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Abstract—The significance of estimating the manipulation
parameters in forged images has grown to grasp the life cycle of
the image and gives forensic clues. Although several techniques
have been put forth to do this, they are limited to a single
alteration in the uncompressed scenario. However, estimation
is difficult for multiple manipulations because a new image
modification is produced every time. Therefore, it is necessary to
repeat the procedure of creating a mathematical framework to
determine a parameter estimation. To get around this, we create a
deep residual framework that can estimate multiple manipulation
parameters in a post-JPEG compressed image with achievable
arbitrary precision. Specifically, the framework goes through the
steps of noise residual extraction, extraction of features, and
classification. To begin, the front-end detector is greatly aug-
mented by the noise residual extraction stage, which adds three
residual blocks with skip connections to generate noise residuals
by reducing visual features and boosting alteration clues. Further,
characteristics of the deep tampering clues are then obtained
using a cross-feature learning technique and procured to fully
connected layers for classification. To improve forged parameter
estimates in the real world, we conduct experiments on three
modifications and then apply several quality factors to the results.
To top it all off, the proposed MPeR-Net outperforms state-of-the-
art methodologies in the most crucial instance of lossy post-JPEG
compression.

Index Terms—Digital image forensics, manipulation parameter
estimation, post-JPEG compression, forgery detection.

I. INTRODUCTION

Nowadays, images, videos, and text are the most prevalent
digital data in our day-to-day lives. However, the authenticity
and integrity of digital data are significantly impacted by
advanced altering programs that are freely available online. In
some circumstances, such as journalistic integrity and inves-
tigative techniques, falsified photographs might harm society
and our day-to-day activities. Therefore, to nail how each
editing process was used to characterize entire life cycle of
an image, the topic of digital image forensics was introduced
[1]. Over the past decade, many forensic methods such as
image splicing [2], [3], image resampling [4], [5], copy-move,
and [6], [7], inpainting [12], [13] are contemplated to spot
the trustworthiness of digital data. To create a forged image,
the forger must select a rescaling factor, an Additive White
Gaussian Noise (AWGN) variance parameter, a quality factor,
and blur parameters (kernel size) to resample, noise addition,
compress, and smooth an image, respectively. However, very
few techniques focus on manipulation detection and its pa-
rameter estimation of faked images in the uncompressed sce-
nario [4]–[11], [13], [16], [20]–[25]. Some traditional methods

frequently build a theoretical model to describe a modified
image by estimating manipulation parameters. Therefore, these
parameters can be reversed to find the effects of editing, and
information about an image original state can be given to an
investigator. Hence, they can be utilized for camera model
identification [18], stenographic algorithms, [32] and water-
mark detectors [33]. Therefore, estimating manipulation pa-
rameters is crucial for various additional forensic and security-
related operations. On the other hand, JPEG is one of the most
widely used image formats worldwide, and altered images
are frequently stored in this format [25], [32]. When spotting
the usage of various editing operations and tracing processing
chains, it may be advantageous or even crucial to discover the
manipulation parameter values [9], [23]. Therefore, it makes
sense to consider the manipulation in a lossy compression
scenario.

We proposed a unique method for Manipulation Parameter
estimation in a Re-compressed images Network (MPeR-Net)
to tackle this issue. Here, interpreting and anticipating the
noise that JPEG lossy compression creates is the most impor-
tant step in mitigating the detrimental impacts of compression.
Additionally, MPeR-Net is an end-to-end solution that does
not require pre/post-processing operations. The significant
research contributions of this work are listed as follows.

• A unique end-to-end deep residual framework has been
developed to get the best performance when estimating
parameters for image alteration followed by recompres-
sion.

• MPeR-Net noise residuals are pulled from the modified
images by concealing their texture details and enriching
the manipulation traces.

• The proposed MPeR-Net robustness against JPEG post-
compression is demonstrated by a comparison with re-
ported deep learning techniques, where it is found to
perform exceptionally well.

The remainder of the article is organized as follows. Section
II explains the most contemporary research works for manipu-
lation parameter estimation in compressed and un-compressed
domains. In section III the suggested residual framework
architecture and implementation details are described. Further,
testing results and performance investigations are discussed
in section IV. Conclusions and forthcoming directions are
concluded in the last section.
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Fig. 1: The MPeR-Net framework for manipulation parameter estimation in re-compressed images.

