
Family Classification of Malicious Applications
using Hybrid Analysis and Computationally
Economical Machine Learning Techniques

Pushkar Kishore
CSE Dept.

NIT Rourkela,
Rourkela, Odisha, India.
monumit46@gmail.com

Swadhin Kumar Barisal
Siksha ‘O’ Anusandhan
Deemed to be University

Bhubaneswar, Odisha, India.
swadhinbarisal@soa.ac.in

Durga Prasad Mohapatra
CSE Dept.

NIT Rourkela,
Rourkela, Odisha, India.

durga@nitrkl.ac.in

Abstract—Most users utilize android smartphones for almost
all activities. However, malicious attacks on these devices rose
exponentially. Samples can be classified accurately, but earlier
detection is challenging. So, we need a model that detects
malicious applications before exploiting the data. This paper
adopts computationally economical machine learning techniques
to detect and determine the samples’ families. Applications
are analyzed to create static and dynamic datasets. Five data
sampling techniques are used to fix the class imbalance. After
data sampling, we apply four feature selection techniques to
identify the most informative features. Then, four machine
learning techniques are applied to detect malware and its family.
In the case of static analysis, the highest mathews correlation
coefficient (MCC) is 89% for malware classification, 86% for
malware category classification, and 81% for malware family
classification. In the case of dynamic analysis, the highest MCC
is 81% for malware category classification and 62% for malware
family classification. For hybrid analysis, we achieve 88% MCC
for malware category classification and 82% for malware family
determination. Our proposed model outperforms other state-of-
the-art performance parameters named the area under curve,
accuracy, F1-measure, and MCC.

Index Terms—Android, Static analysis, Dynamic analysis, Data
sampling, Feature selection

I. INTRODUCTION

It is easier to access hardware, software, and IoT devices
nowadays. The number of smartphones, smartwatches, and IoT
devices has massively increased over the last four years [1].
A lot of these devices run on Android operating system (OS).
Android applications consist of libraries and data. Android
Manifest file contains the meta-information about the appli-
cations. “Res” directory contains pictures and applications’
symbols. Other library resources contain non-aggregated assets
[2]. Javed et al. [3] developed AlphaLogger that detected typed
keys. These types of applications made cyber-attacks more
challenging.
Android uses a module that verifies permission requested by
applications. Wang et al. [2] discovered that android autho-
rizations were divided into four categories. We consider the
dataset having four malware categories: adware, ransomware,
scareware, and SMS. As malware is evolving, we see the

emergence of advanced detectors. There are two approaches
for detecting malware: static analysis and dynamic analysis. In
the case of static analysis, applications are analyzed without
executions. However, for dynamic analysis, applications are
executed in any environment. The surface area of the attacks
is rising at a brisk and disturbing pace [4]. Many attacks will
evolve in the future to attack android applications.
Some limitations in identifying android malware categories
and families are:

1) Taheri et al. [5] and Tchakounte et al. [6] used static
application programming interface (API) calls and per-
missions for detection. However, static analysis is insuf-
ficient for obfuscated samples.

2) Imtiaz et al. [7] used deep learning (DL) for detection.
However, the malware detection, category classification
and family classification rate are lower.

3) McLaughlin et al. [8] observed that the performance of
the android malware detector and classifier decreased
upon evaluating large-scaled datasets.

4) Sun et al. [9] observed that the training time might grow
exponentially when the data grew linearly.

The primary objectives of our paper are:
1) Design a computationally economical system for detect-

ing and identifying android malware, malware category
and family on static, dynamic and hybrid layers.

2) Evaluate the effectiveness of our proposed system using
the combination of data sampling, feature selection and
machine learning (ML) techniques.

3) Compare ML techniques named naive bayes (NB), lo-
gistic regression (LR), support vector classifier (SVC)
and random forest (RF).

4) Ensure a higher mathews correlation coefficient (MCC)
for large-scale datasets.

The rest of the paper is organized as follows: Section II covers
the related works, Section III presents the overview of the
proposed model, Section IV covers experimental setup and
results, Section V presents comparative analysis, and Section
VI concludes with directions for future work.



II. RELATED WORKS

This section can be classified into three subsections: (1)
API call based malware detection, (2) Intent based malware
detection, and (3) Permission based malware detection.

A. API Call Based Android Malware Detection

Maiorca et al. [10] designed R-PackDroid for detecting
ransomware. They used API packages that characterized ap-
plications context-free. As a result, R-PackDroid can detect
obfuscated applications. Chan and Song [11] used a feature
set containing permissions and API calls for static malware
detection. However, they considered only 19 API calls and
permissions. Taheri et al. [5] designed the CICAndMal2017
dataset, which included static permissions, intents and dy-
namic API calls. As a result, they enhanced the malware
family classification performance. Zhang et al. [12] proposed
a semantic-based approach that classified android malware
using dependency graphs. They introduced graph-similarity
metrics to find out similar application behaviors. A security-
related weighted API graph for each application was created.
Weighted contextual API dependency graph was extracted for
feature set creation. They achieved 93% accurate anomaly
detection on Genome dataset. Imtiaz et al. [7] proposed
DeepAMD to detect real-world android malware. Their model
can identify malware attacks on static and dynamic layers.
DeepAMD is based on an artificial neural network and has
80.3% classification accuracy on dynamic layers.

