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Abstract—Gait irregularities are among the crucial signs that 

doctors should take into account when making a diagnosis. How- 
ever, gait analysis is difficult and can depend on the knowledge 
of experts and the clinician’s subjectivity. To assess gait data, 
this research suggests a smart cutting-edge system, for diagnosis 
of Parkinson’s disease (PD) based on a deep learning approach. 
The proposed method analyzes 1-D inputs from sensors (which 
are connected to foot) that measure the virtual ground reaction 
force (VGRF). The first section of the network is composed of 
eighteen parallel 1D-CNNs that correlate to the system’s inputs. 
In the second section, the eighteen number of 1D-CNN outputs 
are concatenated into one unique deep array. In the third section, 
various classifiers such as support vector machine, multi-layer 
perceptron and random forest are used for final classification. 
The proposed methodology is used to predict between the two 
classes, i.e., control (CO) and PD subjects, as well as to predict the 
severity of Parkinson’s gait according to the Unified Parkinson’s 
Disease Rating Scale (UPDRS). Our test shows that the suggested 
method is highly effective in detecting PD from gait data. 
Experiments were conducted on the Physionet dataset, and the 
results specify that the suggested model outperforms alternative 
methods in terms of classification outcomes. This model can assist 
in the severity diagnosis of PD by using gait data. 

Index Terms—1D-CNN, Parkinson’s disease (PD), control 
(CO), gait analysis, virtual ground reaction force (VGRF), Unified 
Parkinson’s Disease Rating Scale (UPDRS), deep learning. 

 

I. INTRODUCTION 

PD has been identified in more than 10 million persons 

worldwide. Following Alzheimer’s, it comes in second place 

and is a common neurological disease [1]. PD is a neurological 

condition that primarily affects the dopamine producing neu- 

rons in a particular region of the brain [1]. Early diagnosis 

is therefore crucial to enhancing the patient’s care. Most 

medical professionals use the Hoehn and Yahr scale of 0- 

5 in which 0 is considered as normal and 5 as severe to 

assess PD severity. Treatment during the early stages (Stages 

1 and 2) slows the progression of the disease and improves 

patients’ quality of life. Since gait impairments have been 

shown to occur in the early stages of PD [2], gait analysis is a 

crucial stage of the diagnostic procedure. The key features 

of the Parkinson’s gait include a slower gait cycle, a rise 

in stride variability, a lengthier stance phase, small steps, a 

shortened swing phase and a flat foot strike rather than a toe- 

to-heel strike[3]. These characteristics are assessed by doctors 

throughout the diagnosis procedure to determine if a patient 

 

is diagnosed with Parkinson’s or not. Although evaluating gait 

can be difficult because it depends on a number of variables, 

including age and health, the goal of our research is to create 

an intelligent technology that can analyze gait data to identify 

the symptoms of PD and estimate the severity of Parkinson’s 

according to UPDRS. The UPDRS is a rating scale used to 

assess a patient’s progression of Parkinson’s disease as well as 

its severity. To distinguish between normal and Parkinsonian 

gait, previous studies have used different feature extraction 

techniques, such as temporal analysis [4] or frequency analysis 

[5]. Table I includes a literature review of related work on 

different techniques. In this paper, a unique gait classifier 

built on deep learning, without manually extracting features, 

to avoid custom signal processing is proposed. The proposed 

methodology consists of three sections. In the first section, the 

VGRF signal from the foot sensor is processed by each of the 

18 parallel 1D-CNNs. Deep features are extracted by each 1D- 

CNN. In the second section, the extracted deep features are 

concatenated. In the third section, machine learning algorithms 

are applied for the final classification. 

The following is the paper’s outline: The second section 

includes the contribution of the paper. The proposed method- 

ology for the suggested approach is reported in Section III. 

The setup of the experiment is described in Section IV. In 

Section V, the results are provided. Section VI serves as our 

conclusion. 

 

II. CONTRIBUTIONS OF THE PAPER 

 
The contribution of the approached work are given as 

follows: 

• It is possible to avoid manual feature extraction by using 

a simple 1D-CNN as it extracts important deep features 

from sensor data for precise gait classification. 

• The paper also presents the algorithm to predict UPDRS 

severity, which can be valuable for clinical decision- 

making. 

• The paper employs several machine learning techniques 

for effective classification and compares the performance 

outcomes of all the classifiers. 
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TABLE I 
LITERATURE SURVEY 

 

Approaches Authors Work Done 
 

 
Ertugrul et al. [4] They used shifted 1D-LBP (local binary patterns) to build 1D-LBP histograms, from 

which they extract statistical properties including energy, correlation and entropy for 
each signal from the foot sensors. They classified the feature vectors using a number 
of supervised classifiers after combining the features from each of the 18 histograms. 