II. RELATED WORK

We were motivated by several recent studies that explored
inventive attempts to acquire rich patterns for image alteration
detection and estimation (see Table I for further information).
Forensic systems based on data-driven approaches have re-
cently been presented by researchers as a method for end-to-
end training that may not need specific characteristics or pre-
processing processes. Hence, we concentrate on deep learning
methods to estimate the parameters for the median filtering
(MF), Gaussian Blurring (GB), AWGN addition (GN), and
resampling (UP & DOWN) manipulations.

Initially, manipulation detection or estimation clues have
been achieved from noise residuals which can be accomplished
by steganalysis-rich model (SRM) kernels [14]. On the other
hand, a high pass filter as preprocessing was used to recognize
fake faces [20], and further, the authors [15] presented a CNN-
based median filtering detection methodology using median
filter residual from given data. Later, Bayar and Stamm pro-
posed MISLNet, which drives the CNN to acquire prediction
error filters. Above mentioned models can accurately catego-
rize a wide range of modifications employed on uncompressed
images; therefore, the research works [5], [24] is proposed for
multiple manipulations. In addition, in [24], a manipulation
tracing network containing abnormal deep features for fraud
detection and localization by retrieving the manipulation traces
using the constraint convolutional layers [5] and the SRM
kernel [14] in uncompressed images. Additionally, Table I
summarises the most important data-driven algorithms to
estimate image manipulation parameters (’+’: Estimation, ’*’:
Detection ’-’: Neither Detection nor Estimation, PP?: Post-
JPEG Compression). A detailed review is also available [17].

According to the literature, there are a few limitations
that can be observed: (1) Most of the estimators are imple-
mented for uncompressed images; however, their performance
degrades significantly for the compressed scenario; and (2)
the majority of forensic approaches focus on a single type of
manipulation parameter estimation. Based on the shortcomings
mentioned earlier, we proposed an MPeR-Net to categorize
multiple manipulation types and parameters, which are pro-
vided in Table III, assuming that JPEG compression has been
carried out using a variety of compression factors.

TABLE I: Overview of latest image manipulation parameter
estimation schemes

Method Clue/Feature DNN Type
Manipulation parameters

PP?Blurring AWGN Resampling
MF GB GN UP DOWN

[10] Aritifacts VGG Net - - - + + +
[21] Arificats Alex Net + + + + + -
[25] Compression Resnet * * * * * +
[22] Denoiser VGG Net - - - + + -
[16] Aritifacts VGG Net + - - - - -

MPeR-Net Artifacts ResNet + + + + + +

III. PROPOSED METHOD

This section depicts a precise outline of our proposed
MPeR-Net, architecture details, and implementation.

A. Outline

The MPeR-Net framework looks at the estimation problem
as classification, and it undergoes three phases, such as noise
residual extraction, deep features extraction, and classification,
as depicted in Fig.1. Pooling layers are like low-pass filters that
localize the image’s texture information. However, the forged
image is scene-independent and needs to localize the generated
region. Therefore, to extract noise residuals from inspected
images, we utilized two convolutional layers followed by three
residual blocks (see Fig. 2(a)) with skip connections without
pooling layers. Which was motivated by SRNet [19] imple-
mented in steganalysis. Next, to learn manipulation clues from
noise residuals effectively, we utilized five residual blocks
(see Fig. 2(b)) for a multi-scale feature learning strategy.
This results in considerable betterment in the manipulation
detection and parameter estimation sensitivity. Finally, deep
convolutional attributes are fed to the classification phase to es-
timate manipulation parameters in the post-JPEG compressed
scenario.

B. MPeR-Net Architecture

The proposed MPeR-Net, consists of two convolutional
layers (lc1 , lc2 ) followed by three residual blocks (lr1 , lr2 , lr3 )
with skip connections without pooling layers. Further, five
residual blocks (lr4 , lr5 ...., lr8 ) including max-pooling layers
with skip connections and followed by global average pooling
and three fully connected layers (lfc1 , lfc2 , lfc3 ). All convolu-
tional layers in the proposed MPeR-Net utilized kernel with
a size of 3 × 3. The detailed architecture, residual block’s
output feature shape, and total trainable parameters are shown
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TABLE II: MPeR-Net architecture & total trainable parameters

