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Abstract
• We solve coupled Einstein-Maxwell-Scalar gravity system to obtain a new family of dyonic-charged-hairy black hole solutions that possess both electric and

magnetic charge with planar, spherical and hyperbolic horizon topologies in asymptotic AdS space.

• We investigate the thermodynamics of this system and find drastic changes in its thermodynamical structure in the presence of a scalar field.

• We favour these black holes for their stable nature at low temperatures in the case of the planar and hyperbolic horizon.

• The thermodynamic phase diagram of the spherical hairy dyonic black hole at constant potential resembles to that of a Van der Waals fluid.

Introduction
• Black holes possess energy, temperature and entropy.

• Depending upon asymptotic space, black holes are stable as well as unstable under ther-
modynamical fluctuation.

• Black holes can undergo phase transition.

• Black holes in GR follow the famous no-hair theorem charge and angular momentum.

• We construct counter-example of no-hair theorem in asymptotically AdS spaces by con-
sidering Einstein-Maxwell-Scalar gravity system and thermodynamics.

Model

Dyonic Hairy black hole solution
Einstein-Maxwell Scalar action,
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We take the scale function A(z) = −Log(1 + az) and the coupling function f (z) = 1 and
by using the above 1 we get,
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Fig. 1 : Behaviour of g(z), V (z) and φ(z) for various values of hairy parameter a. Here
zh = 1, µe = 1, κ = 0 and qM = 1 are used. Red, green, blue, brown, orange and cyan
curves correspond to a = 0, 0.05, 0.10, 0.15, 0.20 and 0.25 respectively.

Thermodynamics in Planar Case : κ = 0
The expression for temperature and entropy
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h
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(5)

We have considered the AdS length scale L = 1.
where Ω2,κ is the unit volume of the boundary space constant hypersurface.
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Fig.2 : Hawking temperature T as a function of horizon radius zh for various values of a.
The SBH − T plane for various values of a. Here µe = 0.1, qM = 0.1 are used.
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Fig.3 : Gibbs free energy G as a function of Hawking temperature for various values of a
with µe = 0 and qM = 0.3 and the variation of Tcrit as function of a with µe = 0. Red, green
blue, brown and orange curves correspond to qM = 0.1, 0.2, 0.3, 0.4 ans 0.5 respectively.

Thermodynamics in spherical Case: κ = 1
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Fig.4 : Hawking temperature T as a function of horizon radius zh and Gibbs free energy
∆G as a function of Hawking temperature T for various values of a with µe = 0 and
qM = 0.1.
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Fig.5 : Hawking temperature T as a function of horizon radius zh and Gibbs free energy
∆G as a function of Hawking temperature T for various values of a with µe = 0.3 and
qM = 0.

Conclusion
• The specific heat is always positive for the planar and hyperbolic cases, thereby estab-

lishing these hairy black holes local stability.

• Then from free energy analysis, we get these hairy black holes are thermodynamically
preferred at lower temperatures.

• In spherical case, the Hawking-page phase transition as well as the small/large black hole
phase transition takes place in the grand canonical ensemble.
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