B. Intent Based Malware Detection

Abuthawabeh et al. [13] designed a supervised model that
enhanced malware detection accuracy using conversion-level
traffic features. They employed the ensemble technique for se-
lecting the most valuable features. They extracted conversion-
level features with the PeerShark tool. They tested their
model on a real-world dataset named CICAndMal2017 dataset.
However, they tested static features only. Lashkari et al. [14]
proposed a system that detected malicious or masquerading
applications on mobile along with its specific family, i.e.,
adware. They used traffic features and classification tech-
niques based on time, flow, and packets to identify malware
families. Draper-Gil et al. [15] studied the effectiveness of
flow-based time related features for detecting virtual private
network (VPN) traffic. They categorized encrypted traffic into
categories like browsing, streaming, etc. CICFlowMeter was
used to generate and extract network traffic flow-level features.
Feizollah et al. [16] evaluated the impact of explicit and
implicit intents on identifying malicious applications. They
proved that intents are better to encode malware’s intentions
than permissions. The detection rate was 83% with permis-
sions, while 91% with intents. The detection rate ascended to
96% by merging intents and permissions.

C. Permission Based Android Malware Detection

Aung and Zaw [17] proposed an ML framework that de-
tected malicious applications by monitoring permissions and
event features. They applied K-means, random forest (RF), and

decision tree (DT) techniques and obtained a 90% average
detection rate. Huang et al. [18] extracted easily retrievable
features from applications to detect malicious applications.
They used techniques named Adaboost, naive bayes (NB),
DT, and support vector machine (SVM). They guaranteed
that a permission-based approach could achieve 81% detection
accuracy. The above observations make it clear that network
traffic flow-level features are helpful for detection. Canfora et
al. [19] proposed a malware detector that worked on sequences
of system calls. Specific system calls representing malicious
behaviors like sending high premium rate short message
service (SMS), botnet capabilities, etc., were implemented.
They collected malicious applications from CICAndMal2017
with the alignment of permissions. The classification threshold
was equal to the similarity score between the DNA of families
and tested applications. Alzaylaee et al. [20] investigated ML-
based detection using dynamic analysis on real devices. They
had shown that several features could be effectively extracted
from devices compared to emulators. An additional 24% of
total applications were successfully analyzed on the phone.
Some researchers applied deep learning techniques to identify
the presence of malware in the android applications [21] but
had lower malware detection, identification rate, dynamic anal-
ysis family detection, and dynamic analysis category detection.
These limitations will rise and get complex as time passes.

III. PROPOSED MODEL

This section discusses about our proposed model and its
description. Figure 1 illustrates our proposed framework for
malware detection, category and family classification. As
shown in Figure 1, our approach consists of multiple steps.
First, samples are classified as malware or benign in the static
layer. Next, the malware is classified into four categories
and subclassified into 40 families. We apply several sampling
techniques to balance class distribution. Next, several feature
selection techniques identify the relevant features and remove
the redundant ones. Then, classifiers are applied and compared.
Finally, we evaluate the performance of classifiers using some
performance metrics.

A. Static Layer Application’s Label Detection

Applications are statically analyzed to create a dataset. In
this case, the objective is to determine whether the android
sample is malicious or benign. The dataset has an imbal-
anced class distribution. The distribution of benign samples to
malicious samples is 0.74:0.26. There is much inconsistency
between the number of benign and malicious samples. Dealing
with an imbalanced dataset having an unequal number of
classes will create bias in the result. We use four different types
of sampling techniques to overcome the imbalance problem.
The first technique is the synthetic minority over-sampling
technique (SMOTE) [DS1], which is based on the combination
of oversampling the majority and minority class [22]. The
second technique is random undersampling (RNUNDER) [23]
[DS2], which randomly removes instances from the majority
class until a more balanced distribution is achieved. The third



Fig. 1. Graphical representation of proposed android malware detection and identification approach

technique is random oversampling (RNDOVER) [24] [DS3],
in which a random set of copies of minority class is added to
the dataset. The fourth technique is tabular generative adver-
sarial networks (tGAN) [25], [DS4], in which new instances
can be created from actual data having numerical or categorical
columns. We also consider the case, i.e., without sampling
(WTOS) [DS5].
Then, we apply feature selection techniques. Liu et al. [26]
surveyed several feature selection algorithms. We apply two
feature selection techniques: Analysis of Variance (ANOVA)
[FS1] and Kendall [FS2]. Apart from the above two, we apply
one metaheuristic algorithm, the whale optimization algorithm
[FS3]. Mirjalili et al. [27] surveyed many metaheuristic al-
gorithms named particle swarm optimization (PSO), gravi-
tational search algorithm (GSA), dolphin echolocation (DE),
fast evolutionary programming (FEP), evolution strategy with
covariance matrix adaptation (CMA-ES), genetic algorithm
(GA) and evolution strategy (ES). They found that whale
optimization is the best one. We also consider a case where
all features are included [FS4].
After applying sampling and feature selection, computationally
economical ML techniques named NB, LR, SVC, and RF
are applied. Zhang et al. [28] compared predictive accu-
racy and area under curve (AUC) of 11 algorithms. Those
computationally economical algorithms which examined the
generalizability of our results are considered.
Few performance metrics are considered for evaluating the
ML techniques’ performance. Sokolova et al. [29] presented a
detailed study of performance measures for the classification
task. We use F1-measure, accuracy, AUC and MCC. If the ratio
of classes is highly inconsistent, then F1-measure is preferred.
F1-measure is the harmonic mean of precision and recall.
AUC is used when the class distribution is balanced. Finally,
MCC measures the performance of both positive and negative
classes.
After finding the label of the applications using static analysis,
we have two options. First, the malicious samples can be
further sub-classified using static or dynamic analysis only.