Layer Output Shape Parameters
Input (None, 256, 256, 1) 0
Conv2D (lc1 ) (None, 254, 254, 64) 640
Conv2D (lc2 ) (None, 252, 252, 16) 9232
BlockA (lr1 ) (None, 254, 254, 16) 4640
BlockA (lr2 ) (None, 252, 252, 16) 4640
BlockA (lr3 ) (None, 252, 252, 16) 4640
BlockB (lr4 ) (None, 126, 126, 16) 4912
BlockB (lr5 ) (None, 63, 63, 64) 47296
BlockB (lr6 ) (None, 32, 32, 128) 2297960
BlockB (lr7 ) (None, 16, 16, 256) 918272
BlockB (lr8 ) (None, 8, 8, 512) 3671552
Global.Avg.Pool (None, 512) 0
Dense (lfc1 ) (None, 128) 65664
Dense (lfc2 ) (None, 64) 8256
Dense (lfc3 ) (None, 10) 510
Total Parameters 4965374
Trainable Parameters 4965374

in Table II. Finally, the output layer lfc3 with 5, 8, 8, and
10 nodes represents Gaussian filter kernel size, median filter
kernel size, AWGN variance, and scaling factor parameter es-
timations, respectively, in the post-JPEG compressed scenario.
In the MPeR-Net, activation function (ReLU [27]) and Batch
normalization [26] are introduced and followed after every
convolutional layer.

C. Implementation details

The proposed MPeR-Net hyper-parameters such as filter
weights for all convolutional (lr1 , lr2 , ..lr8 ) and fully connected
layers (lfc1 , lfc2 , lfc3 ) are initialized with the He initializer
[28]. For lfc1 layer, the L2 kernel regularization with 0.01
is employed, whereas there is no regularisation for the other
layers. All layers biases are set to 0.2. Initially, MPeR-Net was
trained for 20 epochs with a learning rate (lr) of 0.001, and
then, it was trained by an additional 10 epochs with a lower
lr of 0.0001 to boost performance. Additionally, we employed
a categorical cross-entropy loss function for all experiments.

TABLE III: Different manipulations, algorithms & its param-
eters to create datasets

Manipulation Algorithm Parameter Parameter Values

Image resampling Bilinear Scaling factor 0.5, 0.6,....1.4, 1.5
Bicubic Scaling factor 0.5, 0.6,....1.4, 1.5

Noise addition AWGN Variance 0.1,0.3,0.6,0.9,1.2,1.5,1.8

Image blurring Median filter Kernel size 3, 5, 7, 9, 11, 13, 15
Gaussian blur Kernel size 3, 7, 11, 15

IV. RESULTS & DISCUSSIONS

This section describes the dataset creation and performance
analysis of the MPeR-Net is demonstrated by performing
several experimentations by assuming different manipulations
to estimate its parameters for post-JPEG compression images.
In addition, the data processing is done using Python’s pro-
gramming language, and the MPeR-Net is developed using the
Keras framework with GPU functioning as the background.
The workstation used for implementation contains a 24 GB
NVIDIA Quadro P6000 GPU, an 18 CUDA core Intel Xeon
6140 processor, and 256 GB of RAM.

A. Dataset Creation

Implementing the proposed MPeR-Net was measured by
conducting experiments on images taken from heterogeneous
datasets such as RAISE [29] and DRESDEN [30]. 3,000
unprocessed images with 4928 × 3264 resolution are taken
from the RAISE for creating a training dataset. Ten 512×512
non-overlapping patches are retained from each image to
produce 30,000 image patches. Next, built-in camera com-
pression settings are performed via JPEG compression by ad-
justing the primary quality factor value in the 95–97. Further,
these images are altered (i.e., Image blurring, Noise addition,
Image resampling) with different parameters to create pre-
compressed manipulated images. In addition to this, these
manipulated images are re-compressed to form altered post-
JPEG compressed images.

Firstly, for an image blurring manipulation, each image of
size 512 × 512 is manipulated with two different filterings
(i.e., median filtering, Gaussian blurring) with various sizes
of the kernel as described in Table III; then, it is post-JPEG
compressed randomly picked secondary quality factor (i.e.,
QF2 = 50 to 90) to form post-JPEG compressed images.
Next, the middle segment of size 256 × 256 is trimmed to
create forged images, and its interrelated unaltered post-JPEG
compressed images are also taken to create original images.
Further, two datasets are formed to estimate Gaussian and
median filtering kernel size-dependent variance.

