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Abstract—Utilization of spatial multiplexing and diversity gain
in massive multiple-input multiple-output (MIMO), requires
availability of the downlink channel state information (CSI)
at the base station. Frequency division duplex (FDD) systems
use different uplink and downlink channels and it limits the
use of reciprocity. Downlink precoding computations requires
channel responses of the downlink to be estimated and the base
station (BS) is fed back with those estimated channel responses.
The matrix carrying channel state information is usually large
due to massive number of antennas, resulting in considerable
feedback overhead. Most of the conventional algorithms use
compressed sensing which depends on the channel sparsity level.
Recent approaches use deep learning (DL), which compresses
the CSI into a codeword with low dimensionality to recover the
original channel matrix at the base station. This paper proposes a
novel deep learning convolutional network called InceptCodeNet,
which is the combination of the concept of inception network
and autoencoder, hence the name InceptCodeNet. The network
compresses the channel response matrix at the user equipment
(UE) side. This is reliably recovered at the base station. InceptCo-
deNet (ICN) shows superior performance compared to existing
techniques in terms of cosine similarity and normalized mean
square error (NMSE) metrics. The proposed method provides
an improvement of 4.47 dB in NMSE for recovery of channel
matrix for indoor scenario and an improvement of 1.89 dB is
observed for outdoor scenario compared to CsiNet.

Index Terms—Massive MIMO, CSI, FDD, Deep Learning,
Compressed sensing

I. INTRODUCTION

Massive MIMO is contemplated as the vital technology
for the 5G communication systems. The technological advan-
tages includes strong system robustness, large system capacity
coupled with high spectrum efficiency [1]. Massive MIMO
systems rely on spatial multiplexing and take advantage of the
channel’s multipath characteristics. The base station requires
accurate channel state information for multi-user scheduling,
precoding, adaptive coding, and other operations. Massive
MIMO systems will hence, minimize the interference and
maximize the spectrum efficiency among the users.

In time division duplexing (TDD) systems, the uplink and
the downlink channel responses are similar within the channel
coherence time. Thus, the channel state information of the
downlink is obtained by the base station exploiting the prop-
erty of channel reciprocity [2]. But, in massive MIMO systems
which function using frequency division duplexing, the uplink

channels and the downlink channels are different. Therefore,
the principle of reciprocity cannot be applied. Here, pilots are
needed to be sent separately in both uplink and downlink and
the estimates of downlink channel responses has to be sent
back to the base station [3]. As the number of antennas at the
base station increases, the CSI feedback overhead rises. So, it
becomes difficult to feed back the entire channel CSI matrix to
the base station. Most of the deployed systems operate in FDD
mode rather than TDD mode. Thus, it becomes challenging to
obtain the channel state information from the base station.

To address this issue, feedback overhead reduction tech-
niques are used. Some of the techniques like vector quan-
tization and codebook approaches [5] have been popular.
For CSlI-sensitive applications, quantization errors present a
challenge leading to multi-user interference. When CSI of high
precision is required at the BS, the codebook size becomes
enormous, making the approach impractical. The channel
tends to be sparse for massive MIMO since local scatters
at the base station are limited and the compressive sensing
(CS) techniques can acquire the CSI efficiently by exploiting
the sparsity nature of the channel of the massive MIMO. By
compressing the CSI feedback at the user equipment (UE)
side, the CS reduces the CSI feedback and recovers the original
channel matrix at the base station. Algorithms like LASSO
1 solver [13] and AMP [14] have been used but encounter
difficulties in recovering the compressed CSI. This is due to
the fact that they use a basic sparsity prior, while they have a
channel matrix which is sparse approximately. Other advanced
algorithms like TVAL3 [12], OMP-US [15] and BM3D-AMP
do not offer significant improvement in CSI recovery accuracy.
The existing CS algorithms used for reconstruction of signals
require multiple iterations and thus, the rate of convergence is
slow.