Sensor-based (SB) Zhao et al. [5] A deep learning method was created to identify Parkinson’s illness. A 2D-Convnet was 
used in the first network to study how the forces were distributed spatially. Recurrent 
neural networks were used by the second network to examine the temporal variations.  
The average of the two channels was used to determine the final classification. 

 Johri et al. [9] Two neural network-based models, the VGFR Spectrogram Detector and Voice Impair- 
ment Classifier, have been presented in this research with the goal of assisting medical  
professionals and the general public in early disease diagnosis. 

 
Choet al. [10] In this investigation, we initially recorded a number of recordings of both healthy 

volunteers and parkinson patients. Then, in order to describe the subjects, we analysed  
the video images. To enable us to apply LDA and PCA for feature extraction, all subjects 
were vectorized. The classifier employed next was Minimum Distance Classifier (MDC). 

Vision-based (VB) Aich et al. [11] A unique approach is suggested for quantifying the gait parameters using 3D motion 
recordings. The most useful characteristics are then selected using a variety of feature 
selection algorithms, including Principal Component Analysis (PCA), Fisher’s score  
(FS), and minimum redundancy maximum relevance (MRMR). Finally, two groups 
composed of control subjects and Parkinson patients were automatically classified using 

machine learning-based approaches like SVM, RF, and NB. 

 
 

III. PROPOSED METHODOLOGY 

Our suggested approach is based on deep learning. Some 

fundamental ideas are briefly explained in this section as 

they are self-explanatory. Deep learning relies on intermediate 

layers, also known as hidden layers, for learning complex 

representations of the input data. Stochastic optimizers are 

used to minimize the loss function at each iteration during 

the training process, increasing the accuracy of deep learning. 

Each layer is made up of several neurons, and each neuron 

has a non-linear activation function. The network’s initial 

weights are chosen at random, but as it is iteratively trained, 

the weights are optimized to ensure accurate predictions. 

Overfitting is avoided by using regularization strategies like 

dropout, which deactivates specific neurons at each iteration 

of the training process. Our model employs convolution, max- 

pooling and fully-connected layers. 

Our algorithm’s goal is to classify person’s gait into either 

the PD or control (CO) category. A total of 18 VGRF 1D 

signals from foot sensors were recorded. These signals are 

recorded as a function of time in Newton. For the examination 

and characterization of gait, the VGRF signals contain signif- 

icant information. These VGRF signals can be used to extract 

clinical spatiotemporal gait parameters such as the stride time, 

stance phase, swing phase, etc. By providing raw VGRF sensor 

data to our deep learning model, it will be able to surpass 

the hand-crafted features by automatically extracting key gait 

characteristics. 

The deep neural network is made up of three sections (Fig. 

1). There are 18 parallel 1D-CNN in the first section. The 

second section creates a single deep vector by concatenating 

all of the outputs of 1D-CNN. The third section is used for 

classification using different machine learning algorithms. 

A. 1D-CNN 

The network’s first segment comprises of eighteen parallel 

1D-CNN network. Each network takes a VGRF signal as input, 

processing it through four convolutional layers. The proposed 

architecture consists of 12 layers, including 4 convolutional 

layers and 2 max-pooling layers. Batch normalization and 

ReLU layers were also used to speed up network training and 

convergence. 

The best features are automatically extracted by CNNs 

feature extraction method from the gait sensor data. Each 

signal can be treated independently thanks to 1D-CNN parallel 

processing. With the network’s learning rate set to 0.0001 

and the batch size set to 32, the algorithm was trained using 

the Adam optimizer. The early stopping method was used to 

avoid overfitting. When the network’s accuracy and loss on 

the validation set do not improve for N consecutive times, the 

early stopping strategy can be employed to stop the network 

training. Table II displays the final hyper-parameters of the 

1D-CNN. 

B. Concatenation 

Concatenation is the combination of extracted features from 

different layers or branches of 1D-CNN as shown in Fig. 2. 

In the second segment, the output of all the 18 parallel 1D- 

CNN are concatenated into a single deep vector. Equation 1 

describes the basis of concatenation process where Sconc is 

the concatenated feature set given by, 



 

 
Fig. 1. Framework of proposed system 

 

 
TABLE II 

PARAMETER  CONFIGURATION  FOR  CNN LAYERS 

 

Layer Name Filters Kernel Size Feature Map 

Input - - 100×1 

Conv 1 32 9×1 8 @ 92×1 

Max-Pool 1 - 2×1 8 @ 46×1 

Batch Normalization - - 8 @ 46×1 

ReLU - - 8 @ 46×1 

Conv 2 64 3×1 64 @ 44×1 
Conv 3 128 3×1 128 @ 42×1 

Max-Pool 2 - 2×1 128 @ 21×1 

Batch Normalization - - 128 @ 21×1 

ReLU - - 128 @ 21×1 

Conv 4 128 6×1 128 @ 16×1 

Batch normalization - - 128 @ 16×1 

ReLU - - 128 @ 16×1 

 

 

 

Sconc = S1US2U...US18 (1) 

 

 
C. Classification 

In the third section of the process, the concatenated vector 

is fed to the classification block, and various machine learning 

algorithms are used to classify PD and control subjects. 

