DENOISING 

A. Proposed MATLAB Algorithm for ECG Noise Removal 

Using Lifting-Based Wavelet Denoising Technique 

In this paper, the ECG data are collected from the MIT-
BIH arrhythmia database (mitdb) which has a 360 Hz 
sampling frequency [13]. Fig. 3 shows the block diagram of 
the proposed lifting-based wavelet denoising technique. The 
noisy ECG signal is produced by adding MA and BW noise 
from the MIT-BIH noise stress database (nstdb) [14] with the 
PLI of 60 Hz sinusoidal noise. The frequency range of the 
ECG signal is 0.5-100 Hz, the PLI has a frequency of 60 Hz, 
and the MA noises have a frequency range of 10-30 Hz, so the 
detailed coefficients D (90-180 Hz), D1 (45-90 Hz), D2 (22.5-
45 Hz), and D3 (11.25-22.5 Hz), are selected to perform 
thresholding for the noise removal. The approximation 
coefficient, A7 (0-0.7 Hz) is made zero to eliminate the BW 
noise with a frequency range of 0.5-0.6 Hz. The threshold 
values for the selected detailed coefficients are calculated 
using Eqs. (11-14) and ST is applied to obtain the noise-free 
detailed coefficients. Lastly, the inverse lifting-based DWT is 
performed to obtain the noise-free ECG signal.   

B. Proposed VLSI Architecture of the Lifting-Based Wavelet 

Denoising Technique 

1) Modified Lifting-Based DWT Using CSD:  In section 
II (A), the forward and reverse lifting-based DWT equations  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Block Diagram of the Proposed Lifting-Based Wavelet-
Denoising Technique 

for the db 2 wavelet show that the calculation of the output 
wavelet coefficients and the reconstructed signal using the 
forward and inverse lifting-based DWT requires five steps 
from Eq. (1) to (5) and Eq. (6) to (11) respectively. Each step 
in Eqs. (1-5) and (6-10) are dependent on each other which 
results in a high critical path delay, so in this paper, a 
modified and independent one-step equation to calculate the 
detailed coefficients, approximation coefficients, and 
reconstructed signal is proposed. For the calculation of the 
approximation coefficients, Eq. (2) and Eq. (1) are modified 
and substituted in Eq. (4), which resulted in the final one-step 
equation for the calculation of the approximation coefficient: 

       �� = @��	� + @	�	�
� + @��	�
	 + @��	�
�       (15) 

For the calculation of the detailed coefficients, Eq. (3) is 
modified using Eq. (1) and Eq. (2) and substituted in Eq. (5). 
The final one-step equation for the calculation of the detailed 
coefficient can be expressed: 

           �� = −@��	��	 + @��	��� − @	�	� + @��	�
�      (16) 

For the reconstructed signal, Eq. (7) and Eq. (8) is modified 
and substituted in Eq. (9), which resulted in the one-step 
equation for the calculation of the even coefficients of the 
reconstructed signal: 

                 ��	� = @��� − @	�� + @����� − @���
�           (17) 

Similarly, Eq. (8) and Eq. (9) are substituted in Eq. (10), which 
resulted in the one-step equation for the calculation of the odd 
coefficients for the reconstructed signal: 

        ��	�
� = @��� + @����� + @	�� + @���
�           (18) 

where @� = √�
��√	 , @	 = �
√��√	 , @� = − ��
√��√	 , and @� = ��√��√	  are 

the modified lifting-based DWT coefficients. The modified 
lifting-based DWT equations for the calculation of the 
forward coefficients and the inverse coefficients are 
independent of each other and hence can work as a parallel 
architecture. To make the proposed modified lifting-based 
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DWT multiplier-less, CSD is used. The CSD approach is 
utilized because it offers fast multiplication by reducing the 
number of partial products which in turn reduces the number 
of addition operations. In this technique, a binary number can 
be expressed with the least number of non-zero digits. The 
conversion of a binary number into CSD representation is 
broadly described in [8]. In terms of 16-bit representation in 
fixed-point with 11 fractional bits, the modified lifting-based 
DWT coefficients are expressed as @� = 989 , @	 = 1713 , @� = 459 , and @� = −265 . The CSD representation of the 
modified lifting-based DWT coefficients is as follows: 

         989 =  100001G001G01 =  2�4 − 28−2	 + 24          (19) 

       1713 =  1001G01G01G0001 =   2�� − 2H−26 − 2� + 24     (20) 

        459 = 1001G0101G01G   =  2I−26 + 2�−2	 − 24         (21) 

                  265 = 100001001 = 2H + 2� + 24                   (22) 

where 1G is −1. The CSD representation also offers shift and 
add operations to replace the multiplication process which in 
turn reduces the hardware complexity significantly. The 
modified lifting-based DWT coefficients are expressed as 
shift and add operations using the CSD representation in Eq. 
(19-22). 

