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Abstract. The challenges in facial expression recognition (FER) is mostly
caused by high intra-class variations, subtle inter-class visual changes,
and smaller datasets. The intra-class and inter-class variations suffer big
from the pose, illumination, or partial occlusion in the real world, which
degrade the performance of FER significantly. Multi-scale and attention-
based networks are widely used to address these challenges. In most of
the previous approaches, lower-level features at smaller scale progress to-
wards higher levels to construct features at larger scales, or convolutions
at different resolutions are used for multi-scale feature representations.
The used methods have increased depth, but lacked width and are in-
adequate in representing features at granular levels to precisely capture
important facial expression features. Here, we introduce a novel multi-
branch multi-scale attention network (MSA-Net) for FER. MSA-net is
a deeper and wider network and it extracts multi-scale features at dif-
ferent receptive fields in a parallel network structure. Moreover, to im-
prove the effective receptive field and extract diverse features, different
kernel sizes in each parallel branch are used. Further, to focus on im-
portant regions, and make the features more discriminating multi-scale
features are passed through attention networks. MSA-Net can extract
sufficiently diverse attention-enhanced multi-scale features from differ-
ent parallel paths, this can lessen the effect of intra-class and inter-class
variations due to external factors. Further, features at different receptive
fields from each parallel path are combined together to reduce the effect
of pose and partial occlusion. The experimental findings reveal that the
suggested method achieves competitive results on widely used in-the-wild
public datasets.

Keywords: Facial expression recognition · CNN · Muti-scale · Attention
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1 Introduction

The facial expression conveys one’s emotional state of mind, and it is one of the
most powerful nonverbal communication methods for social interactions. The
research in FER is growing due to its broad applications in many domains e.g.
human-computer interaction [25], modern driver aid systems [28], and medical
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diagnosis [1] etc. FER system assigns a category to a still image or a video out of
many basic emotions. FER from still images is called static FER and FER from
a video is called dynamic FER. Further, FER can be divided into controlled
and in-the-wild depending upon the dataset used. Recently, FER on laboratory-
controlled datasets has achieved significant results due to all frontal images taken
under controlled laboratory conditions. However, FER on in-the-wild datasets
is challenging due to large intra-class variations, very small inter-class visual
differences, and complexity in the representation of subtle local variations caused
by muscle movements of dynamic face regions.

Over the years, researchers followed different approaches to address the above
challenges in FER. Traditional methods used gabor filter[21], histograms of ori-
ented gradients (HOG) [4], scale-invariant feature transform (SIFT) [23] etc. for
FER. These methods use shallow learning for feature extraction, are subject to
underfit and the performance of these methods are not encouraging. Recently,
much work used deep learning especially convolutional neural network (CNN)
[19, 22] in FER which significantly improved performance over traditional shal-
low learning methods. The methods used deeper CNNs, which have better gen-
eralization capability, but can be easily overfitted in presence of external factors
e.g. pose, illumination, occlusion, etc. To focus on emotion related regions many
methods used attention networks in CNN backbone [15] for FER in-the-wild.
Further, some methods used DenseNet, a variant of inception [11], and pyramid
[24] as multi-scale feature extractors, and multi-scale features serve as context to
attention networks for learning more discriminating features. However, many of
the existing methods either use convolutions at different resolutions in parallel
paths or use a single path for multi-scale feature extraction. In single path multi-
scale networks, lower-level features at smaller receptive fields progress towards
higher levels to construct features at a larger receptive field. Both the single path
based and multi-resolution-based methods lack diversity and a larger effective
receptive field in feature learning. To overcome some of the above challenges
a novel multi-branch multi-scale attention network (MSA-Net) for FER in-the-
wild is proposed.

The main contributions are summarized as follows:
1. Multi-branch multi-scale attention network is constructed to learn fea-

tures at different receptive fields and the feature maps of each branch are fused
together, which can reduce the effect of pose and partial occlusion.

2. The multi-scale block used extracts multi-scale features by combining fea-
tures at a different receptive field in a hierarchical fashion within a single multi-
scale block, which can lessen the FER system’s vulnerability to inter-class and
intra-class variations due to external factors.