1) Random Forest (RF): RF is a supervised machine learn- 

ing technique that classifies data based on the majority votes 

from N uncorrelated decision trees that together form a larger 

random forest. It can handle vast amounts of data and does 

 
Fig. 2. Concatenation of feature sets 

 
 

not require data normalization. Since it averages predictions, 

it can still perform well even when some data is missing. 

Additionally, it does not suffer from overfitting problems. 

2) Multi-Layer Perceptron (MLP): A MLP is made up of 

several layers, and each layer is completely interconnected. 

Except for the nodes in the input layer, the neurons in the 

other layers have nonlinear activation functions. The output 

layer for Parkinson’s detection consists of just one neuron, and 



— × 

Sigmoid is used as the activation function. The output layer 

for severity prediction consists of 5 neurons for 5 classes, and 

Softmax is used as the activation function. 

The specificity (Sp), sensitivity (Se), and accuracy (Acc) are 

calculated as: 

3) Support Vector Machine (SVM): SVM perform com- 

plex mathematical transformations on data depending on the 

chosen kernel function. These transformations aim to max- 

imize the separation between data points according to the 

provided labels or classes. SVM supports binary classification, 

which separates data points into two classes. For multi-class 

TN 
Sp = 

TN + FP 

TP 
Se = 

TP + FN 

TP + TN 

(2) 

 

(3) 

classification, the problem is broken into numerous binary 

classification problems using techniques such as the One-vs- 

One strategy. 

Acc = (4) 
TP + TN + FP + FN 

 
 

A. Dataset 

IV. EXPERIMENTS 
The same proposed model is also used to detect Parkinson’s 

severity based on UPDRS scale. UPDRS values range from 0 

to 70. These values were divided into 5 classes. In a multi-class 

This dataset was downloaded from Physionet and consists 

of 73 healthy subjects and 93 Parkinson’s patients. The dataset 

records the virtual ground reaction force (VGRF) of a person 

experiment, the calculation of precision, recall, and F1-score 

for each class is shown below: 

TP 
walking for approximately 120 seconds on flat ground at their 

normal pace. A total number of 8 sensors were placed on each 

foot, and the output of each of these 16 sensors, as well as 

Precision = 
TP + FP 

TP 

(5) 

the output of two total VGRF signals under each foot, have 
been digitally recorded and sampled at a rate of 100 Hz. For 

Recall = (6) 
TP + FN 

each subject, the UPDRS score is reported. This dataset is a 

combination of data from three different experiments: ’Si’[6], 

’Ju’[7], and ’Ga’[8]. 

B. Validation 

To test our method, we performed 10-fold cross-validation 

F 1 Score = 2 
Precision × Recall 

Precision + Recall 
 
 

V. RESULTS 

(7) 

with a value of K equal to 10. At the subject level, we 

separated both the control group and the Parkinson’s patients 

into ten folds, ensuring the same balance of data in each fold. 

To obtain the most accurate results, several values of K were 

tested. 

C. Performance Evaluation 

The proposed model is designed to diagnose and classify 

between control subjects and Parkinson’s patients. To evaluate 

its performance, we calculated the specificity (Sp), sensitivity 

(Se), and accuracy (Acc) of the model. These metrics were 

computed by comparing the predicted labels of the model 

with the true labels of the dataset. Specifically, specificity 

measures the amount of true negatives amidst all negative 

cases, sensitivity measures the amount of true positives amidst 

all positive cases, and accuracy measures the quantity of 

correct predictions amidst all cases. The following notations 

were used: 

• TP represents that PD patient is correctly classified 

• TN represents that CO subject is correctly classified 

• FP represents that CO subject is wrongly classified 

• FN represents that PD patient is wrongly classified 

SVM works well with 95.2% accuracy in our investigation, 

where we implemented various classification algorithms are 

implemented for Parkinson identification. For training, 75% 

of the data is used as training set, while 25% were used as the 

test set. Fig. 3 displays a comparison of specificity, sensitivity, 

and accuracy using several classifiers. 

 

 

Fig. 3. Comparison of Specificity (Sp), Sensitivity (Se) and Accuracy (Acc) 
with different classifiers. 



Table III, IV and V represents the performance metrics of 

severity prediction with different classifiers. By comparing all 

the classifiers, it is seen that MLP classifier gives the best F1-

score of 82%. 