Second, the hybrid analysis can be used for the above objec-
tive.

B. Malware’s Category Classification

There are four categories of malware in the dataset. The
distribution between them is like 24% adware, 27% SMS,
24% ransomware and 25% scareware. First, data sampling
techniques [DS1-DS5] are applied to balance the number of
classes. After sampling, the feature selection techniques [FS1-
FS4] are applied. Then, ML techniques are applied to find the
static, dynamic and hybrid analysis performance.

C. Malware’s Family Classification

There are 40 malware families in the dataset. The number
of samples in any family ranges from 3 to 16. Since there
is inconsistency in the number of samples belonging to a
class, data sampling techniques [DS1-DS5] are applied. DS1’s
default parameters are changed since the number of neigh-
bors is less than three sometimes for some training points.
Example - simplocker has only one training instance; thus,
k neighbors parameter in DS1 is set as 1. After data sampling,
feature selection techniques [FS1-FS4] are applied. At last,
ML techniques are applied to find the performance of the
static, dynamic and hybrid analysis.

TABLE I
MALWARE FAMILIES WITH THEIR COUNTS

Family CS Family CS Family CS Family CS
Dowgin 6 Ewind 10 Feiwo 5 Gooligan 10
Kemoge 10 Mobidash 8 Selfmite 3 Shuanet 7
Youmi 6 Beanbot 10 Fakemart 9 Jifake 10
Mazarbot 10 Zsone 10 Charger 10 Jisut 8
koler 7 Lockerpin 3 Pletor 8 Porndroid 7
Ransom 10 Slocker 3 Svpeng 6 Wlocker 6
Spy.277 6 Defender 16 Av4And 10 Avpass 10
Fakeapp 4 Fakeav 10 Fakejob 8 FakeTB 7
Penetho 10 Vshield 9 Biige 3 Fakeinst 6
Nandrobx 10 Plankton 6 Smssnif 9 Fakenoti 12



TABLE II
PERFORMANCE PARAMETERS FOR STATIC BINARY DETECTION

DS FS F1-measure (%) Accuracy (%) AUC (%) MCC (%)
NB LR SVC RF NB LR SVC RF NB LR SVC RF NB LR SVC RF

WTOS FS1 79 90 54 92 90 95 83 95 95 97 94 98 73 87 52 88
WTOS FS2 27 51 85 58 77 83 75 84 89 90 80 88 25 49 0 53
WTOS FS3 78 88 11 90 90 94 76 95 94 96 89 97 71 84 21 86
WTOS FS4 77 90 7 91 90 95 76 95 95 97 90 97 71 87 17 88
SMOTE FS1 84 87 81 89 92 93 91 94 96 97 95 98 79 83 75 85
SMOTE FS2 72 73 50 72 82 83 75 83 91 91 87 89 62 64 14 62
SMOTE FS3 78 87 66 86 87 93 86 93 95 96 93 98 70 82 59 82
SMOTE FS4 79 86 65 89 87 92 86 94 96 97 94 99 72 81 60 85
RNDOVER FS1 83 88 76 90 91 94 89 95 95 97 94 98 77 84 70 86
RNDOVER FS2 72 74 7 71 82 83 76 82 90 91 66 88 63 65 17 60
RNDOVER FS3 78 88 61 90 87 94 84 95 95 96 91 98 70 83 55 87
RNDOVER FS4 82 88 50 90 90 94 82 95 96 97 91 98 76 84 48 87
RNDUNDER FS1 84 86 63 85 92 93 84 92 95 96 92 97 78 82 54 80
RNDUNDER FS2 70 72 85 71 81 82 75 82 90 90 15 88 60 62 0 60
RNDUNDER FS3 73 87 31 86 82 93 79 92 95 96 89 97 64 82 34 81
RNDUNDER FS4 75 87 26 87 84 93 79 93 95 97 89 97 67 83 34 83
TGAN FS1 80 91 61 90 91 95 85 95 95 97 95 98 74 88 58 87
TGAN FS2 24 20 85 48 69 78 74 82 66 92 49 87 6 29 0 46
TGAN FS3 78 88 12 91 90 94 76 96 95 97 91 97 71 85 22 89
TGAN FS4 83 88 12 88 92 94 76 94 94 96 91 97 77 84 22 84

IV. EXPERIMENTAL SETUP AND RESULTS

We execute all our experiments on Windows 10 professional
21H2. The CPU is Intel(R) Core(TM) i5-8250U with 16 GB
RAM and NVIDIA GeForce 1060. Python 3.8 is used for the
experiment.
The second version of the dataset CICAndMal2017 [30]
named CICInvesAndMal2019 [5] is considered. The above
dataset has numerous android malware families, permissions,
intents, and API calls. The dataset contains other features
like process logs, packages, log states, battery states, etc. The
captured static features are symbolic, permission, intent, and
components. In addition, dynamic features named API call
and network flows are captured. Table I contains the malware
families’ counts (CS). Table I indicates that the maximum
number of samples (16) is from the defender while the lowest
(3) is from lockerpin, slocker, selfmite and biige. Only fifteen
families have at least ten or more samples.