3. The attention module is used in the deep layer of each branch of MSA-Net
to focus on important regions and make the expression-related features more
discriminating.

The remaining part of this paper is structured as follows. Section 2 provides
an overview of the proposed MSA-Net. Section 3 discusses the experimental
details, results and discussion. In Section 4, we finally give concluding remarks.
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2 Proposed Method

2.1 A Framework Overview

Fig. 1 shows the overall framework of the proposed MSA-Net. MSA-Net con-
sists of feature pre-extractor, parallel multi-scale, and attention network blocks.
The feature pre-extractor extracts middle-level feature maps of size 128x28x28
through the use of one 2D convolution layer, a max pooling layer, and two lay-
ers of ResNet-18 [12]. Then, middle-level feature maps are passed through three
parallel branch networks; each of the parallel branches consists of a multi-scale
module and an attention module. Inside the multi-scale module, two multi-scale
blocks are connected in series. 7x7, 5x5, and 3x3 convolutions are used in multi-
scale blocks of the first, second, and third branches respectively for finding multi-
scale features at different receptive fields. Finally, the feature maps from three
branches are fused at the feature level to obtain the FER results.

Fig. 1: The block diagram of MSA-net showing different components.

2.2 Multi-scale Module

Two multi-scale blocks connected in series in each parallel path constitute a
multi-scale module. The designed multi-scale block is inspired by Res2Net [9].
Each multi-scale block uses bottleneck blocks in a hierarchical-like manner within
a single residual block to learn features at different receptive fields. Moreover,
convolution with higher kernel sizes is biased towards shape, and convolution
with smaller kernel sizes is biased towards texture [6]. So, multi-scale blocks
in each branch use different kernel sizes to make the multi-scale feature maps
diverse. Fig. 2 shows the basic multi-scale block, 1x1 convolution layers are used
for down sampling and up sampling, and the no of input and output channels
remain the same in the bottleneck convolution layer. This arrangement reduces
the computation overhead due to the larger kernel size. Let X be the feature maps
obtained after k × k convolution. The feature map X is split into n equal feature
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map subsets along the channel axis. Let Xi be the feature map subsets, where
i ∈ {1, 2, ..., n}. Hence, the feature map subsets Xi ∀ i have the same spatial
size, and the number of channels of is 1

n th of the total number of channels of X.
Moreover, the feature map subsets Xi ∀ i are processed in three parallel multi-
scale blocks. Let the m × m convolution process applied on each of Xi is denoted
by P p

i (.),where p ∈ {1, 2, 3}, p denotes the position of the multi-scale block. Let
Y p
i denotes the output of P p

i (.). Therefore, the output Y p
i for each feature map

subset Xi can be written as:

Y p
i =


P p
i (Xi), i = 1

; 1 < p ≤ 3

P p
i (Xi) + Y(i− 1)p, 1 < i ≤ n

(1)

Let’s consider the first multi-scale block i.e. p = 1, notice that each 7x7 con-

Fig. 2: Multi-scale block, k=7, 5, 3 for multi-scale block 1, 2, 3 respectively.

volutional operator P p
i (.) receive feature information from all feature subsets

Xj : j < i. Each time a feature subset Xi passes through a 7x7 convolutional
operator, the output feature map attains a larger receptive field than Xj . More-
over, the second and third multi-scale blocks have 5x5 and 3x3 convolutional
operators respectively. Hence, the first multi-scale block has a higher effective
receptive field than the second multi-scale block, and the second multi- scale
block has a higher effective receptive field than the third multi-scale block.
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2.3 Attention Module

Let the feature maps of each parallel path obtained after the multi-scale module
be denoted as F p ∈ RH×W×C , where p ∈ {1, 2, 3}. Then, each of the feature
maps are passed through an attention network. A convolutional block attention
module (CBAM) [29] is used as the attention network. In CBAM, attention
feature maps are extracted sequentially along the channel and spatial dimensions,
then the refined adaptive feature maps are obtained by multiplying attention
maps with the input feature maps. For each parallel path, the attention network
computes channel attention map Mp

c ∈ R1×1×C and spatial attention map Mp
s ∈

RH×W×C . Therefore, the final refined output of attention networks from each
path can be formulated as: F p

r = Mp
s (F )⊛(Mp

c (F )⊛F ) here ⊛ denotes element-
wise multiplication. The channel and spatial attention maps are scaled along
spatial and channel directions respectively for conducting multiplication. Finally,
the attention feature maps from the parallel branches are fused and let it be
denoted as Fr.

