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Abstract—The device-free localization (DFL) technique for
target localization and tracking in a wireless sensor network
is important in modern research. Radio tomographic imaging
(RTI) is a DFL method that is widely used in today’s image-
based localization systems. In the RTI system, spatial loss fields
(SLFs) represent the maps that indicate the degree of radio wave
attenuation for each spatial location in the WSN due to obstacles.
In the real-world RTI model, the data is always perturbed by
uncertainty. Therefore, uncertainty in sensor node location leads
to uncertainty in the input data of the RTI regression model. To
address the sensor location uncertainty problem, this paper pro-
poses a novel stochastic robust approximation (SRA) method for
RTI (SRA-RTI). Simulation-based performance analysis shows
that the proposed technique is robust against the uncertainty in
the sensor node location.

Index Terms—Radio tomographic imaging, received signal
strength, spatial loss field, stochastic robust approximation.

I. INTRODUCTION

Target localization based on imaging techniques finds ex-
tensive application in the modern-day world, ranging from
biomedical [1] to military applications. Localization methods
are divided into device-based localization and device-free
localization. Device-based localization has its limitations in
many applications where the object is not directly accessible.
This problem does not occur with the DFL technique. One
of the DFL techniques is RTI. The RTI method is based on
the principle of radio wave absorption by the object present
between the transceiver pair [2], [3]. It finds applications like
survivor localization after the earthquake, people inside the
fire, and surveillance in the border area where privacy is a
major concern [4]. Furthermore, RTI has applications related
to through-the-wall imaging and survivor localization after
earthquakes [2], [3]. Therefore, research in RTI for different
environmental situations has attracted the attention of the signal
processing community.

RTI uses radio waves to image a specific region of interest
within a huge area. The efficacy of RTI lies in the accuracy
of the SLF estimation in the region of interest [2].The SLF
provides information on the amount of radio frequency (RF)
signal power loss between transmitter and receiver due to
obstacles in the wireless medium. This information can be ob-
tained by using the received signal strength (RSS) observations
at different nodes. Moving objects in the medium contribute
to the variance information in the RSS. As the static objects
have negligible variance, the shadowing-based RTI (SRTI) is
preferred over the variance-based RTI (VRTI) [3]. In SRTI,
the attenuation observed due to the obstacles in the medium
is the same as the shadowing loss. In SRTI, closer links often
experience analogous shadowing [4], [6]. The channel gain

between two different points, Pt ∈ <2 (transmitter position)
and Pr ∈ <2 (receiver position), can be modeled by the
following expression:

G (Pt,Pr) = G (Pt) +G (Pr)− β010log10‖Pt −Pr‖2
− S (Pt,Pr) ,

(1)

where G(Pt) (or G(Pr)) denotes the power amplifier gain for
the transmitter and receiver antennas, respectively. The term β0
is the path loss exponent, and S (Pt,Pr) is the shadowing loss
between the transmitter and receiver. If we have information
about the transmitter and receiver antenna gains as well as the
path loss and shadowing loss, then we can determine the gain
between the transceiver pair. The formulation for shadowing
loss is as follows:

S (Pt,Pr) =

∫
A

w
(
Pt,Pr, P̃

)
x
(
P̃
)
dP̃, (2)

where x : A → R+ is the SLF and the weight function is
w. Whereas x

(
P̃
)

signifies the extent up to which the radio

signal power is absorbed at point P̃ ∈ A, and w
(
Pt,Pr, P̃

)
provides the contribution of shadowing loss x

(
P̃
)

towards the
link between Pt and Pr. Different weight models discussed in
[4], [7] were used to assign weight to each pixel of a specific
link.