A. Static Layer Application’s Label Detection

Table II presents the evaluated performance metrics of
static binary detection upon applying the combination of data
sampling, feature selection and ML techniques. For DS5, the
sampling is not done. Since the dataset is imbalanced, F1-
measure and MCC are the best parameters. The highest F1-
measure is 92% when FS1 and RF are used. The highest MCC
is 88% when FS1 and RF are used. Overall, FS1+RF is
the best combination when no sampling is performed. In
the case of DS1, the sampling is performed. For a balanced
dataset, AUC and MCC are the best parameters. The highest
AUC is 99% when FS4+RF is used. The highest MCC is 85%
whenever FS1+RF or FS4+RF are used. All-around, FS4+RF
is the best combination when SMOTE is used. In the case
of DS3, the highest AUC is 98% when FS1+RF, FS3+RF or

Fig. 2. Confusion matrix for static binary detection

FS4+RF are used. The highest MCC is 87% when FS3+RF or
FS4+RF are used. Thus, FS4+RF is the best combination
for RNDOVER. In the case of DS2, the highest AUC is 97%
when FS1+RF, FS3+RF or FS4+RF are utilized. The highest
MCC is 83% when FS4 and RF are used. Hence, FS4+RF
is the most suitable combination for RNDUNDER. Lastly,
for DS4, the highest AUC is 98% when FS1 and RF are used.
The highest MCC jump to 89% when FS3 and RF are used.
Accordingly, FS3+RF is the most suitable combination for
tGAN. Overall, the combination of whale optimization,
tGAN and RF delivers the best result for static binary
detection with 91% F1-measure, 96% accuracy, 97% AUC
and 89% MCC. Figure 2 depicts the best model’s (RF)
confusion matrix for static layer binary classification. Only
1% benign applications are misclassified, while 11% malicious
samples are misclassified as benign.



TABLE III
PERFORMANCE PARAMETERS FOR STATIC CATEGORY CLASSIFICATION

DS FS F1-measure (%) Accuracy (%) AUC (%) MCC (%)
NB LR SVC RF NB LR SVC RF NB LR SVC RF NB LR SVC RF

WTOS FS1 69 84 26 87 87 93 76 94 94 96 92 98 68 83 24 85
WTOS FS2 17 50 17 61 74 81 75 83 81 89 79 90 -1 46 0 53
WTOS FS3 45 82 20 86 79 92 75 94 87 96 91 97 40 80 13 85
WTOS FS4 71 87 12 89 71 87 26 89 94 97 80 98 63 83 7 86
SMOTE FS1 64 78 74 84 82 88 87 92 94 95 94 98 63 74 71 82
SMOTE FS2 81 86 14 89 81 86 28 89 95 97 85 98 75 82 12 85
SMOTE FS3 67 78 50 84 77 87 60 91 94 96 90 98 61 74 41 80
SMOTE FS4 70 86 18 89 69 86 31 89 93 97 65 98 62 82 10 85
RNDOVER FS1 64 82 40 85 85 92 81 93 93 96 93 98 63 81 47 84
RNDOVER FS2 26 48 2 53 74 74 6 75 82 90 70 90 28 45 2 47
RNDOVER FS3 42 80 32 87 75 91 79 94 85 96 91 97 45 77 42 85
RNDOVER FS4 69 87 18 88 70 87 28 88 93 97 61 98 62 83 13 84
RNDUNDER FS1 66 71 26 78 80 79 21 85 94 95 91 97 61 64 20 72
RNDUNDER FS2 28 45 2 51 40 58 6 61 84 86 77 87 25 39 0 44
RNDUNDER FS3 50 73 4 78 39 82 7 86 90 95 79 97 36 67 6 74
RNDUNDER FS4 69 85 17 88 68 85 31 88 93 97 39 98 61 80 14 83
TGAN FS1 70 88 49 88 71 88 51 88 93 97 89 99 62 84 39 83
TGAN FS2 22 48 10 33 32 49 26 33 77 76 60 77 18 32 0 11
TGAN FS3 81 86 14 89 81 86 28 89 95 97 85 98 75 82 12 85
TGAN FS4 71 83 13 87 71 83 28 87 93 95 85 98 63 78 3 83

TABLE IV
PERFORMANCE PARAMETERS FOR DYNAMIC CATEGORY CLASSIFICATION

DS FS F1-measure (%) Accuracy (%) AUC (%) MCC (%)
NB LR SVC RF NB LR SVC RF NB LR SVC RF NB LR SVC RF

WTOS FS1 12 59 11 79 32 59 28 79 50 86 50 95 0 47 0 73
WTOS FS2 11 11 11 57 28 28 28 59 50 62 50 79 0 0 0 45
WTOS FS3 8 44 11 67 20 44 28 67 50 70 50 89 0 25 0 56
WTOS FS4 16 62 11 78 26 62 28 78 53 87 50 96 9 50 0 71
SMOTE FS1 12 59 12 77 32 59 32 78 50 85 50 94 0 46 0 70
SMOTE FS2 11 11 12 52 28 28 32 54 50 67 50 79 0 0 0 39
SMOTE FS3 8 42 12 68 20 43 32 69 50 70 50 88 0 24 0 59
SMOTE FS4 11 56 12 82 22 56 32 81 51 85 50 97 8 43 0 75
RNDOVER FS1 12 63 11 73 32 63 28 74 50 88 50 94 0 51 0 66
RNDOVER FS2 11 11 11 56 28 28 28 57 50 58 50 79 0 0 0 42
RNDOVER FS3 11 40 11 68 21 41 28 68 51 72 50 89 2 22 0 58
RNDOVER FS4 9 60 11 81 21 60 28 80 50 68 50 97 0 49 0 74
RNDUNDER FS1 12 63 8 76 32 63 20 77 50 86 50 94 0 51 0 70
RNDUNDER FS2 8 8 8 54 20 20 20 55 50 65 50 77 0 0 0 40
RNDUNDER FS3 8 43 8 68 20 43 20 69 50 69 50 89 0 24 0 59
RNDUNDER FS4 11 65 8 76 22 66 20 77 51 89 50 96 8 54 0 70
TGAN FS1 11 29 8 82 28 33 20 82 50 74 50 95 0 14 0 76
TGAN FS2 9 9 9 58 21 21 21 58 50 57 50 78 0 0 0 44
TGAN FS3 11 28 9 65 28 30 21 66 50 71 50 88 0 12 0 54
TGAN FS4 11 29 8 85 28 33 20 85 50 73 50 97 0 13 0 81