2.4 Fusion Strategy and loss function

The feature maps from the parallel branches are fused using simple concatenation
operations along the channel axis. The global average pooling (GAP) operation
is performed on the final fused attention feature maps to obtain a vector,v. The
end-to-end model is trained by the cross-entropy loss function as given below.

L = − β

N

N−1∑
0

log
ew

T
i vi+bi∑C−1

0 ew
T
j vj+bj

(2)

Where N is the input batch size; C is the number of expression categories; W
and b are the weight and bias terms of the FC layer; vi is the input to the FC
layer at ith sample. β is the hyperparameter of the loss function.

3 Results and Discussion

3.1 Datasets and Implementation details

Two popular FER in-the-wild datasets, RAF-DB [16] and Affectnet [20], are
used for conducting the experiments. RAF-DB contains 29672 images annotated
with basic or compound, 12264 as training samples, and 3061 as testing samples
from basic images taken. In the Affectnet dataset, 283,901 images as training
data and 2992 images as test data are selected. We conducted an experiment
for seven basic expression categories. In both datasets, the officially aligned data
samples are used directly, and then they are resized to 224x224 pixels. Simple
data augmentation techniques are employed to extract the random crops (cen-
tral, corner, and horizontal flips). We trained the model in NVIDIA Geforce
RTX 3060 GPU using an SGD optimizer with a momentum of 0.9, batch size of
32, and initial learning rate of 0.1 decayed by a factor of 10 for every 10 epochs.
Hyper-parameter β is empirically set as 0.6. Further, we used four numbers of
workers in multi-process data loading to speed up the training process.
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3.2 Comparison of results

We present the experiment results in Table 1 and Table 2 for RAF-DB and Af-
fectnet datasets, respectively. The proposed MSA-net method outperforms some
of the state-of-the-art methods with a recognition accuracy of 86.32 and average
accuracy of 79.88 on the RAF-DB dataset. Similarly, it achieves a recognition
accuracy of 63.61 and average accuracy of 57.63 on the Affectnet dataset. Fig. 3
presents the confusion matrices of the RAF-DB and AffectNet.

Table 1: Comparison of results on RAF-DB dataset.
Method Backbone Year Acc. (%)
RLPS [14] 10-layer DCNN 2020 72.89
Sadeghi & Raie [21] - 2019 76.23
SCN [26] ResNet-18 2020 78.31
pACNN [18] Densenet 2018 83.27
ALT [8] - 2019 84.50
gACNN [17] VGG-16 2019 85.07
Proposed method Manually designed 2022 86.32

Table 2: Comparison of results on Affectnet dataset.
Method Backbone Year Acc. (%)
pACNN [18] Densenet 2018 55.33
gACNN [17] VGG-16 2019 58.78
LDL-ALSG [2] ResNet-50 2020 59.35
VGG-FACE [13] VGG-16 2020 60.00
FMPN [3] Inception-V3 2019 61.52
OADN [5] Manually designed 2020 61.89
DDA-Loss [7] DCNN 2020 62.34
LLHF [10] VGG 2018 63.31
Proposed method Manually designed 2022 63.61

3.3 Ablation Analysis

Ablation analysis on RAF-DB, Affectnet and Pose-AffectNet [27] datasets are
performed to evaluate the effectiveness of each component used in the proposed
method. Table 3 shows the analysis of the effectiveness of the multi-scale module
and attention module in one branch network structure, Resnet-18 is considered
as one branch baseline, and it’s also observed that MSA-net gives the best result
with three parallel branch structures.
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Multi-scale Structure (MS) The multi-scale structure in one branch network
of MSA-Net without attention module is studied. It is observed from Table 3 that
MS improves the baseline by 2.1%, 3.08%, 2.61%, 2.43% on RAF-DB, AffectNet
Pose-AffectNet (30◦), and Pose-AffectNet (45◦), respectively.