A. Related work and motivation

Most of the research work based on RTI system deal with
improving the SLF estimation through some robust models.
A one- or two-stage classifier has been proposed in [8] that
detects activity between transceiver devices by analysing the
impact of environmental changes. A least-square variance-
based radio tomography has been proposed in [9] to diminish
the impact of intrinsic variations and enhance the localiza-
tion accuracy of targets in the RTI system. Further, a back-
projection-based algorithm has been developed in [10] which
reduces the computational cost. This method improves the
scalability of the RTI system by compressing the data of
a link into a single bit. However, all the above techniques
use heuristic weight models. Heuristic weight models have
their own limitations in modeling the propagation medium
[11]. A kernel-based method has been proposed in [11] to
estimate the weight along with the SLF. Furthermore, to deal
with the heterogeneous environment, an adaptive Bayesian
radio tomography based on a hidden Markov model has
been proposed in [12]. A grid-based maximum likelihood



approach has been proposed in [13], which achieves optimal
results with low computational complexity. An adaptive RTI
system that improves the spatial models through unlabeled
data has been proposed in [14]. Here, an on-line technique
is also discussed to improve the imaging and estimation of
coordinates. A fade-level averaging technique in [15] is used
to detect and track multiple objects. This method uses multiple
frequencies for each link to aid in multiple target tracking
in real-time. Sparsity-based multiple target detection with an
energy-efficient DFL technique has been proposed in [16]. This
technique is basically used in DFL, where the obstacle is a
human being, and a variance-based approach is carried out.
Further, the localization accuracy has been increased by the
use of a Bayesian grid approach (BGA) in [17]. Here, the
prior sensor node location information helps in obtaining the
shadowing maps to accurately establish the shadowing effect
(the loss occurred due to the obstacles that attenuate the radio
signal) of each grid in a link. A generative model is used in
building an attenuation image and is proposed in [18] to learn
the inherent structure of the SLF. A hierarchic radio imaging
(HRI) provides improved localization performance than the
BGA and RTI technique was proposed in [19]. Furthermore,
the RSS data uncertainty due to quantized RSS for the RTI
system has been discussed in [20]. The authors have considered
the uncertainty in the RSS or output data of the RTI system
due to quantization error.

The research carried out in all the above literature con-
sidered the strategic placement of transceiver nodes in the
area of interest to achieve higher localization accuracy, which
restrains its appropriateness for real-world applications. The
above consideration has some practical limitations. Firstly, for
a random sensor placement scenario, it is not possible to get
the exact sensor node position. A global positioning system
needs to be installed on every sensor to get an accurate sensor
location, which increases the total cost of the network [21]. A
sensor localization algorithm can be used with some anchor
nodes to estimate the position of all sensor nodes. These
algorithms usually provide the relative or absolute position
of the sensor nodes. However, the sensors away from the
anchor nodes have more uncertain positions. The criticality
of exact placement of sensor nodes along with their practical
issues has been discussed in [22]- [23]. In addition to all
the stated problems, another important factor that affects the
sensor position is physical phenomena like wind, rain, ani-
mals, and the movement of soil [24]. Hence, there is always
some uncertainty in the sensor node location. Therefore, our
objective is to accurately estimate the SLF by considering the
uncertainty in the transmitter and receiver nodes. Approaches
such as stochastic programming and robust optimization can
be used to deal with data uncertainty. It is difficult to fit the
uncertain variable probability distribution function (PDF) in
stochastic optimization. Therefore, it leads to more computa-
tional complexity and issues related to intractability. However,
robust optimization (RO) requires the upper and lower bounds
for uncertain parameters, which is simpler compared to PDF.
Hence, RO provides fewer computations and is more preferred
whenever reliability and security are of significance.

This motivates us to develop a robust RTI technique under
sensor location uncertainty by using the robust approximation
methods [25], [26]. Hence, our contributions are

1) To propose a robust estimator that consider the entire
uncertain sensor location region as input for the process
of SLF estimation.

2) Regularization based novel robust estimators are pro-
posed based on stochastic approximations to deal with
the uncertainty in the input data of the RTI system due
to sensor location uncertainty.

This paper is organized in the following manner: The
background of RTI and the problem statement are discussed
in Section II. The proposed methodology is described in
Section III. Simulation-based performance assessment is given
in Section IV. Section V contains the conclusion and possible
future works.