B. Malware’s Category Classification

Table III presents the evaluated performance metrics for
static category classification using the combination of data
sampling, feature selection and ML techniques. For DS5, the
highest F1-measure is 89% whenever FS4+RF is utilized. The
highest MCC ascends to 86% whenever FS4+RF is used.
Overall, FS4+RF is the best combination when no sampling
is employed. For DS1, the highest AUC is 98% when FS1+RF,
FS2+RF, FS3+RF or FS4+RF is used. The highest MCC is
85% when FS2+RF or FS4+RF is used. Overall, FS4+RF is
the most suitable combination for SMOTE. In the case of
DS3, the highest AUC is 98% when FS1+RF or FS4+RF is
used. The highest MCC is 85% when FS3 and RF are used.

Thus, FS3+RF is the best combination for RNDOVER.
In the case of DS2, the highest AUC is 98% when FS4 and
RF are used. The highest MCC is 83% when FS4 and RF
are used. Consequently, FS4+RF is the best combination
for RNDUNDER. Lastly, for DS4, the highest AUC is 99%
when FS1+RF is used. The MCC extends to 85% when FS3
and RF are used. Therefore, FS3+RF is the best combination
for tGAN. Overall, the combination of whale optimization,
RNDOVER and RF provides the most reasonable result
for static malware category classification with 87% F1-
measure, 94% accuracy, 97% AUC and 85% MCC.
Table IV presents the estimated performance metrics for
dynamic category classification using the combination of



TABLE V
PERFORMANCE PARAMETERS FOR STATIC FAMILY CLASSIFICATION

DS FS F1-measure (%) Accuracy (%) AUC (%) MCC (%)
NB LR SVC RF NB LR SVC RF NB LR SVC RF NB LR SVC RF

WTOS FS1 53 79 9 79 42 79 6 92 89 97 64 97 42 78 11 80
WTOS FS2 6 8 4 53 4 41 2 43 78 87 8 86 1 42 0 44
WTOS FS3 43 79 6 81 32 78 3 92 84 97 86 98 33 78 6 79
WTOS FS4 47 79 6 81 36 79 3 93 84 97 86 97 37 79 6 81
SMOTE FS1 66 81 67 80 62 80 61 90 93 97 89 98 61 80 60 79
SMOTE FS2 24 52 42 53 17 40 28 41 82 87 16 85 19 40 28 41
SMOTE FS3 50 81 59 82 39 79 52 90 89 97 11 97 39 79 52 80
SMOTE FS4 56 80 65 81 44 79 56 91 89 97 9 97 44 79 55 80
RNDOVER FS1 53 80 13 82 42 79 8 90 89 97 45 98 42 79 13 79
RNDOVER FS2 6 51 4 53 4 39 1 42 79 87 71 86 1 40 0 43
RNDOVER FS3 43 80 6 80 32 79 2 92 84 97 76 97 33 79 1 79
RNDOVER FS4 48 80 6 82 36 80 2 90 85 97 84 97 37 80 1 80
RNDUNDER FS1 50 79 10 81 39 78 8 90 89 97 49 97 41 78 11 80
RNDUNDER FS2 6 51 4 53 4 41 4 42 77 87 67 85 1 41 0 43
RNDUNDER FS3 41 78 6 81 30 78 5 89 83 97 58 97 31 77 6 78
RNDUNDER FS4 46 78 6 78 34 78 5 90 84 97 80 97 35 77 6 80
TGAN FS1 48 71 9 79 36 67 7 88 86 96 87 97 37 66 10 78
TGAN FS2 4 33 4 50 4 22 4 39 61 85 75 84 0 25 0 40
TGAN FS3 13 78 6 80 10 78 4 88 69 97 87 98 11 77 6 78
TGAN FS4 8 59 6 60 1 14 1 18 57 88 84 93 1 12 4 27

TABLE VI
PERFORMANCE PARAMETERS FOR DYNAMIC FAMILY CLASSIFICATION

DS FS F1-measure (%) Accuracy (%) AUC (%) MCC (%)
NB LR SVC RF NB LR SVC RF NB LR SVC RF NB LR SVC RF