(a) RAF-DB (b) AffectNet

Fig. 3: Confusion matrices

Table 3: Evaluation of each component on RAFDB, Affectnet, and pose-affectnet
Methods RAF-DB Affectnet Pose-AffectNet≥ 30◦ Pose-AffectNet ≥ 45◦

Baseline 82.59 59.4 53.55 52.39
MS 84.33 61.23 54.85 53.66
AS 85.36 62.11 55.77 54.81

Attention Structure (AS) The attention module is added to a multi-scale
structure in one branch network. It is clear that the attention network em-
bedded with a multi-scale module significantly improves accuracy by 1.22%,
1.46%, 1.68%, and 2.14% on RAF-DB, AffectNet Pose-AffectNet (30◦), and
Pose-AffectNet (45◦), respectively. Hence, the Multi-scale module extracts di-
verse multi-scale features and the attention network further makes features more
discriminating.
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4 Conclusion

A novel multi-branch multi-scale attention network (MSA-Net) for in-the wild
facial expression recognition is proposed to address the issues of both intra-class
and inter-class variations due to external factors like occlusion and pose. The
multi-scale module learns features at different receptive fields, which can reduce
the effect of pose and partial occlusions in the inference process. The atten-
tion module can focus on the important part, neglect other parts, and extract
features at granular levels which can further reduce the susceptibility of the net-
work toward subtle expression-related variations. The proposed method MSA-
Net has achieved competitive accuracy with 86.32% and 63.61% on RAF-DB
and AffectNet respectively. MSA-Net presents a coarse feature learning model
focusing mainly on large intra-class and inter-class variations due to pose, and
partial occlusions. In future work, we will investigate subtle intra-class visual
differences based on feature diversification and adaptive learning to improve the
performance of the model.

References

1. Canal, F.Z., Müller, T.R., Matias, J.C., Scotton, G.G., de Sa Junior, A.R., Pozze-
bon, E., Sobieranski, A.C.: A survey on facial emotion recognition techniques: A
state-of-the-art literature review. Information Sciences 582, 593–617 (2022)

2. Chen, S., Wang, J., Chen, Y., Shi, Z., Geng, X., Rui, Y.: Label distribution learning
on auxiliary label space graphs for facial expression recognition. In: Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition. pp. 13984–
13993 (2020)

3. Chen, Y., Wang, J., Chen, S., Shi, Z., Cai, J.: Facial motion prior networks for
facial expression recognition. In: 2019 IEEE Visual Communications and Image
Processing (VCIP). pp. 1–4. IEEE (2019)

4. Dahmane, M., Meunier, J.: Emotion recognition using dynamic grid-based hog
features. In: 2011 IEEE International Conference on Automatic Face & Gesture
Recognition (FG). pp. 884–888. IEEE (2011)

5. Ding, H., Zhou, P., Chellappa, R.: Occlusion-adaptive deep network for robust
facial expression recognition. In: 2020 IEEE International Joint Conference on
Biometrics (IJCB). pp. 1–9. IEEE (2020)

6. Ding, X., Zhang, X., Han, J., Ding, G.: Scaling up your kernels to 31x31: Revisit-
ing large kernel design in cnns. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 11963–11975 (2022)

7. Farzaneh, A.H., Qi, X.: Discriminant distribution-agnostic loss for facial expression
recognition in the wild. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops. pp. 406–407 (2020)

8. Florea, C., Florea, L., Badea, M.S., Vertan, C., Racoviteanu, A.: Annealed label
transfer for face expression recognition. In: BMVC. p. 104 (2019)

9. Gao, S.H., Cheng, M.M., Zhao, K., Zhang, X.Y., Yang, M.H., Torr, P.: Res2net: A
new multi-scale backbone architecture. IEEE transactions on pattern analysis and
machine intelligence 43(2), 652–662 (2019)

10. Georgescu, M.I., Ionescu, R.T., Popescu, M.: Local learning with deep and hand-
crafted features for facial expression recognition. IEEE Access 7, 64827–64836
(2019)



