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Abstract: This paper considers the mechanism of damping and its theoretical evaluation for layered copper
cantilever structures jointed with a number of equispaced connecting bolts under an equal tightening torque.
Extensive experiments have been conducted on a number of specimens for comparison with numerical re-
sults from the theory. Intensity of interface pressure, its distribution characteristics, dynamic slip ratio and
kinematic coefficient of friction at the interfaces, relative spacing of the connecting bolts, and frequency
and amplitude of excitation are all found to have an effect on the damping capacity of such structures. It
is established that the damping capacity of copper structures jointed with connecting bolts can be improved
considerably by increasing the number of layers while maintaining uniform intensity of pressure distribution
at the interfaces.
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NOMENCLATURE
a; = Amplitude of vibration of the first cycle
a,+1 = Amplitude of vibration of the (n + 1) th cycle
a’ = Ratio of static bending stiffness of the layered and jointed cantilever beam to
that of a solid one (k/k’)
a = Dynamic slip ratio
b = Width of the specimen

du, = Incremental relative dynamic slip

Dpg = Diameter of the connecting bolt

of = Logarithmic damping decrement due to interface friction damping
do = Logarithmic damping decrement due to material and support damping
0 = Logarithmic damping decrement

A = Deflection due to static load

Es = Energy loss (per cycle) due to interface friction

E, = Energy stored in the system with amplitude of vibration a;

E,.; = Energy stored in the system with amplitude of vibration a,,,,

E; = Energy loss arising from interface friction under the joints

E = Energy loss from material and support damping

E.. = Energy stored (per cycle) in the system per cycle
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Static bending modulus

Frictional force at the interfaces of the beam in the presence of relative
dynamic slip

Maximum frictional force at the interfaces of the beam during vibration
Thickness of each layer of the cantilever specimen

Second moment of area

Static bending stiffness of the solid cantilever beam

Static bending stiffness of the layered and jointed beam

Free length of the layered and jointed beam

Number of layers

Kinematic coefficient of friction

Number of cycles

Total normal force

Interface pressure due to tightening load

Axial load on the connecting bolt due to tightening

Radius of the connecting bolt

Limiting radius of the influencing zone under each connecting bolt
Any radius within the influencing zone around the connecting bolt
Damping ratio

Surface stress on the jointed structure due to tightening load

Time period

Tightening torque applied on the connecting bolt

Relative dynamic slip between interfaces at a bolted joint in the absence of
a friction force

Relative dynamic slip between interfaces at a bolted joint in the presence
of a friction force

Relative dynamic slip between the interfaces at the maximum amplitude
of vibration

Static load

Natural frequency of vibration

Deflection of the beam under vibration

Initial free end displacement

1. INTRODUCTION

The study of damping and improvement of damping properties of structural members has be-
come increasingly significant in engineering science for controlling the undesirable effects of
vibration while simultaneously enhancing the damping capacity. This study has been taken
up primarily in four major areas: Materials science, structural mechanics, vibration control
and inspection methods. Damping in vibrating mechanical systems has been subdivided into
two classes: Material damping and system damping, depending on the main routes of en-
ergy dissipation. Coulomb (1784) postulated that material damping arises due to interfacial
friction between the grain boundaries of the material under dynamic condition. Further stud-
ies on material damping have been made by Robertson and Yorgiadis (1946), Demer (1956),
Lazan (1968) and Birchak (1977). System damping arises from slip and other boundary shear



effects at mating surfaces, interfaces or joints between distinguishable parts. Murty (1971)
established that the energy dissipated at the support is very small compared to material damp-
ing.

As the material damping within the structural members is of low magnitude, various
other techniques are used to improve the damping capacity of structures. These are: (i) Use of
constrained/unconstrained viscoelastic layers, (ii) fabrication using a multi-layered sandwich
construction, (iii) use of stress raisers, (iv) insertion of special high-elasticity inserts in the
parent structure, (v) application of spaced damping techniques, (vi) use of a viscous fluid
layer, (vii) use of bonded joints and (viii) fabricating layered and jointed structures with
welded/riveted/bolted joints.