WTOS FS1 0 4 0 1 5 4 5 2 50 50 50 53 0 2 0 0
WTOS FS2 0 0 0 3 5 5 5 4 50 51 50 56 0 0 0 2
WTOS FS3 0 13 0 48 3 20 5 59 50 78 50 90 0 18 0 59
WTOS FS4 0 14 0 54 3 21 5 63 50 80 50 92 0 19 0 62
SMOTE FS1 0 5 0 1 2 5 3 2 50 50 50 50 0 3 0 0
SMOTE FS2 0 0 0 3 2 2 3 3 50 50 50 50 0 0 0 1
SMOTE FS3 0 13 0 46 3 16 3 58 50 50 50 80 0 14 0 57
SMOTE FS4 0 19 0 52 3 23 3 62 50 50 50 90 0 22 0 61
RNDOVER FS1 0 4 0 3 5 4 5 4 50 51 50 54 0 2 0 2
RNDOVER FS2 0 0 0 4 3 3 5 6 50 50 50 54 0 0 0 3
RNDOVER FS3 0 14 0 45 3 22 5 58 50 80 50 90 0 20 0 57
RNDOVER FS4 0 15 0 52 3 21 5 62 50 50 50 90 0 19 0 61
RNDUNDER FS1 0 4 0 5 3 5 2 5 50 49 50 57 0 3 0 3
RNDUNDER FS2 0 0 0 3 3 3 2 4 50 48 50 55 0 0 0 2
RNDUNDER FS3 0 13 0 41 3 20 2 53 50 79 50 87 0 18 0 52
RNDUNDER FS4 0 17 0 49 3 23 2 59 50 79 50 94 0 22 0 59
TGAN FS1 0 2 0 2 5 4 5 2 50 52 50 50 0 0 0 0
TGAN FS2 0 0 0 3 5 5 5 5 50 50 50 57 0 0 0 2
TGAN FS3 0 6 0 46 5 12 5 59 50 78 50 91 0 10 0 58
TGAN FS4 0 16 0 50 5 25 5 61 50 81 50 93 0 23 0 61

sampling, feature selection and ML techniques. For DS5, the
highest F1-measure is 79% whenever FS1 and RF are used.
The highest MCC is 73% whenever FS1 and RF are used.
Overall, FS1+RF is the best combination with no sampling
requirement. For DS1, the highest AUC is 97% whenever
FS4+RF is used. The highest MCC is 75% whenever FS4 is
used with RF. Overall, FS4+RF is the best combination
for SMOTE. In the case of DS3, the highest AUC is 97%
when FS4+RF is used. The highest MCC is 74% when
FS4+RF is used. Thus, FS4+RF is the best combination
for RNDOVER. In the case of DS2, the highest AUC is 96%
when FS4 and RF are used. The highest MCC is 70% when
FS4+RF or FS1+RF are employed. Therefore, FS4+RF is

the most suitable combination for RNDUNDER. Lastly, for
DS4, the highest AUC is 97% when RF and FS4 are used. The
highest MCC is 81% when FS4 and RF are used. Accordingly,
FS4+RF is the best combination for tGAN. Overall, the
combination of no feature selection, tGAN and RF provides
the most reasonable result for dynamic malware category
classification with 85% F1-measure, 85% accuracy, 97%
AUC and 81% MCC.
On the hybrid dataset, we try two combinations named
(TS4+FS4+RF) and (RNDOVER+FS3+RF). The best results
are obtained from (RNDOVER+FS3+RF). The updated high-
est accuracy is 90%, F1-measure is 90%, AUC is 96%, and
MCC is 88%. Overall, MCC improves by 2% compared to



MCC obtained for static category malware classification.
Figure 3 depicts the best model’s (RF) confusion matrix for

Fig. 3. Confusion matrix for hybrid category classification

the hybrid layer malware category classification. All scareware
samples are correctly classified, while the lowest classification
accuracy (90%) is for adware.

C. Malware’s Family Classification

Table V presents the evaluated static family classification
performance metrics upon applying the combination of sam-
pling, feature selection and ML techniques. For DS5, the high-
est F1-measure is 81% whenever FS3+RF or FS4+RF is used.
The highest MCC is 81% whenever FS4 and RF are used.
For no data sampling, FS4+RF is the best combination.
For DS1, the highest AUC is 98% when FS1 and RF are
used. The highest MCC is 80% when FS3+RF or FS4+RF are
used. FS3+RF is the best combination for SMOTE. In the
case of DS3, the highest AUC is 98% when FS1 and RF are
used. The highest MCC is 80% when FS4 and RF are used.
FS4+RF is the most suitable combination for RNDOVER.
In the case of DS2, the highest AUC is 97% when FS1+RF,
FS3+RF or FS4+RF are used. The highest MCC is 80% when
FS1+RF or FS4+RF is used. FS1+RF is the best combination
for RNDUNDER. Lastly, for DS4, the highest AUC is 98%
when RF and FS3 are used. The highest MCC is 78% when
FS1+RF or FS3+RF is used. Therefore, FS3+RF is the best
combination for tGAN. Without feature selection and data
sampling, RF provides the most reasonable result for static
malware family classification with 81% F1-measure, 93%
accuracy, 97% AUC and 81% MCC.
Table VI presents the evaluated performance metrics for dy-
namic family classification upon applying the combination of
data sampling, feature selection and ML techniques. For DS5,
the highest F1-measure is 54% whenever FS4+RF is used.
The highest MCC is 62% whenever FS4+RF is used. For
no data sampling, FS4+RF is the best combination. For
DS1, the highest AUC is 90% whenever FS4+RF was used.
The highest MCC is 61% whenever FS4+RF is used. Thus,
FS4+RF is the best combination for SMOTE. In the case

of DS3, the highest AUC is 90% when FS4+RF is used. The
highest MCC is 61% when FS4+RF is used. Thus, FS4+RF
is the best combination for RNDOVER. In the case of DS2,
the highest AUC is 94% when FS4+RF is used. The highest
MCC is 59% when FS4+RF is used. Therefore, FS4+RF is
the most suitable combination for RNDUNDER. Lastly,
for DS4, the highest AUC is 93% when FS4+RF is used. The
highest MCC is 61% when FS4+RF is used. Hence, FS4+RF
is the best combination for tGAN. Overall, the combination
of no feature selection, no data sampling and RF provide
the best result for dynamic malware family classification
with 54% F1-measure, 63% accuracy, 92% AUC and 62%
MCC.
We infer from the above observations that FS4+WTOS+RF is
the most suitable combination. We try the above combination
on the hybrid dataset. The updated accuracy is 83%, F1-
measure is 76%, AUC is 94%, and MCC is 82%. Overall,
MCC improves by 1% compared to MCC obtained for
static malware family classification.