MSA-net for FER in-the-wild 9

11. Hardjadinata, H., Oetama, R.S., Prasetiawan, I.: Facial expression recognition us-
ing xception and densenet architecture. In: 2021 6th International Conference on
New Media Studies (CONMEDIA). pp. 60–65. IEEE (2021)

12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016)

13. Kollias, D., Cheng, S., Ververas, E., Kotsia, I., Zafeiriou, S.: Deep neural network
augmentation: Generating faces for affect analysis. International Journal of Com-
puter Vision 128(5), 1455–1484 (2020)

14. Li, H., Xu, H.: Deep reinforcement learning for robust emotional classification in
facial expression recognition. Knowledge-Based Systems 204, 106172 (2020)

15. Li, J., Jin, K., Zhou, D., Kubota, N., Ju, Z.: Attention mechanism-based cnn for
facial expression recognition. Neurocomputing 411, 340–350 (2020)

16. Li, S., Deng, W., Du, J.: Reliable crowdsourcing and deep locality-preserving learn-
ing for expression recognition in the wild. In: Proceedings of the IEEE conference
on computer vision and pattern recognition. pp. 2852–2861 (2017)

17. Li, Y., Zeng, J., Shan, S., Chen, X.: Occlusion aware facial expression recogni-
tion using cnn with attention mechanism. IEEE Transactions on Image Processing
28(5), 2439–2450 (2018)

18. Li, Y., Zeng, J., Shan, S., Chen, X.: Patch-gated cnn for occlusion-aware facial
expression recognition. In: 2018 24th International Conference on Pattern Recog-
nition (ICPR). pp. 2209–2214. IEEE (2018)

19. Mohan, K., Seal, A., Krejcar, O., Yazidi, A.: Facial expression recognition using
local gravitational force descriptor-based deep convolution neural networks. IEEE
Transactions on Instrumentation and Measurement 70, 1–12 (2020)

20. Mollahosseini, A., Hasani, B., Mahoor, M.H.: Affectnet: A database for facial ex-
pression, valence, and arousal computing in the wild. IEEE Transactions on Affec-
tive Computing 10(1), 18–31 (2017)

21. Sadeghi, H., Raie, A.A.: Human vision inspired feature extraction for facial expres-
sion recognition. Multimedia Tools and Applications 78(21), 30335–30353 (2019)

22. Sadeghi, H., Raie, A.A.: Histnet: Histogram-based convolutional neural network
with chi-squared deep metric learning for facial expression recognition. Information
Sciences 608, 472–488 (2022)

23. Soyel, H., Demirel, H.: Facial expression recognition based on discriminative scale
invariant feature transform. Electronics letters 46(5), 343–345 (2010)

24. Vo, T.H., Lee, G.S., Yang, H.J., Kim, S.H.: Pyramid with super resolution for
in-the-wild facial expression recognition. IEEE Access 8, 131988–132001 (2020)

25. Wang, H.H., Gu, J.W.: The applications of facial expression recognition in human-
computer interaction. In: 2018 IEEE international conference on advanced manu-
facturing (ICAM). pp. 288–291. IEEE (2018)

26. Wang, K., Peng, X., Yang, J., Lu, S., Qiao, Y.: Suppressing uncertainties for large-
scale facial expression recognition. In: Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition. pp. 6897–6906 (2020)

27. Wang, K., Peng, X., Yang, J., Meng, D., Qiao, Y.: Region attention networks
for pose and occlusion robust facial expression recognition. IEEE Transactions on
Image Processing 29, 4057–4069 (2020)

28. Wilhelm, T.: Towards facial expression analysis in a driver assistance system. In:
2019 14th IEEE International Conference on Automatic Face & Gesture Recogni-
tion (FG 2019). pp. 1–4. IEEE (2019)



10 C. Ghadai and D. Patra

29. Woo, S., Park, J., Lee, J.Y., Kweon, I.S.: Cbam: Convolutional block attention
module. In: Proceedings of the European conference on computer vision (ECCV).
pp. 3–19 (2018)