With vast advancements in neural network architectures
and with the rapid progression of deep learning, intelligent
communication is considered one of the mainstreams for 5G
and beyond. Following successful implementation of deep
learning in image recognition, natural language processing,
and computer vision [8], studies have incorporated it in the
MAC and PHY layer communication system design algorithms
[9]. Long short-term memory (LSTM) was introduced into the
decoder [6] using time correlation which is extracted from



the channel for performance improvement. The CsiNet, an
autoencoder-based CSI feedback architecture proposed by Wen
et.al. [7] uses deep learning to address the problem of CSI
feedback typically for dimensionality reduction [7]. In another
work, MRFNet [8] was used in CSI feedback in massive
MIMO systems in combination with FDD protocol which
extracts various features of CSI using multiple convolutional
kernel sizes. CsiNet demonstrated superior performance com-
pared to the compressive sensing techniques in context of
accuracy and recovery time.

The CsiNet architecture proposed by Wen et.al. [7] uses
deep learning approach and has considered an autoencoder
structure which consists of an encoder at the user equipment
side and a decoder at the base station. The encoder compresses
the channel matrix into a K-dimensional vector. This K-
dimensional vector is then fed back to the base station. The
decoder uses the received vector to retrieve the original chan-
nel matrices. However, CsiNet employs convolutional layer
of singular size, which could not account for proper feature
extraction.

In this work, a deep learning network based on principle of
inception deep learning network [10] and on the concept of
autoencoder was used to enhance the CSI feedback accuracy
and reliability measured considering normalized mean square
error. This model provided enhanced learning capability com-
pared to CsiNet due to the use of parallel convolutional blocks.
The significance of contributions of this work:

e The proposed framework for CSI feedback consists of
an encoder and a decoder. The channel matrices are
converted into codewords by the user equipment with the
help of the encoder. In the framework, the encoder has
a parallel convolution block, which consists of different
convolutional layers with different filter sizes. These lay-
ers extract features leading to better recovery of channel
matrix with high compression ratios.

o The decoder uses the codewords to retrieve the original
channel matrices, which are subsequently transmitted
back to the base station. The decoder consists of three
concatenated parallel convolutional blocks with multiple
convolutional layers improving channel recovery as com-
pared to CsiNet.

o InceptCodeNet (ICN) outperforms other existing methods
for both indoor and outdoor scenarios under four different
compression ratios. This is justified as the proposed
framework provides lower normalized mean square error
as compared to other methods.

The remainder of the paper is structured as follows: The
system model under consideration is discussed in Section II
which is followed by the proposed network architecture in
Section III. Section IV discusses the corresponding results and
analysis and finally Section V provides concluding remarks.

II. SYSTEM MODEL

A single cell massive MIMO system in combination with
FDD for downlink scenario is considered. The base station has

(Nt >> 1) antennas and the receiver has one antenna (N =
1). The Orthogonal Frequency Division Multiplexing (OFDM)
employing N¢ subcarriers is used for communication. The
signal received at the receiver side is given by:

where the channel vector is represented by h,, € CN7*! 7, €
C is the data symbol, u,, € CV7*! represents the precoding
vector, and b, € C denotes the additive noise for the n'"
subcarrier.

Let the channel information matrix be denoted as H =
[hy, ho,........ Jhy,] where H € CNe*NT in the domain of
spatial frequency. Ny N¢ are the total number of feedback
parameters that each user equipment send back to the base
station if no compression is performed. Once H is received
by the base station, based on that, precoding vectors v,, are
designed where n=1, 2,.....,N¢. In this paper, it is assumed that
the channel state information is already present at the user
equipment, and only feedback is considered. In the domain
of angular delay, two-dimensional Discrete Fourier Transform
(2D-DFT) operation is used to sparsify the channel matrix.
The resultant H can be presented as:

H =W, HW/ 2)

where, W, and W, are the DFT matrices of H after 2D-
DFT operation and are square matrices of order N and Nyp.
The elements in the matrix H contains only a small fraction
of large components, and all other components are close to
zero. The temporal delay between the multipath components
exists for a limited period, hence first Ne¢ rows of H contains
values. The H matrix is truncated to NexNyp by retaining
the first N¢ rows. The feedback parameters is now reduced
from Ny N¢ to 2NNy, which is still a very large number
for feedback in a massive MIMO system.
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Fig. 1. Autoencoder Structure for CSI feedback.