V. COMPARISON WITH RELATED STATE-OF-THE-ARTS

Table VII, VIII and IX present the comparison of our
proposed methodology with existing state-of-the-art. In Table
VII, highest F1-measure [92%] is obtained using DNN [7].
However, our proposed methodology has the highest values
for all parameters. MCC is the best parameter among all,
which is considered for performance comparison. There is
a 5% improvement in MCC score from the second-best. In
Table VIII, highest F1-measure [91%] and accuracy [91%]
is obtained using DNN [7]. Our proposed one has over 4%
improvement in MCC score compared to the second-best. In
Table IX, highest F1-measure [80%] is obtained using DNN
[7]. DT and KNN perform poorly due to the highly imbalanced
dataset. However, RF performs much better due to the ensem-
ble. Our proposed methodology surpasses the values of other
techniques’ performance parameters. Here, MCC is 3% higher
than the second-best. Overall, our proposed methodology
achieves the highest MCC for binary detection, category
and family classification using the proper combination
of data sampling, feature selection and computationally
economical technique (RF).

TABLE VII
PERFORMANCE COMPARISON FOR STATIC BINARY DETECTION

Technique F1-measure (%) Accuracy (%) AUC (%) MCC (%)
RF [5] 86 92 95 81
KNN [14] 87 93 96 83
DT [14] 87 93 96 83
DNN [7] 92 93 97 84
Proposed 91 96 97 89

VI. CONCLUSION AND FUTURE WORK

Attacks on the android operating system are rising; thus,
a computationally efficient malware detector is needed. Ap-
plications are analyzed on three layers: static, dynamic and
hybrid(static+dynamic). The combination of data sampling,



TABLE VIII
PERFORMANCE COMPARISON FOR CATEGORY CLASSIFICATION

Technique F1-measure (%) Accuracy (%) AUC (%) MCC (%)
RF [5] 82 81 95 75
DT [13] 77 78 94 70
KNN [14] 49 54 79 39
DNN [7] 91 91 96 84
Proposed 90 90 96 88

TABLE IX
PERFORMANCE COMPARISON FOR FAMILY CLASSIFICATION

Technique F1-measure (%) Accuracy (%) AUC (%) MCC (%)
RF [5] 60 43 86 44
KNN [14] 25 21 50 19
DT [14] 23 16 50 14
DNN [7] 80 80 92 79
Proposed 76 83 94 82

feature selection and techniques are applied to detect malware
and classify its category and family. Upon experimentation, it
is observed that a combination of whale optimization, tabular
GAN and the random forest (RF) is best for static malware cat-
egory detection. The highest malware category classification is
achieved by replacing tabular GAN with RNDOVER and static
with the hybrid. Similarly, RF is applied with no sampling and
avoids feature selection for malware family classification.
In the future, we will test the combinations on more datasets.
In addition, we will use other representations of the applica-
tion’s features to enhance the performance parameters.

REFERENCES

[1] I. Gartner, “Gartner says worldwide sales of smartphones recorded first
ever decline during the fourth quarter of 2017,” 2018.

[2] C. Wang, Q. Xu, X. Lin, and S. Liu, “Research on data mining of
permissions mode for android malware detection,” Cluster Computing,
vol. 22, no. 6, pp. 13 337–13 350, 2019.

[3] A. R. Javed, M. O. Beg, M. Asim, T. Baker, and A. H. Al-Bayatti,
“Alphalogger: Detecting motion-based side-channel attack using smart-
phone keystrokes,” Journal of Ambient Intelligence and Humanized
Computing, pp. 1–14, 2020.

[4] C. Iwendi, Z. Jalil, A. R. Javed, T. Reddy, R. Kaluri, G. Srivastava, and
O. Jo, “Keysplitwatermark: Zero watermarking algorithm for software
protection against cyber-attacks,” IEEE Access, vol. 8, pp. 72 650–
72 660, 2020.

[5] L. Taheri, A. F. A. Kadir, and A. H. Lashkari, “Extensible android
malware detection and family classification using network-flows and
api-calls,” in 2019 International Carnahan Conference on Security
Technology (ICCST). IEEE, 2019, pp. 1–8.

[6] F. Tchakounté, A. Djakene Wandala, and Y. Tiguiane, “Detection of
android malware based on sequence alignment of permissions,” Int. J.
Comput.(IJC), vol. 35, no. 1, pp. 26–36, 2019.

[7] S. I. Imtiaz, S. ur Rehman, A. R. Javed, Z. Jalil, X. Liu, and W. S.
Alnumay, “Deepamd: Detection and identification of android malware
using high-efficient deep artificial neural network,” Future Generation
computer systems, vol. 115, pp. 844–856, 2021.