One of the most important techniques for improving the damping capacity of structures
is the use of constrained and unconstrained layers. A variety of work on constrained layer
damping has been reported by Grootenhuis (1970), Behera and Nanda (1986), Nakra (1998),
Chantalakhana et al. (2000), and Trindade et al. (2002). Appreciable structural damping
has been achieved using laminated constructions consisting of alternate layers of an elastic
material such as metal and a high damping viscoelastic one such as many thermoplastics. Ex-
tensive work has been reported by Plantema (1966), Mead and Markus (1970), Han (1985),
Trindade et al. (2001), Yim et al. (2003), and Srikantha et al. (2003) on damping of sandwich
beams. It has been established that the damping characteristics of a structural member can be
improved considerably by using elastic inserts or pins with good damping properties. Mallik
and Ghosh (1973, 1974), and Rahmathullah and Mallik (1979) have shown that the damping
capacity can be increased by use of a suitable combination of strip and insert material.

Another technique for the improvement of damping capacity is to move the damping
material away from the structure. This technique was first used to damp out noise and vi-
bration in U. S. submarines. The details of studies in this field have been done by Miller
and Warnaka (1970). Uno Ingard and Akay (1987) have studied the motion of two plates
coupled by a viscous fluid layer and established that the damping produced by the fluid layer
increases with layer thickness and also with decreasing frequency. Thornley and Lees (1972)
studied the dynamic characteristics of joints with epoxy resin as the interfacial bonding ma-
terial and established that this bonding increases both the static and dynamic stiffness with a
small increase in damping of a joint.

Joints are present in most of the structures and usually over ninety percent of the in-
herent damping in a fabricated structure originates in the joints. Belgaumkar et al. (1968),
Masuko et al. (1973), and Nishiwaki et al. (1978, 1980) have reported extensive work on
techniques for improving the damping capacity of welded structures and also established that
the damping capacity of a welded machine tool structure is not different from that of a cast
one. Anno et al. (1970) have reported that steel plates welded with plug joints show a high
damping capacity than those with other forms of welded joints. Pain (1957) has established
that riveted joints also improve the damping capacity of structures. Extensive work has been
done by Fernlund (1961), Kobayashi et al. (1986), Shin et al. (1991), Masuko et al. (1973),
Nishiwaki et al. (1978, 1980), Motosh (1975), Connolly et al. (1965), Mitsunaga (1965) and
Law et al. (2004) on the damping of structures with bolted joints. It is generally recognized
that the damping capacity of jointed structures may be determined from the frictional loss
energy caused by slip at the interfaces between the steel plates. Beards and Williams (1977)
have shown that interfacial slip in joints is the major contributor to the inherent damping of
most fabricated structures.
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Figure 1. Free-body diagram of a bolted joint showing the influence zone.

Although a considerable amount of work has been reported on the experimental study
of damping in welded and riveted structures, no generalized theory has been established.
Hence, layered construction jointed with connecting bolts can be used more effectively to
achieve a required damping capacity by controlling the influencing parameters. Therefore,
attention has to be focused on these influencing parameters in order to maximize the overall
damping capacity.

The logarithmic damping decrement, a measure of the damping capacity of layered and
jointed structures has been determined using the energy principle, considering the relative
dynamic slip and the pressure distribution at the interfaces of the contacting layers. These
two vital parameters must be accurately assessed for correct evaluation of the damping ca-
pacity of such structures. Previous investigators, including Fernlund (1961), Kobayashi and
Matsubayashi (1986), and Shin et al. (1991) have reported on this interface pressure and its
distribution characteristics without specifying the spacing of the connecting bolts between
the layers. Masuko et al. (1973), Motosh (1975) and Nishiwaki et al. (1978, 1980) have
done extensive work assuming uniform intensity of pressure distribution at the interfaces of
the layered and jointed structures without considering the actual pattern but instead using
Rotschar’s pressure cone (1973). Connolly et al. (1965) and Mitsunaga (1965) have reported
that the pressure distribution at the jointed interfaces is not uniform but varies almost par-
abolically, the maximum pressure being at the surface of the bolt hole. Furthermore, Gould
and Mikic (1972) and Ziada and Abd (1980) have shown that the pressure distribution at the
interfaces of a bolted joint is parabolic in nature and there exists an influence zone in the
form of a circle with 3.5 times the diameter of the connecting bolt which is independent of
the tightening load applied on it as shown in Figure 1. Nanda (1992) and Nanda and Behera