In Table VI, our methodology is compared with various 

alternative approaches. The benefit of our approach is that it 

can process different signals from the input in a different way 

as compared to other approaches. It can take the most signif- 

icant and precise features from each signal. Our technique is 

better suited to the gait classification problem than traditional 

machine learning techniques. Our algorithm differs from Zhao 

et al. [5] as in our algorithm, the input signals are independent 

of one another. Because of that, the method can be applied to 

different experimental conditions. Firstly, time series in gait 

are primarily noisy, nonlinear data as a result, our approach 

employs deep learning, making it suitable for this kind of 

data. Second, when it comes to obtaining discriminative gait 

features for a particular recognition challenge, hand-crafted 

approaches are typically ineffective. Recently, Balaji et al. 

[14] proposed a LSTM network to rate the severity of PD 

based on sensor dataset. LSTM networks are known to be 

computationally intensive, and this can be a limiting factor 

when dealing with large datasets or real-time applications. 

Therefore, compared to our work, although Balaji et al.’s [14] 

approach is effective in rating the severity of PD, it may not be 

practical in all scenarios. To increase the speed and accuracy of 

the recognition of human gait actions, an active deep learning 

model was developed [15,16]. The main limitations of these 

papers have been high cost sensor installation and gait analysis 

computing resources. 

 
TABLE III 

PERFORMANCE  OF  RF  CLASSIFIER  FOR  SEVERITY  CLASSIFICATION 

 

Class Precision Recall F1 Score 

1 1 1 1 

2 1 0.83 0.90 

3 0.6 1 0.75 

4 0.66 0.8 0.72 

5 1 0.25 0.4 

Mean 0.85 0.77 0.75 

 
 

TABLE IV 

PERFORMANCE  OF  MLP  CLASSIFIER  FOR  SEVERITY  CLASSIFICATION 

 

Class Precision Recall F1 Score 

1 1 1 1 

2 1 0.91 0.95 

3 0.8 0.66 0.72 

4 0.8 0.8 0.8 

5 0.6 0.75 0.66 

Mean 0.84 0.82 0.82 

 

 

VI. CONCLUSION 

Parkinson diagnosis is still a very difficult medical issue. It 

is technically difficult to diagnose a PD patient by examining 

its symptoms. Therefore a method is devised to identify be- 

tween the PD and CO subject and also to classify Parkinson’s 

TABLE V 

PERFORMANCE  OF  SVM  CLASSIFIER  FOR  SEVERITY  CLASSIFICATION 

 

Class Precision Recall F1 Score 

1 1 0.86 0.92 

2 1 0.75 0.85 

3 0.6 1 0.75 

4 0.6 0.6 0.6 

5 0.66 0.5 0.56 

Mean 0.77 0.74 0.73 

 

 
severity according to gait because gait disruption is one of 

the key motor symptoms. By utilising deep learning methods, 

our approach gets around the limitations of manually created 

feature extraction methods. Parkinson’s gait identification ac- 

curacy for the suggested approach was 95.2% for SVM, 92.8% 

for RF and 90.4% for MLP. With a mean F1 score of 82.6% 

for MLP, 75% for RF and 73% for SVM the suggested method 

also predict the severity of a subject’s UPDRS. 

This technique can be used as an effective screening tool to 

identify prospective Parkinson’s patients in a clinical setting. 

The suggested algorithm will eventually be helpful for the 

elderly by tracking and examining gait features while they go 

about their daily lives. Such AI techniques might enable the 

early diagnosis of Parkinson’s disease gait anomalies when 

combined with increasingly potent biometric sensors. 

Yet, there is a deficiency in the deployment of the ideal num- 

ber of sensors across the foot to evaluate the motor symptoms 

of Parkinson’s disease. So, in an effort to significantly enhance 

the efficacy of the suggested strategy, it is essential to identify 

the various combinations of sensor placements throughout the 

trial. 

TABLE VI 
COMPARISON  FOR  PARKINSON’S  DETECTION  OBTAINED  IN  THIS 

PROPOSED  METHOD  WITH  OTHER  EXISTING  METHODS. 
 

Author Sp(%) Se(%) Acc(%) 

Zhao et al.,[5] (2018) 76.7 96.2 90.3 

Ertugrul et al.,[4] (2016) 82.2 88.9 88.9 

Johri et al.,[9] (2019) NA NA 88.17 

Shyam et al.,[12] (2016) NA NA 91.66 

Wu et al.,[13] (2017) NA NA 84.48 

Balaji et al.,[14] (2021) 99.10 98.23 98.60 

Bama et al.,[15] (2023) NA NA 92.51 

Proposed Work(RF) 91 94.1 92.85 

Proposed Work(SVM) 95.2 94.1 95.2 

Proposed Work(MLP) 90.9 90 90.47 
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