As illustrated in the Fig. 1, a CSI matrix of size N =Ne XNy
is given as input to the encoder at the user equipment side.
It is compressed into a K dimensional vector or codeword.
This compression is defined in terms of data compression ratio
(CR), which is calculated as CR = K/N. This K dimensional
vector is sent back to the base station and is given as input to
the decoder. The output of the decoder is the recovered CSI
matrix.

III. INCEPTCODENET NETWORK ARCHITECTURE

In the proposed model the popular convolutional neural
networks (CNNs) are used in the problem to design the
encoder and the decoder. The convolutional layers have the
ability to exploit the spatial local correlation of the inputs by
administering a pattern of connection among the neurons in the
adjacent layers. ICN consists of parallel convolutional blocks
similar to the blocks used by [9] and the concept of inception



module used in GoogleLeNet [10].

The proposed parallel convolutional blocks are the modified
form of the inception module. The parallel convolution block-
1 (PCBy) is shown in Fig. 2. For dimensionality reduction,
the convolution layer of size 1 x 1 is used [10]. The block has
two convolution layers with filter sizes 3 x 5 and 5 x 3. The
output from the two convolution layers is depth concatenated
with ReLL.U being the activation function. The main idea behind
the choice of filter 3 x 5 and 5 X 3 instead of square filters in
parallel convolutional block-1 (PCBy) is to help in learning
the predominant features along the amplitude and frequency
axes, therefore, filters of different sizes are incorporated along

both the axes.
CONV1X1
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Fig. 2. Parallel Convolutional Block-1 (PCBy).

Fig. 3 shows the parallel convolution block-2 (PCBy). It
consists of three convolutional layers with filter sizes 16 x 16,
8 x 8, and 4 x 4 with rectified linear unit (ReLU) as the
activation function. The output of these convolutional layers
are depth concatenated, hence there is no loss of the learned
features. From the aspect of the algorithm, symmetry is the
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Fig. 3. Parallel Convolutional Block-2 (PC B2).

advantage of odd number filter size. But, in existing CNN, the
usage of odd number filter size hinders acceleration efficiency
of hardware [16]. The main intuition behind using even size
filter is that the even number filter size is much more hardware
friendly than odd number filter size. It can ensure resource
and bandwidth utilization. This is because the fundamental
unit for accelerating convolutional layers is the combination
of many multipliers and an adder tree. Hence, for an adder
tree, there will be a requirement for an extra register if the
number of data in a filter is not of 2™ form. Therefore, even
sized kernel reduces the number of computations. Another
advantage is that shrinking the kernel size from even number
to odd will increase the number of channels, which will
result in better prediction accuracy. This will promote building
hardware inference engine with higher efficiency.

The network consists of an encoder at the user equipment
side and the base station has a decoder. The channel matrix H
of dimension 2NNy, where 2 is used to take care of the real
and imaginary part of the channel matrix in different channels,

is given as the input to the encoder at the user equipment
side. The encoder along with (PCBy) extracts the features
of channel matrix as shown in Fig. 4. The output from the
parallel convolutional block-1 is reshaped to a single vector
using the flatten layer. Subsequently, dense layer is used to get
a codeword of required dimension K x 1.
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Fig. 4. Encoder of InceptCodeNet.

The compressed CSI matrix is given as input to the decoder
block of the network which is present at the base station side.
The input vector of size K x 1 is transformed to size N x 1
by using a dense layer. It is then followed by a reshape layer
for converting it to the original size 2N Nrp. The output from
the reshape layer is fed to (PC Bs) which is then followed by
two more parallel convolution block-2 as shown in Fig. 5.
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Fig. 5. Decoder of InceptCodeNet.

The batch normalization layer is used to prevent any overfit-
ting that might occur in the network. After batch normalization
layer, a convolutional layer with filter size 4 x 4 and a dense
layer with a linear activation function is used to reconstruct
the matrix to its original dimensions.