(1999, 2000) have also done a considerable amount of work on the distribution pattern of
the interface pressure and established that it becomes uniform with a separation distance of
2.00211 times the hole diameter between consecutive connecting bolts joining the layered
beams. The damping capacity of such structures can be improved substantially by varying
the influencing parameters. These include: Intensity and distribution characteristics of the
interface pressure, spacing of the connecting bolts, tightening torque applied to them, co-
efficient of kinetic friction at the interfaces, material used for the structure, dynamic slip
ratio and number of layers.

In the present investigation, damping capacity of such layered and jointed structures has
been evaluated from analytical expressions developed in the investigation and compared ex-
perimentally for copper cantilever beams with two or more layers under different conditions
of excitation in order to establish the accuracy of the theory developed.

2. THEORETICAL ANALYSIS

In the case of a layered structure jointed with connecting bolts, the intensity of the interface
pressure distribution under each bolt has been assumed to be a non-dimensional polynomial
with even powers:

p/os = A+ Ay(R/Rp)” + As(R/Rg)* + As(R/Rg)° + As(R/Rp)®* + As(R/Rp)" (1)

Where p, o, R and Ry are the interface pressure, surface stress on the jointed structure
due to tightening load, any radius within the influencing zone and the radius of the con-
necting bolt respectively and A1, A,, Az, A4, A5 and Ag are the constants of the polynomial.
These constants were evaluated from the numerical data given by Ziada and Abd (1980)
by using Dunn’s curve fitting software as: 0.68517E+00, —0.10122E+00, 0.94205E—-02,
—0.23895E—-02, 0.29487E-03 and —0.11262E—04 respectively.

The present work is based on the energy loss due to friction at the interfaces and the
strain energy of a cantilever beam, as shown in Figure 2. The energy loss per cycle of
vibration (E ) arising due to friction and relative dynamic slip (u, ) at the interfaces has been
calculated using the theory proposed by Nishiwaki et al. (1980):

Ef = %Frdur =2F murm (2)

Where F,, du,, F,jy and u, ) are the frictional force at the interfaces of the beam in presence
of relative dynamic slip, incremental relative dynamic slip, maximum frictional force at the
interfaces of the beam during vibration and relative dynamic slip between the interfaces at
the maximum amplitude of vibration respectively as shown in Figure 3.

The maximum frictional force at the interfaces of the beam under transverse vibration
is
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Figure 2. Mechanism of dynamic slip at the interfaces.
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Figure 3. Relationship between the friction force (F,) and the relative dynamic slip («,) during one cycle.

where x4 and N are the kinematic coefficient of friction and the total normal force at the
interfaces of the layers under each connecting bolt respectively.
This total normal force has been determined by Nanda and Behera (2000) as

N = [4 {(RM/RB)2 —1} +{Ay/2} {(RM/RB)4 —1} +{A3/3) {(RM/RB)6 -1}
+ {As/4} {(Ru/Rp)® — 1} + {As/5} {(Ru/Rp)"" — 1}
+ {Ae/6} {(Ru/Rp)"> —1}][P/3] @)



where Ry, and P are the limiting radius of the influencing zone under each connecting bolt
and the axial load on the connecting bolt due to tightening torque respectively.

The axial load P on the connecting bolt due to tightening torque is given by Shigley
(1956) as

P =[T/0.2Dg] )

where T and Dpg are the tightening torque and nominal diameter of the connecting bolt
respectively.

The vibration of the cantilever beam specimen, as shown in Figure 2, can be expressed
as

y(x, 1) =Yx) f(1) (©)

where the space function, Y (x) = C; sin Ax + C, cos Ax 4+ C5sinhix 4+ C4 cos hx, and the
time function, f(t) = A cos w,t+ B sinw,t, Cy, C», C3, and C, are constants to be evaluated
from the boundary conditions with the usual notation; 1* = w*Ay /Elg, and A and B are
constants to be evaluated from the initial conditions.