II. PROBLEM FORMULATION

Let K wireless sensor nodes be deployed in a convex region
of interest A with a line of sight environment, as shown in
Figure 1. All the nodes are equipped with the radio frequency
(RF) transceiver unit. Each node can establish K − 1 number
of RF communication links with other nodes. Following the
formulation of SRTI [4] and [7], the RSS of a particular link
j at time t between the transmitter k′ ∈ A and receiver k ∈ A
can be modeled as follows:

yj(t) = Pj(t)− Lj(t)− Sj(t)− Fj(t)− vj(t), (3)

where, the transmitter power in dB is denoted as Pj(t). The
terms Sj(t), Fj(t), Lj(t), and vj(t) are the shadowing loss,
small-scale fading loss, long-distance path loss for the jth link,
and measurement noise at the receiver, respectively. Small-
scale fading effects can be averaged out by time-averaging the
received data. A subspace decomposition technique has been
proposed in [9] used to reduce the intrinsic motion. As a result,
the fading loss of (3) may be ignored. The distance between the
transceiver pair can be used to calculate long-distance path loss
provided the exact transceiver position information is available
[4]. The path loss of the jth link Lj is related to the and
distance between transceiver pair dk′,k as:

Lj = d
− β0

2

k′,k . (4)

where the path loss exponent is denoted as β0. For uncertain
sensor node positions, we have to find the best possible
distance information (optimal distance) between transceiver
nodes, as the exact distance information between uncertain
transceiver nodes is unknown. This optimal distance helps in
obtaining the path loss. With the knowledge of the Lj , Pj can
be related to the shadowing loss. Neglecting the fading loss,
the equation (3) can be modified as:

yj(t) = Pj(t)− Lj(t)− Sj(t)− vj(t). (5)

The shadowing loss in (2) can be expressed in discrete form
with in M pixels of the RTI network as:

Sj(t) =
M∑
m=1

wjmxm(t) j = 1, ..., N, (6)



where xm(t) represents the loss at mth pixel at time t and j is
the link index. With this formulation, the SLF to be estimated
changes from a function to a vector x ∈ <M . In the non-
blind technique [4] and [7], the weighting coefficient wjm
is calculated by using the distance between the grid points
from the transmitter and receiver positions. If a total of K
transceiver nodes are present in region A, then the total number
of unidirectional links are N= K2−K

2 . wjm in (6) indicates the
weight associated with the attenuated pixel m for an unique
link j. The normalized elliptical model [5], [20] is the simplest
model used in this work to find wjm.
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Fig. 1: (a) Deployment of sensors on a square grid. (b) The
ellipse fit for affected LOS signals.

To account for static losses (long-distance path loss and
fading loss), the RSS difference between time intervals ta to tb
is taken into account, and thus the difference in RSS values for
the jth link can be calculated as ∆yj . The RSS values for all
links can be collected into into a matrix and, mathematically,
can be represented as below:

∆y = W∆x + v, (7)

where ∆y = [∆y1,∆y2, ...,∆yN ]
T , ∆y ∈ <N is the

difference RSS values, ∆x = [∆x1,∆x2, ...,∆xM ]
T , v =

[v1, ., vN ]
T , [W]jm = wjm. The noise vector is v ∈ <N ,

and ∆x ∈ <M is the SLF to be estimated , which indicates
attenuation due to the obstacles in the WSN. The weight matrix
W ∈ <N×M , where each row represents a weighting towards
each pixel for a desired link, and each column represents the
weighting of a specific pixel towards all links. To simplify no-
tation, we’ve replaced ∆x and ∆y with x and y, respectively.
Finding the difference between RSS values using the above-
mentioned method is called off-line calibration in SRTI.

Further, the RTI system is an inverse problem, [27] where
the cost function can be mathematically represented as:

fReg(x) = f(x) + λh(x). (8)

The SLF x is estimated by using the RSS y and the corre-
sponding weight W. The term λ is a tunable parameter that
provides appropriate priority to the regularization part h(x)
over the data fidelity part f(x). Different regularization meth-
ods are discussed in [4] and [11]. The Tikhonov regularization
is the simplest one and can be used for the estimation of SLF
x. The Tikhonov regularized cost function is given as:

fReg(x) =
1

2
‖Wx− y‖22 + λ‖Cx‖2, (9)

where C is the smoothing Tikhonov matrix. The optimal SLF
x can be calculated using (9) by equating its gradient to zero.
Thus, the estimated SLF can be expressed in closed form as:

x̂ = (WTW + λCTC)−1WTy. (10)

Generally, the SLF does not contain sharp discontinuities,
which are basically due to the large operating wavelength
compared to objects in the wireless network. Therefore, the
SLF can be considered as a Gaussian distribution [4, Equation
3] with certain covariance among the pixels that depends on
the distance dm,m′ between the pixels m and m′.