ICN uses different convolutional layers with different filter
sizes. The usage of convolutional layer with different filter
sizes helps in better feature extraction and better recovery of
channel matrix even with high compression ratios. This makes
it superior to CsiNet and other recent proposed network which
utilizes only same convolutional layer.

IV. RESULTS AND ANALYSIS

For a fair comparison of ICN with others, the original
data set provided by Wen et.al. [7] was used. Data was
generated using the COST 2100 channel model [11]. The
channel matrix is generated for two scenarios: 1) outdoor
rural scenario operating at 300 MHz frequency band and 2)
indoor picocellular scenario operating at a frequency of 5.3
GHz. The default parameter setting was as presented in [7].
A square shaped area with a length of 400 m is considered
for the outdoor scenario and for an indoor setting 20 m length
is considered. The base station is positioned at the centre of
the square-shaped area and the user equipments are placed



randomly per sample in that area. At the base station a uniform
linear array (ULA) with Ny = 32 antennas is employed and
subcarriers, N¢o = 1024 are used. A channel matrix H of
dimension [2 X 32 x 32] is given as input to the network.
After the transformation of the channel matrix using 2D DFT,
the matrix’s first 32 rows are retained. Now, H is of size
32 x 32.

Tensorflow and Keras with a GPU backend is used for the
setting of training and testing of the model. The training data
contains 1,00,000 samples. The testing data includes 20,000
samples and the validation data includes 30,000 samples. Both
the training and validation samples are not included in the
testing samples. The total number of parameters is 391,408.
Out of the total parameters, the trainable parameters are
391,312 and non-trainable parameters are 96. The network is
trained for 1000 epochs and it is trained setting the batch size
as 200. The learning rate value is fixed as 0.001. For updating
the parameters, the Adam optimizer is employed. Adaptive
Moment estimation is an efficient algorithm for optimization
technique for gradient descent. The loss function is determined
by the mean squared error (MSE). The input to the network
is H;. The set of parameters is given as © = (O¢pe; Ogec).
The recovered channel matrix is given by Hg = f(s;;0) =
f(ﬁz N @)é fdec(fenc(ﬁi;genc) 5 @dec) for the ith PatCh-
fenc and fge. denote the encoder and decoder respectively.
Ocne and O 4. denote the parameters of encoder and decoder
respectively. The loss function is calculated as follows:

(gﬂsi;@) - H)

where, the total number of samples included in the training
set is denoted by T and ||.||, represents the Euclidean norm.
The output of the trained model is f(s;; ©) where O is the set
of parameters. The quantitative analysis of the CSI feedback
recovery is carried out using two metrics, cosine similarity
(p) and normalized mean sqaure error (NMSE). NMSE is
defined as the difference between H and Hg, where original
and recovered channel matrices are given by H and Hy
respectively and is given in Eq. (4)

~ 2
NMSE = E{”H _~H2R”2 } @)
I,

2

1
L(®) = T €))

2

Here, NMSE measurement is done in dB and lower NMSE
values signifies a better retrieval of the channel matrix. The
user equipment feed the channel state information back to the
base station and that CSI serves as a precoding or beamform-
ing vector. To measure the quality of precoding performance
cosine similarity is considered and is given in Eq. (5). The
precoding performance is better as the cosine similarity value
approaches 1.
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ll} )
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where the original channel vector of the n'" subcarrier is

denoted by h,, and the reconstructed channel vector of the
nt" subcarrier is given by hyy,. If hy,/ |henll, is used as
beamforming vector, then the equivalent channel achieved
at the user equipment side is h,,t h,/ |henll, We com-
pare the performance of ICN with CS-CsiNet and CsiNet
based network. We also compare the proposed method of
reconstruction with state-of-the-art compressed sensing (CS)
methods, namely TVAL3 [12], LASSO [;-solver [13], and
BM3D-AMP [14]. Table III and Table IV, presents the cosine
similarity and NMSE performance for different methods under
four different compression ratios for both the indoor and the
outdoor scenarios.