Using the initial free end displacement, y(l, 0), with its boundary conditions for the
cantilever beam, the equation for the slope is given by

[Oy(x,t)/0x] = —[(cosAl + coshAl)(coshix — cos Ax)
(sin Al + sin hAl)(sin Ax + sin hAx)]
[Ay(l, 0) cos w,t][2(cos Al sin hAl — sin Al cos hAD]™! 7

X

where w, is the natural circular frequency of vibration.
The actual relative dynamic slip at the interfaces of a bolted joint at a distance /; from
the fixed end of a layered and jointed cantilever beam is given by

ur(liat)zau(liat) (8)

where a is the dynamic slip ratio (u,/uo) and uy is the relative dynamic slip between the
interfaces in the absence of a friction force at a bolted joint.

If the layered and jointed beam specimen is given an initial displacement at the free end,
the relative dynamic slip at the interfaces between the layers, as shown in Figure 2, is given
by

u-(li, 1) = alAuy + Auy] = 2ah tan[oy(l;, 1) /0x] (©)]
where 24 is the thickness of each layer of the cantilever beam.

Modifying equation (7) and combining it with equation (9), the maximum relative dy-
namic slip under a connecting bolt is found to be



ury = lah][(cos Al 4+ coshAl)(cos hil; — cos Al;)
—  (sin Al + sinhAl)(sin Al; + sin hAl;)]
[Ay(l, 0)][sin Al cos hAl — cos Al sin hAl]™! (10)

X

The overall maximum relative dynamic slip for a layered and jointed cantilever beam
with q equispaced connecting bolts (having a spacing of 3.5 times their diameter) has been
calculated by Nanda (1992) and is given by

Uy = ahXgmAy(l, 0) (11)

q
(coshAl; —cos Al;) — (sin Al + sinhAl) ) (sin Al; +

where Xqm = [(cos Al 4 cos hAl)
i=1 i=1

q

sinhAl;)| x [sin Al cos hAl — cos Al sin hAl]™!

It is assumed that the energy loss of the layered and jointed beam consists of the loss
arising from interfacial friction under the joints (E ;) and the loss from material and support
damping (Ej). Thus, the logarithmic damping decrement of a layered and jointed beam is
expressed as

0 =1[(Es/Es) + (Eo/En)1/2 =07+ do 12)

where E,, is the energy stored per cycle of vibration due to the initial amplitude of excitation
[y(l,0)] and is given by E, = [ky*(l,0)]/2

The logarithmic damping decrement due to material and support damping (Jy), being
very small compared to the interface friction damping, can be neglected and the equation for
the logarithmic damping decrement is thus simplified to

o~ d;=E;/2E, (13)
The energy loss per cycle due to the friction at the interfaces, as given in equation (2), can

be modified by combining equations (3) and (11) and the logarithmic damping decrement
for such a beam is then found to be

0=E;/2E, =2uNoahXumi/ky(l,0) (14)
where k is the static bending stiffness of the layered and jointed cantilever beam.
As equation (14) for logarithmic damping decrement is valid for a two-layered jointed
cantilever beam, a generalized equation has been developed for a multi-layered and jointed
cantilever beam:

§=2(m — DuNahXgml/ky(l, 0) (15)

Where m is the number of layers.