Similarly, for an AWGN noise manipulation, one database
was created with six classes, five altered with different vari-
ances, and one unaltered image. Finally, for image resam-
pling manipulation, two databases are created for bilinear
and bicubic interpolation with ten scaling factors (upsampling
& downscaling) followed by re-compression. Each database
consists of ten altered classes and one unaltered class. These
datasets are used to accomplish three different investigations
to inspect the performance of the MPeR-Net.
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(a) Scaling factor estimation (bicubic interpola-
tion)
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(b) Scaling factor estimation (bilinear interpola-
tion)
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(c) Median filter kernel size estimation

Fig. 3: Interpretation of the MPeR-Net in terms of confusion matrix with ten classes for scaling factor (bicubic & bilinear)
estimation and eight classes for median filter kernel size estimation with post-compression quality factor (QF2 = 90).

B. Resampling followed by Re-compression: Scaling parame-
ter estimation

Image resampling enlarges or decreases its resolution by
creating a new representation of the image having different
pixel widths or heights. Therefore, we used the upscaling (UP),
and downscaling (DOWN) factors ranging from 0.5 to 1.5 on
the actual image to cover the growing and shrinking image
sizes of its original resolution.

Performance of the proposed MPeR-Net measured by con-
sidering two most common interpolation techniques (i.e.,
bilinear and bicubic) to differentiate manipulated images with
multiple scaling factors and unaltered images. For this ex-
periment, the last fully connected layer consists of 10 nodes
representing ten scaling factors to create altered images, and
remaining nodes indicate unaltered images class, respectively.
For training MPeR-Net, 300,000 image patches are considered
with a size of 256 × 256 for 10 classes and 30,000 patches
for each class. Further, MPeR-net was trained for 30 epochs
with Adamax optimizer and categorical cross-entropy loss. In
addition, to test the significance of the proposed MPeR-net,
600 images were collected from DRESDEN [30], unseen by
the model, to generate 60,000 image patches to form testing
sets with 6,000 patches of each class. Further, the proposed
MPeR-net is tested on the above-specified dataset, and the
corresponding confusion matrix of scaling factor estimation
for bicubic and bilinear are depicted in Fig. 3 (a) & (b),
respectively. From the observations, MPeR-net can effectively
estimate upscaling factors of almost 99.99% in the post-JPEG
compression scenario. In addition, a downscaling factor of 0.5
was calculated with higher accuracy of 95.25%, which was a
challenging scenario in the post-JPEG compression scheme.

C. AWGN noise addition followed by Re-compression: Vari-
ance of noise estimation

The term ”noise addition” describes the insertion of high-
frequency information (also known as ”noise-like signals”),
which has no bearing on the content of images. To achieve
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Fig. 4: Confusion matrix for estimation of noise variance
manipulated using AWGN followed by Re-compression.

this, Gaussian noise (GN) is independently injected into each
pixel to hide the traces of manipulations. To perform this
experiment, we distinguish between manipulated images cre-
ated by adding AWGN with seven variances, as presented in
Table III, and unaltered images in the post-JPEG compression
scenario. In addition to this, last fully connected layer in the
proposed MPeR-Net with eight nodes is taken to estimate the
noise variance parameter. Further, 240,000 image patches are
collected with a size of 256×256 from RAISE, [29] including
30,000 for each class. Next, the proposed MPeR-Net is trained
with dataset mentioned earlier for 30 epochs by an Adamax
optimizer with categorical cross-entropy as a loss function.
For test MPeR-Net, 48,000 image patches are collected from
DRESDEN, [30] with 6,000 for each class. Finally, trained
model is tested on the aforementioned dataset to check cross-
dataset settings, and corresponding confusion matrix of the
MPeR-Net to estimate AWGN variance is shown in Fig. 4. By
observing it, MPeR-Net can effectively estimate the AWGN
noise parameter followed by re-compression with accuracy of
above 99.10%.
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Fig. 5: Interpretation of the MPeR-Net in terms of loss with eight classes for median filter kernel size estimation and five
classes for gaussian filter kernel size estimation with post-compression quality factor (QF2 = 90).