ICN attains the lowest NMSE values and hence, outper-
forms other comparable algorithms significantly at all the
compression ratios for both the outdoor and indoor scenarios.
Compared to existing CsiNet, ICN provides an improvement
of 447 dB and 1.89 dB in NMSE for indoor and outdoor
case respectively. When observing the same recovery accuracy,
the proposed framework can reduce the overhead compared
to other conventional methods. In case of indoor scenario,
the proposed network has very small gap of 2.49 dB for
CR=1/4 with respect to CRNet-const [4]. With the increase
of compression ratio, the network performs better because
more original information can be retained with the increase
of the compression ratios. As the network delivers lowest
NMSE values and cosine similarity also approaches to 1, its
superior recovery of channel matrix as well as the precoding
performance is better compared to other existing methods.

Fig. 6. Original Pseudo Gray plots of channel matrix for compression ratio
1/64 by InceptCodeNet for indoor scenario.

Fig. 7. Reconstructed Pseudo Gray plots of channel matrix for compression
ratio 1/64 by InceptCodeNet for indoor scenario.

Fig. 6, Fig. 7, Fig. 10, and Fig. 11 shows the original
and reconstructed pseudo gray plots of the channel matrix
with a compression ratio of 1/64 for indoor and outdoor case
respectively. It is clearly observed that reconstructed gray
plots from the proposed network have a better match with
the original gray plot. In specific, the average running time
of BM3D-AMP, LASSO, CsiNet, and TVAL3 being 0.5717,
0.1828, 0.000089, and 0.3155 seconds respectively [7]. The
average running time InceptCodeNet is 0.000112 seconds
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Fig. 8. Comparison of testing NMSE of InceptCodeNet and CsiNet in an
indoor scenario with 1000 epochs and compression ratio 1/16.

TABLE 1
COMPARISON OF AVERAGE RUNNING TIME FOR DIFFERENT METHODS

SINo

Methods

Average Running Time (seconds)

1.

BM3D-AMP

0.5717

LASSO

0.1828

CsiNet

0.000089

TVAL3

0.3155

InceptCodeNet

0.000112

TABLE 11
COMPARISON OF FLOPs

SINo.

Methods

FLOPs of the encoder

Total FLOPs

1.

CsiNet [7]

561,152

4,370,000

2. ShuffiCSiNet [17]

24,313,856

/

shows the comparison of the FLOPs of different deep learning
models assuming the compression ratio to be 1/16. ICN
exhibits its capability of powerful feature learning, even if it
has an average FLOPs of 15,585,984. Compared to traditional
computer vision model like popular ResNet50 which has
an average FLOPs of 3.9G, the computing overhead of the
proposed model is still much less. Hence, the extra computing
overhead of the proposed model is bearable and is still
fairly simple in comparison to the traditional computer vision
models. The computational complexity of the encoder part of
ICN is much less compared to ShuffleCsiNet [17] which is
indeed a benefit, as the encoder will be incorporated at the
user equipment side. The quality of the retrieved CSI is the
main issue of CSI feedback, the number of FLOPs of the
network is far away from being a hindrance.

Fig. 8 shows the comparison of test NMSE between Incept-
CodeNet and CsiNet during 1000 training epochs. From the
figure, it is observed that the NMSE of the proposed network is
significantly lower than CsiNet after about 20% of the training
process.

Fig. 10. Original Pseudo Gray plots of channel matrix for compression ratio
1/64 by InceptCodeNet for outdoor scenario.

3.

InceptCodeNet

651,264

15,585,984

/ means the value is not reported in the paper [17].

which slightly loses time efficiency, however the performance
is superior in terms of NMSE and p. InceptCodeNet requires
only a several layers of simple matrix vector multiplication,
which has lower overhead than CS-based methods. Table I
compares the average running time (in seconds) taken by
different methods.
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Fig. 9. Comparison of testing NMSE of InceptCodeNet for various compres-
sion ratios in an indoor scenario.

The computational complexity of a particular network is
analyzed using floating point operations (FLOPs). Table II

Fig. 11. Reconstructed Pseudo Gray plots of channel matrix for compression
ratio 1/64 by InceptCodeNet for outdoor scenario.