2) Proposed Thresholding Block for ECG Denoising: 

The thresholding in the wavelet denoising technique is based 

on the estimation of the noise which is obtained by the MAD 

value as shown in Eq. (14). The MAD value is approximated 

using the median operation. The median operation for an array 

of detailed coefficients can be carried out in two steps: (1) 

sorting the array in the ascending order, and (2) finding the 

median value as the middle value in the sorted array if the 

number of elements in the array is odd or as the mean of the 

middle values if the number of elements in the array is even. 

The sorting of the array requires a huge number of compare 

operations which leads to large hardware requirements 

because a comparator circuit is one of the most complex 

circuits in the digital VLSI. To avoid the use of a comparator 

circuit, an optimized median calculation block is proposed in 

this paper. Fig. 4 shows the proposed median calculation block 

for the lifting-based wavelet denoising. In Fig. 4, a memory 

array is used which will help to sort the detailed coefficients 

D, D1, D2, and D3 one by one. The MAD calculation in Eq. 

(14) involves calculating the median value twice, but the 

proposed MAD calculation block has been optimized with a 

multiplexer to perform the median calculation twice using the 

same architecture. For S=0, the :;�!<0(�))  is calculated, 

and S=1, :;�!<0=>�) − :;�!<0(�))>? is calculated. Fig. 5, 

shows the proposed sorting algorithm using simple 

subtraction operations. After the sorting operation, the median 

calculation block in Fig. 4 calculates the median value 

depending on the size of the memory array. The threshold 

value is then calculated using Eq. (12) and (13). As can be 

seen from Eq. (12) and (13), the term +2-./0) 0.6745⁄  is a 

constant value for each decomposition level. So, the constant 

terms are obtained for the selected detailed coefficients and 

converted into a 16-bit fixed-point representation, which was 

further expressed using CSD shift and add operations to avoid 

any multiplication in the threshold calculation. For the 

application of the threshold value using the ST, Fig. 6 shows 

an optimized ST calculation technique that does not involve 

any compare operations. 

IV. RESULTS AND DISCUSSIONS 

This section describes the experiments carried out on the 
ECG signals to evaluate the proposed lifting-based wavelet 
denoising technique as well as the architecture. The proposed 
denoising technique to remove the BW, PLI, and MA noises 
is first tested in MATLAB using the ECG database, mitdb. 
The proposed ECG denoising technique is evaluated by 
calculating the following parameters: 

       K0LMN �OP (�Q)  = 10-./�4 R ∑ |TU|VUWXUYZ∑ |([U�TU)|VUWXUYZ \           (23) 

       ]MNLMN �OP (�Q) = 10-./�4 R ∑ |TU|VUWXUYZ∑ |(T�U�TU)|VUWXUYZ \         (24) 

    K:L^._;:;0N !0 �OP = (]MNLMN − K0LMN)�OP       (25) 

                   9�` =  �� ∑ a(�� − ���)b��c�                        (26) 

 

 
 
 
 
 
 
 
 

Fig. 4. Proposed Block Diagram for Median Calculation 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 5. Proposed Sorting Algorithm for Median Calculation  

 
 

 

 

 

 

Fig. 6. Proposed Block Diagram for Soft Thresholding  
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where ��, d�, ���, : and 9�` refer to the input ECG signal, 
ECG signal obtained after adding PLI, BW, and MA noises, 
denoised ECG signal, the total number of input ECG samples, 
and mean square error respectively.  

Table I shows the MATLAB results of the proposed ECG 
denoising technique using the mitdb. The average 
improvement in SNR and MSE values achieved for all 48 
records from the mitdb is 7.4 dB and 0.0206 respectively. Fig. 
7 shows an example of the MATLAB and FPGA results of the 
proposed lifting-based wavelet denoising technique on the 
ECG record number 105 from the mitdb. The input ECG 
signal is stored in the array named Input_ECG_rom, and the 
detailed coefficients are stored as Di where i=1:7. The 
threshold values for the first three decomposition levels are 
calculated and stored as threshold_k, where k=0,1,2 and 3. In 
Fig. 7 (e), the detailed coefficients D`, D1`, D2`, and D3` show 
the noise-free detailed coefficients obtained after applying 
thresholding, and Output_ECG shows the noise-free ECG 
signal obtained after lifting-based inverse DWT. The denoised 
ECG signal obtained from the FPGA results is shown in Fig. 
7(f). The MSE is used to calculate the difference in the output 
signal values between the MATLAB and FPGA results and 
the MSE obtained is as low as 7.08 e 10�6. The comparison 
results of the proposed ECG denoising architecture with the 
existing ECG denoising architectures are tabulated in Table II. 
The proposed architecture is compared to both wavelet-packet 
transform and DWT using db 2 in [4]. While the operating 
frequency achieved is greater, the denoising architecture in [4] 
uses 85% more registers and 50% more LUTs than the 
proposed architecture. Although the CSD approach in [8] uses 
zero multipliers to implement DWT, the hardware utilization 
is still higher than the proposed architecture because, 
apart from CSD, the proposed architecture has been optimized 
by eliminating comparator and division operations, and by 
reducing the critical path delay. When compared to the 
proposed noise-removal architecture, the FPGA 
implementation of the delayed error normalized least mean 
square (DENLMS) method [15] for the removal of only white 
Gaussian noise uses more resources. The combined DWT and 
adaptive filtering method in [16] to remove ECG noises are 
implemented using MATLAB Simulink, and not only are 
more hardware resources used, but the improvement in SNR 
of 7.08 dB is also lower than that of the proposed technique. 
In comparison with the existing ECG denoising architectures, 
the proposed architecture outperforms in terms of resource 
utilization and hence is a suitable pre-processing architectural 
design for wearable ECG and MCT patches.  