D. Image blurring followed by Re-compression: Kernel size
estimation

Blurring an image is a common technique for filtering out
noise at high frequencies. Median and Gaussian filtering are
two types a forger could use to hide their manipulation’s
fingerprints.

1) Median filter kernel size estimation: Reducing resam-
pling artifacts can be achieved by employing a non-linear
filter such as a median filter (MF) [31]. Primarily, it is
used as an anti-forensics technique. However, median filter
parameter estimation is difficult in a re-compression scenario
because compression artifacts can erase traces left by median
filtering. To tackle this issue, we experimented with eight
classes, where seven are manipulated with median filtering
and one unaltered type. The training dataset is created as in
the previous experiment, with different median filter kernel
sizes to create altered images. A total of 240,000 patches, with
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Fig. 6: Confusion matrix of kernel size estimation for manip-
ulated using Gaussian filter followed by Re-compression.

30,000 for each class, are created, and the proposed MPeR-Net
is trained on RAISE [29] and tested on DRESDEN [30], and
observed that median filtered kernel size is estimated at more
than 92.20%. The confusion matrix of the proposed MPeR-

TABLE IV: Comparative analysis of manipulation estimation
parameters in post-JPEG compressed scenario.

Method
Manipulation parameter estimation

Blurring AWGN Resampling
MF GB GN UP DOWN

MISLnet [21] 96.84% 97.68% - 98.15% 91.24%
CNN-RFE [22] - - - 95.84% 89.46%
Dual-Net [10] - - - 96.36% 90.65%
MPeR-Net 97.15% 96.94% 99.12% 99.56% 94.75%

Net for kernel size estimation of median filtering followed by
re-compression is shown in Fig. 3(c).

2) Gaussian filter kernel size estimation: The proposed
MPeR-Net effectively pulls the manipulation traces from the
previous investigation to estimate the median filter kernel size
in the post-JPEG compressed scenario. In addition, a linear
filter such as Gaussian blur (GB) is used to suppress noise
by reducing high-frequency signals. Hence, we considered
estimating the gaussian filter kernel size, which depends on
variance. For this experiment, 150,000 image patches with
30,000 for each class are created from the RAISE [29] to
train the proposed MPeR-Net and tested on 30,000 images
created from DRESDEN [30]. From the observations, the
Gaussian filter kernel size is estimated at more than 90.10%.
The confusion matrix of the proposed MPeR-Net to estimate
gaussian filter kernel size estimation for re-compressed images
is shown in Fig. 6.

E. Baseline methods for comparison

For comparative analysis, we took the previous experiment
environments for recent-baseline methods and encountered
the average accuracy of manipulation parameter estimation of
post-JPEG compressed images. For the comparative study, we
utilised the earlier experiment environments for more modern
baseline approaches. Throughout this process, we encountered
the typical accuracy of manipulation parameter estimates for
post-JPEG compressed image data. The performance of the
MPeR-Net is analyzed and compared with existing baseline



methods such as MISLnet [21], CNN-RFE [22], and Dual-Net
[10]. Further, it has a higher mean accuracy of median filtering
kernel size, AWGN addition, upscaling, and downscaling fac-
tors with 97.15%, 99.12%, 99.56%, and 94.75%, respectively,
than the previously reported techniques. In addition, MPeR-
Net performs better downscaling followed by re-compression,
as shown in Table IV. However, proposed MPeR-Net often
has trouble differentiating between Gaussian filtering with a
kernel size of 3× 3 and 7× 7.

V. CONCLUSIONS

This paper introduced MPeR-Net, a novel deep residual
framework for estimating manipulation parameters in post-
JPEG compressed images. Firstly, MPeR-Net gathers image-
modifying fingerprint attributes from a query image, and
further, it examines how distinct the attained characteristics
are from its benchmark fingerprints to find alteration cues.
The noise residual extraction phase of the proposed framework
effectively pulls the forgery clues by extending the front-
end detector, which can take advantage of noise residuals by
minimizing the texture information of the image. Furthermore,
using shortcut connections from noisy residuals, MPeR-Net
efficiently predicts manipulation parameters. In addition, our
network outperforms recently reported techniques, specifically
in the JPEG domain. In subsequent work, we will create a
comprehensive framework to defence against malicious attacks
and investigate the correctness of the proposed MPeR-Net for
further post-processing methods, such as contrast enhancement
and image morphing.
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