Cx(dm,m′) =
σ2
p

kp
exp

(
−dm,m′

kp

)
, (11)

where kp is the pixel correlation constant, and it manifests how
rapidly the correlation reduces with an increase in distance
between pixels. σ2

p denotes the shadowing covariance. The
inverse of the error covariance matrix Cx

−1/2 ∈ <M×M is
used to estimate the imaging vector.

A. Normalized elliptical weight model

The normalized elliptical weight model [4], [5] can be
mathematically expressed as:

wjm =
1√
dk′,k

{
1 if dj,m (k′) + dj,m (k) < dk′,k + ∆

0 otherwise
,

(12)
where dk′,k is the distance between the transceiver pairs, and
dj,m (k′) and dj,m (k) are the distances from the centre of
a particular pixel m from the transmitter k′ and receiver k,
associated with a particular link j. The adjustable parameter
∆ represents the width of the ellipse. Considering the RTI
system under location uncertainty of transceiver nodes, the
exact distance information dk′,k between transceiver nodes is
unknown. Therefore, wjm cannot be evaluated exactly; hence,
the sensor node location uncertainty leads to uncertainty in
the weight matrix W, which is assumed to be deterministic in
earlier literature. Finally, W becomes a random weight matrix
for the uncertain sensor location scenario in the RTI system.

III. PROPOSED METHODOLOGY

In this section, uncertainty in sensor node position is taken
into account for the algorithm’s development. Our objective is
to minimize ‖Wx−y‖22 while considering a possible variation
in the data W due to the sensor location uncertainty by using
robust approximation (RA) techniques such as SRA [26]. The
entire uncertain scenario consists of two phases:

1) Design phase.
2) Post-deployment phase.

In the design phase, the sensor locations are obtained by
using some localization algorithm. Similarly, there is some
sensor location error present due to wild life and rain in
the post-deployment scenario [24]. The total uncertainty in
sensor location is due to a combination of uncertainty in the
design and the post-deployment phase. In the design phase,
let a sensor node k be associated with its nominal position
(x, y). However, due to the errors introduced in the post-
deployment phase, the actual position of k after deployment



is randomly changed to (xu, yu) in a deployment region ku.
Here, subscript u indicates the uncertainty in sensor location.
As the transceiver node location may take any value in the
region ku which is not exactly known, it is not possible to
find the exact distance between the transmitter and receiver.

A. Stochastic robust approximation for RTI (SRA-RTI)

In this technique, the uncertain transceiver region is made
discrete, and probabilities are associated with these discrete
points. From this, the probability of an uncertain ellipsoid
is calculated, and then the sum of the norms problem is
formulated. It is assumed that the uncertain region has a
Gaussian distribution with a mean (nominal position obtained
from the design phase) and standard deviation (maximum
uncertainty level). In this model, we have considered some
discrete points for the location of the sensor nodes. These
points are uniformly presented in the uncertain area, and each
point is associated with some probability. Therefore, Wi can
be described as:

Wi = W̄ + Ui, i = 1, ..., q. (13)

Here, W̄ gives the average value of W, and U characterizes a
matrix of independent and identically distributed (IID) Gaus-
sian random variables [25, section 3.4], where the uncertain
region is assumed to be Gaussian. For simplicity, we consider
the uncertainty in one dimension only. This is explained in
Figure 2(a). There are three points in the x-axis direction.
The points are x + δ, x, and x − δ. Each point is associated
with some probability. The probability is calculated using the
probability density function (PDF) of the uncertainty. From
Figure 2 the probability of the midpoint is calculated using the
integration of the PDF between (x− δ/2, x+ δ/2). Similarly,
the probability for the points (x − δ/2, y), (x + δ/2, y) is
computed by integrating (−∞, x − δ/2), and (x + δ/2,∞).
Hence, there are three discrete points at the transmitter and
receiver uncertain regions.
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Fig. 2: (a) Gaussian distribution with their probabilities. (b)
Position variation of transceiver pairs along with vertical
directions.