[8] N. McLaughlin, J. Martinez del Rincon, B. Kang, S. Yerima, P. Miller,
S. Sezer, Y. Safaei, E. Trickel, Z. Zhao, A. Doupé et al., “Deep android
malware detection,” in Proceedings of the seventh ACM on conference
on data and application security and privacy, 2017, pp. 301–308.

[9] B. Sun, T. Takahashi, T. Ban, and D. Inoue, “Detecting android malware
and classifying its families in large-scale datasets,” ACM Transactions
on Management Information Systems (TMIS), vol. 13, no. 2, pp. 1–21,
2021.

[10] D. Maiorca, F. Mercaldo, G. Giacinto, C. A. Visaggio, and F. Mar-
tinelli, “R-packdroid: Api package-based characterization and detection
of mobile ransomware,” in Proceedings of the symposium on applied
computing, 2017, pp. 1718–1723.

[11] P. P. Chan and W.-K. Song, “Static detection of android malware by
using permissions and api calls,” in 2014 International Conference on
Machine Learning and Cybernetics, vol. 1. IEEE, 2014, pp. 82–87.

[12] M. Zhang, Y. Duan, H. Yin, and Z. Zhao, “Semantics-aware android mal-
ware classification using weighted contextual api dependency graphs,”
in Proceedings of the 2014 ACM SIGSAC conference on computer and
communications security, 2014, pp. 1105–1116.

[13] M. K. A. Abuthawabeh and K. W. Mahmoud, “Android malware
detection and categorization based on conversation-level network traffic
features,” in 2019 International Arab Conference on Information Tech-
nology (ACIT). IEEE, 2019, pp. 42–47.

[14] A. H. Lashkari, A. F. A. Kadir, H. Gonzalez, K. F. Mbah, and A. A.
Ghorbani, “Towards a network-based framework for android malware
detection and characterization,” in 2017 15th Annual conference on
privacy, security and trust (PST). IEEE, 2017, pp. 233–23 309.

[15] G. Draper-Gil, A. H. Lashkari, M. S. I. Mamun, and A. A. Ghorbani,
“Characterization of encrypted and vpn traffic using time-related,” in
Proceedings of the 2nd international conference on information systems
security and privacy (ICISSP), 2016, pp. 407–414.

[16] A. Feizollah, N. B. Anuar, R. Salleh, G. Suarez-Tangil, and S. Furnell,
“Androdialysis: Analysis of android intent effectiveness in malware
detection,” computers & security, vol. 65, pp. 121–134, 2017.

[17] W. Z. Zarni Aung, “Permission-based android malware detection,”
International Journal of Scientific & Technology Research, vol. 2, no. 3,
pp. 228–234, 2013.

[18] C.-Y. Huang, Y.-T. Tsai, and C.-H. Hsu, “Performance evaluation
on permission-based detection for android malware,” in Advances in
intelligent systems and applications-volume 2. Springer, 2013, pp. 111–
120.

[19] G. Canfora, E. Medvet, F. Mercaldo, and C. A. Visaggio, “Detecting
android malware using sequences of system calls,” in Proceedings of
the 3rd International Workshop on Software Development Lifecycle for
Mobile, 2015, pp. 13–20.

[20] M. K. Alzaylaee, S. Y. Yerima, and S. Sezer, “Emulator vs real phone:
Android malware detection using machine learning,” in Proceedings
of the 3rd ACM on International Workshop on Security and Privacy
Analytics, 2017, pp. 65–72.

[21] Z. Yuan, Y. Lu, and Y. Xue, “Droiddetector: android malware char-
acterization and detection using deep learning,” Tsinghua Science and
Technology, vol. 21, no. 1, pp. 114–123, 2016.

[22] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote:
synthetic minority over-sampling technique,” Journal of artificial intel-
ligence research, vol. 16, pp. 321–357, 2002.

[23] J. Prusa, T. M. Khoshgoftaar, D. J. Dittman, and A. Napolitano, “Using
random undersampling to alleviate class imbalance on tweet sentiment
data,” in 2015 IEEE international conference on information reuse and
integration. IEEE, 2015, pp. 197–202.

[24] A. Moreo, A. Esuli, and F. Sebastiani, “Distributional random over-
sampling for imbalanced text classification,” in Proceedings of the 39th
International ACM SIGIR conference on Research and Development in
Information Retrieval, 2016, pp. 805–808.

[25] L. Xu and K. Veeramachaneni, “Synthesizing tabular data using gener-
ative adversarial networks,” arXiv preprint arXiv:1811.11264, 2018.

[26] H. Liu and L. Yu, “Toward integrating feature selection algorithms for
classification and clustering,” IEEE Transactions on knowledge and data
engineering, vol. 17, no. 4, pp. 491–502, 2005.

[27] S. Mirjalili and A. Lewis, “The whale optimization algorithm,” Advances
in engineering software, vol. 95, pp. 51–67, 2016.

[28] C. Zhang, C. Liu, X. Zhang, and G. Almpanidis, “An up-to-date
comparison of state-of-the-art classification algorithms,” Expert Systems
with Applications, vol. 82, pp. 128–150, 2017.

[29] M. Sokolova and G. Lapalme, “A systematic analysis of performance
measures for classification tasks,” Information processing & manage-
ment, vol. 45, no. 4, pp. 427–437, 2009.

[30] A. Shiravi, H. Shiravi, M. Tavallaee, and A. A. Ghorbani, “Toward
developing a systematic approach to generate benchmark datasets for
intrusion detection,” computers & security, vol. 31, no. 3, pp. 357–374,
2012.