TABLE I.  MATLAB RESULTS ON ECG NOISE-REMOVAL USING THE 

PROPOSED LIFTING-BASED WAVELET DENOISING TECHNIQUE 

Record 

  Number 
Input 

 SNR (dB) 
Output 

SNR  
     (dB) 

Improvement 

in SNR  
       (dB) 

    MSE 

100 4.5 12 7.5 5×10�8 
101 5.2 10 4.8 9.2×10�8 
102 6 11.5 5.5 0.0024 
103 4.7 14 9.3 7.6×10�8 
104 6 13 7 0.0018 
105 6 15.2 9.2 0.0022 
106 5 12.5 7.5 1.8×10�� 
107 6 22 16 0.0013 
108 5.8 10 4.2 0.005 
109 4.8 5.8 1 0.0386 
111 5 12 7 0.0029 
112 -2.78 6.3 9.08 0.25 
113 2.2 8 5.8 0.0057 

114 1.2 6.8 5.6 0.09 
115 6.9 11.3 4.4 0.002 
116 4 12.24 8.24 0.0034 
118 1 9 8 0.01329 
119 1.2 8.245 7.045 0.0019 
122 6 14.5 8.5 0.0061 
123 0.99 13 12.01 0.022 
124 1.9 7.2 5.3 0.0101 
200 1 13.5 12.5 0.0066 
201 4 11 7 0.0028 
208 1.4 10 8.6 0.0078 
209 1 8.3 7.3 0.0044 
210 3 10.2 7.2 0.0047 
212 0.3 6 5.7 0.12 
213 1.2 9.6 8.4 0.0074 
217 2.7 12 9.3 0.0086 
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(f) 

Fig. 7. (a) ECG Record Number 105, (b) Noisy ECG Signal After 
Adding PLI, BW, and MA Noise in MATLAB, (c) Noise-free ECG Signal 
Obtained in MATLAB After Applying the Proposed Denoising Technique, 
(d) FPGA Results Obtained for the Proposed Denoising Architecture Before 
Applying Thresholding to D, D1, D2, and D3, (e) FPGA Results Obtained for 
the Proposed Denoising Architecture after Applying Thresholding to D, D1, 

D2, and D3, and (f) Obtained Noise-Free ECG Signal from FPGA 

TABLE II.  COMPARISON OF THE EXISTING ECG DENOISING 

ARCHITECTURES WITH THE PROPOSED DENOISING ARCHITECTURES IN 

TERMS OF FPGA RESOURCE UTILIZATION 

ECG 

Denoising 
 Architecture 

Slice 

 Registers 
Slice 

  LUTs 
Bonded 

IOBs 
DSPs Fmax 

 (MHz) 

WPT-db2      
[4] 

2748 7005 163 108 180 

  DWT-db2 [4] 3496 11335 183 132 195 

CSD [8] 1227 8953 - 0 114.5 
 DENLMS 

[15] 
6328 7243 120 0 - 

     DWT+ 
Adaptive Filter 

[16] 

5919 7688 - 0 - 

Proposed 389 3253 17 0 166 
WPT= Wavelet Packet Transform, Fmax= Maximum Operating Frequency, DSPs= Digital Signal 
Processing Components, and IOBs= Input/Output Buffers 

V. CONCLUSIONS 

In this paper, a hardware-efficient wavelet-based ECG 
denoising architecture is proposed for wearable and MCT 
cardiac monitoring devices. The lifting-based DWT and 
universal level-dependent soft thresholding are used to 
remove the most prominent ECG noises, namely the PLI, MA, 
and BW. The proposed lifting-based wavelet denoising 
technique is tested in MATLAB using all 48 ECG data records 
from the mitdb, which resulted in an average SNR of 7.4 dB 
and MSE of 0.0206. Along with the proposed modified lifting-
based DWT algorithm, the wavelet denoising blocks are also 
optimized to make them multiplier-less without any compare 

operations. In terms of FPGA implementations, the proposed 
wavelet denoising architecture using the modified lifting-
based DWT outperforms existing ECG denoising in terms of 
resource utilization. The use of CSD to make the complete 
denoising architecture multiplier-less helped in achieving low 
resource utilization with a relatively high operating frequency 
of 166 MHz.  
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