Figure 2(b) shows that a particular transceiver pair is formed
with nine ellipses, each having its own probability. If pik′ and
plk are the probabilities associated with transmitter and receiver
points for i, l = 1, 2, 3. Let q be the total number of discrete
points due to the location change of transceivers along with the
true position of transceiver nodes. The probability of the ellipse
is calculated by multiplying the probability of the transmitter
by the probability of the receiver. Thus, for q = 9 ellipses, the

probabilities are calculated. Finally, the probability associated
with the weight vector for a particular ellipse is found as:

pil = pik′p
l
k, (14)

where pil is the probability associated with a particular ellipse
and pik′ and plk indicate the probability associated with a
particular transmitter and receiver point, respectively. In every
normal distribution with a specific mean and standard deviation
σ, using the empirical rule or 68-95-99.7 rule, about 68% of
the data falls within one standard deviation of the mean. The
data is 95% within two standard deviations of the mean. As a
result, we assign a probability of 1 to the (x, y) positions, 0.25
to the (x+ δ) and (x− δ)positions, and 0.5 to the (x+δ)

2 and
(x−δ)

2 points. If we consider the (x, y) points of transmitter and
receiver, respectively, then the probability associated with that
link is 1, which is the highest among all other combinations.
Similarly, if we consider the (x + δ) and (x − δ) points of
transmitter and receiver, the resulting probability can also be
found. If we think of (x, y) points of a particular uncertain
transmitter and receiver region, we have the highest probability
of 1 multiplied with a link, and for other point pairs of
the uncertain regions, we have probabilities of 0.5 and 0.25,
respectively. Using this concept, a simple scenario as shown in
Figure 2(b) will provide nine probabilities that are associated
with the nine weights. From the above analysis, the formulation
of the sum of norms becomes

f(x) = min
x

p1 ‖W1x− y‖+ · · ·+ pq ‖Wqx− y‖

+ λ ‖Cx‖ ,
(15)

where C ∈ <M×M is the smoothing Tikhonov matrix. The
above SRA problem can be solved when finite q numbers of
W are considered [26, section 6.4.1]. Hence, Wq is found
for q = 1, · · · , 9. Similarly, p1, · · · , pq is found from (14)
for different values of i and l. Hence, the novel SRA-RTI
formulation can be written as:

minimize pT t + λt1

subject to ‖Wix− y‖ ≤ ti, i = 1, · · · , q,
‖Cx‖ ≤ t1.

(16)

Here x ∈ <M and t ∈ <q [26, section 6.4.1]. Considering
the norm of (16) as the l2-norm, the above problem can be
classified as a SOCP problem. Hence, the uncertainty based
on SRA can be solved by the sum-of-norms problem using
SOCP. The computational cost of SOCP from [28] is given as:

O(
√
L(m2

L∑
i=1

ni +
L∑
i=1

ni
2 +m3)), (17)

where L denotes the SOC constraints, ni denotes the ith

cone dimension, and m represents the equality constraints. The
computational complexity of SRA-RTI technique is calculated
from (17) as O(2

√
2 M2).

IV. RESULTS AND ANALYSIS

For the simulation, a square grid with a 49 m2 area is used.
The sensor nodes are deployed in the monitored area in a
regular manner, as shown in Figure 1. The entire monitored



region is divided into discrete pixels, with a side length of
0.2 meters for every pixel. As a result, the monitored area
have a total of M = 900 spatial positions. The square object
is placed at position [2, 3, 1, 1]. With t = 1, 2, · · · , T time
instants and k = 1, 2, · · · ,K nodes, we have the training
data set

{
xu,k(t), yu,k(t), yt

}
T
t=1. To generate the uncertain

sensor position data, the sensor node position is added by some
uncertainty parameter, µ ∈ <, with a distribution between [-
0.5, 0.5]. The SRA-RTI approach estimates SLF based on the
uncertain sensor node data.