Fig. 9 shows the comparison of testing NMSE of Incept-
CodeNet for various compression ratios in an indoor scenario.
It can be observed from the Fig 9. that as the compression
ratio increases the NMSE improves because more original
information can be retained. Hence, proposed ICN is superior
in terms of NMSE and p. And also better suited for hardware
implementation.

V. CONCLUSION

In this paper, a novel deep learning architecture, Incept-
CodeNet for the application of CSI feedback in FDD-based
massive MIMO system is presented. The network performed
well for different compression ratios in both indoor and out-
door environments as compared to other existing methods. The
performance achieved with proposed method is compared with
existing methods using performance metrics cosine similarity
(p) and normalised mean square error (NMSE). The usage
of even filters will make the model more hardware friendly



PERFORMANCE COMPARISON OF PROPOSED FRAMEWORK WITH CS RECONSTRUCTION ALGORITHMS FOR INDOOR SCENARIO

TABLE III

Method of Reconstruction CR=1/4 CR=1/16 CR=1/32 CR=1/64

NMSE(dB) o NMSE(dB) 0 NMSE(dB) D NMSE(dB) p
TVALS3 [12] -14.87 0.97 -2.61 0.66 -0.27 0.33 0.63 0.11
LASSO [13] -7.59 0.91 -2.72 0.70 -1.03 0.48 -0.14 0.22
BM3D-AMP [14] -4.33 0.80 0.26 0.16 24.72 0.04 0.22 0.04
CS-CsiNet [7] -11.82 0.96 -6.09 0.87 -4.67 0.83 -2.46 0.68
CRNet-const [4] -21.17 0.97 -10.29 0.96 -8.58 0.92 -6.14 0.87
CsiNet [7] -17.36 0.99 -8.65 0.93 -6.24 0.89 -5.84 0.87
ReNet [3] -17.68 0.99 -9.09 0.93 -6.34 0.87 -3.44 0.76

ShuffleCsiNet-n [17] * * -10.99 0.98 -9.06 0.93 * *

ShuffleCsiNet [17] * * -12.14 0.97 -9.41 0.94 * *
InceptCodeNet -18.68 0.99 -13.12 0.97 -9.61 0.94 -7.05 0.89

* means the performance is not reported in the paper [17]

TABLE IV
PERFORMANCE COMPARISON OF PROPOSED FRAMEWORK WITH CS RECONSTRUCTION ALGORITHMS FOR OUTDOOR SCENARIO
Method of Reconstruction CR=1/4 CR=1/16 CR=1/32 CR=1/64
NMSE(dB) p NMSE(dB) p NMSE(dB) P NMSE(dB) P
TVALS3 [12] -6.90 0.88 -0.43 0.45 0.46 0.28 0.76 0.19
LASSO [13] -5.08 0.82 -1.01 0.46 -0.24 0.27 -0.06 0.12
BM3D-AMP [14] -1.33 0.52 0.55 0.11 22.66 0.04 25.45 0.03
CS-CsiNet [7] -6.69 0.87 -2.51 0.66 -0.52 0.37 -0.22 0.28
CRNet-const [4] -10.42 0.91 -5.09 0.83 -3.51 0.73 -2.13 0.59
CsiNet [7] -8.75 0.91 -4.51 0.79 -2.81 0.67 -1.93 0.59
ShuffleCsiNet-n [17] * * -4.69 0.79 -3.12 0.70 * *
ShuffleCsiNet [17] * * -5.00 0.82 -3.50 0.74 * *
InceptCodeNet -10.64 0.95 -7.05 0.85 -4.96 0.76 -2.14 0.61

* ReNet performance for outdoor is not reported in [3]

and ensures resource and bandwidth utilization. A multi-depth
convolutional block may improve feature learning as the input
image passes through several different sub-modules and get
processed through different degrees of freedom. The usage
of different filters with different dimensions in the parallel
convolution blocks, result in superior performance delivered by
network in terms of dimensionality reduction, feature extrac-
tion, learning capability, and hence channel matrix recovery.
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