TABLE I: Parameters of SRA-RTI

parameter Description Value
K Number of RF sensor nodes 24
∆p Pixel width (in meter) 0.2
µ Uncertainty level [-0.5,0.5]
∆ Ellipse width (in meter) 0.01
kp Constant for correlation between pixel 2.1
σ2
p Shadowing covariance of pixel 0.45
λ Regularization parameter for l2-norm 0.9

The model parameters for normalized ellipse weighting are
listed in TABLE I. The regularization constant is selected
empirically by finding the average feature similarity (FSIM)
for all images at different locations. The regularization constant
that corresponds to the highest average FSIM is considered for
simulation purposes.True SLF
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Fig. 3: (a) True SLF, (b) Estimated SLF without uncertainty,
(c) Estimated SLF without RA for µ=0.2, (d) Estimated SLF
using SRA.

Figure 3 represents the SLF estimation with and without
sensor location uncertainty. Figure 3(a) shows the true SLF.
Figure 3(b) represents the estimated SLF without location
uncertainty by using the Tikhonov regularization technique. In
Figure 3(c) shows the output of RTI technique with sensor
location uncertainty of µ=0.2m. The poor localization and
higher surrounding noise of the estimated SLF are further
minimized by using the robust estimator as shown in Figure
3(d). Therefore, comparing 3(c) and 3(d) we verified that

SRA-RTI outperforms the RTI technique 3(c) with sensor
location uncertainty, as can be verified from TABLE II.
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Fig. 4: (a) True SLF (b) Estimated SLF without uncertainty,
(c) Estimated SLF without using RA for µ = 0.5 (d) Estimated
SLF using SRA.

The performance of SRA-RTI technique under higher un-
certainty levels is also being investigated. Figure 4(a) repre-
sents the true SLF. Figure 4(b) provides the estimated SLF
using l2-norm regularization without sensor location uncer-
tainty. A marginal increase in uncertainty level from µ = 0.2
to µ = 0.5 leads to very poor localization of estimated SLF
and is verified from Figure 4(c). The reconstructed SLF using
SRA-RTI is depicted in Figure 4(d). The performance of our
proposed technique is almost similar for negative µ values,
therefore for simplicity the positive µ values are considered in
this work. The quantitative analysis of all findings is shown in
TABLES II and III. For quantitative analysis of the estimated
SLF using robust techniques under sensor location uncertainty,
the following performance metrics [29], [30] are used.

• RMSE (Root mean square error): It is defined as the
square root of the mean square error (MSE). Mathemati-
cally

RMSE(dB) =
√

MSE(dB). (18)

• SSIM (structural similarity): It indicates the level of
degradation in estimated SLF due to structural details
change.

• FSIM (feature similarity): It indicates the degree of relat-
edness among two estimated and actual SLFs based on
their features.

• PAR (Pixel attenuation ratio)

PAR in % =
Number of attenuated pixels

Total number of pixels in the object
× 100



TABLE II: Quantitative analysis of estimated SLF using l2-
norm (For lower uncertainty level µ=0.2m)

Parameter Without uncertainty Uncertain-RTI SRA-RTI
RMSE in [dB] -15.60 -7.985 -14.98
PAR in % 15.78 28.91 16.32
SSIM 0.9121 0.7428 0.9081
FSIM 0.9508 0.7915 0.9497

TABLE III: Quantitative analysis of estimated SLF using l2-
norm (For higher uncertainty level µ=0.5m)

Parameter Without uncertainty Uncertain-RTI SRA-RTI
RMSE in [dB] -15.60 2.429 -13.05
PAR in % 15.78 77.36 27.15
SSIM 0.9121 0.4285 0.8864
FSIM 0.9508 0.5063 0.9273

V. CONCLUSION

In this paper, a robust estimator based on SRA is proposed to
handle the sensor node uncertainty for successful estimation of
SLF in the RTI system. It is observed that the proposed SRA-
RTI performs better than traditional RTI with Tikhonov reg-
ularization for sensor location uncertainty. SRA-RTI results
are nearly comparable to SLF estimation performance without
sensor location uncertainty. Our technique, on the other hand,
employs the l2-norm, which can be applied to other existing
regularization techniques to improve performance while also
reducing complexity. Furthermore, the proposed technique can
be verified by considering real-world RSS values with the help
of an actual testbed and should be addressed in the future. The
performance of the proposed techniques can be compared for
a large monitored region with a varying number of nodes in
the future.
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