Since direct evaluation of the dynamic slip ratio, a, and kinematic coefficient of friction,
U, were not possible, the product of these two parameters (i.e., o x u) has been determined
from the experimental results for logarithmic decrement for two-layered copper specimens
with 10 mm diameter connecting bolts. For this purpose, equation (14) has been modified to

o x it = [ky(l, 0)3]/[2Nh X un?] (16)

2.1. Determination of Logarithmic Damping Decrement with Uniform Pressure Distribution
at the Interfaces

As discussed, layered and jointed structures with connecting bolts show parabolic pressure
distribution within the influence zone of each bolted joint, resulting in a non-uniform distri-
bution of pressure at the interfaces. In order to obtain a uniform pressure distribution at the
interfaces, the consecutive influencing zones must be superimposed by decreasing the spac-
ing of the bolts on the structure. The spacing between bolts required to achieve a uniform
pressure distribution at the interfaces has been evaluated with the help of a suitable soft-
ware package [Nanda and Behera (1999)] and found to be 2.00211 times the diameter of the
connecting bolts, the number being independent of the tightening torque on the connecting
bolts. The magnitude of the uniform pressure with the above spacing has been determined
as shown in Figure 4 and found to be

p=0.671P/37 R} (17)

For a layered and jointed beam, the damping ratio, W, is expressed as the ratio between
the energy dissipated by the relative dynamic slip between the interfaces and the total energy
introduced into the system, and is expressed as

U = [Eloss/(Eloss + Enet)] (18)

where E and E, are the energy loss due to interface friction and energy introduced during
the unloading process (see Figure 5). For the same cantilever beam with uniform pressure p
at the interface, the energy loss due to this frictional force at the interface per half-cycle of
vibration may be written as

T

~

Wp

l
Eros = / 1 pbl{0u, (x, 1) /61)dxdr] (19)
0

o —

However, the energy introduced into the layered and jointed cantilever beam in the form
of strain energy per half-cycle of vibration is given by

Ewi = BEI/1)Y*(1,0) (20)
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Figure 4. Influence area under a connecting bolt head.

Combining equations (19) and (20), we get

Lylon

l
Eros/ Ene = / / [ pb{ou, (x, 1)/ot)dxdr] / [GEL/F)y*(1, 0)] @1
0 0

Considering uniform pressure distribution throughout the contact area of the interfaces
and assuming the dynamic slip ratio, «, to be independent of both the distance from the fixed
end of the cantilever beam and time, equation (21) can be modified to

Eloss/Enel = [2lllbhpa/{(3E1/l3)y2(l5 O)}}
/oy 1

x / / [o{tan Oy (x, t)/0x}dxdt]/ot (22)

0 0

Moreover, the slope of the cantilever beams dy(x, t)/dx being quite small, [tan dy(x, t)/0x]
~ 0y(x, t)/0x, and equation (22) can be further modified to give
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Eioss/ Enet = [2ubhpa /{(3E1/1%)y*(1,0)}] / / [(0°y(x,1)/0x0r}dxdt] (23)
0 0

Considering the boundary and the initial conditions of the cantilever beam as y(l, 0) =
yo (positive downward deflection) and dy(I, 0)/6¢t = 0 (no initial velocity) respectively, the

bending deflection of the beam under vibration can be expressed as

y(x, 1) =Y (x){yo/Y ()} cos m,t, (24)

where Y (x) is the space function and the rest is the time function.

Substituting equation (24) into equation (23), changing the limits of the time interval
from 0 and 7 /w, to 0 and 7 /2w,,, and multiplying the expression by two gives

Eiss/Ene = [4ubhpa/{GEI/P)y*(l,0)}]

/20, |

X / / 0% [Y (x){yo/ Y (1)} cos w,t] dxdt /[0xdt] (25)

0 0

Using equations (24) and (25) we get

Eioss/ Eve = [4ubhpay(1,0)]/[BET/)y*(1,0)] (26)



Since 3E1/I® = k, i.e., the static bending stiffness of the layered and jointed beam,
equation (26) reduces to

Eloss/Enet = [4lubhpa]/[ky(la 0)] (27)

Equation (18) becomes

U= [Eloss/(Eloss + Enet)] = 1/[1 + Enet/Eloss] (28)

Putting the values of E)/ Eye from equation (27) into equation (28) we get
U = 1/[1+ {ky(l, 0)}/{4ubhpa}] (29)

The logarithmic damping decrement, J, is usually expressed as 0 = In(a,, /a,41). Assum-
ing that the energy stored in the system is proportional to the square of the corresponding
amplitude, the relationship between the logarithmic damping decrement and the damping
ratio can be written as

0 =In(E,/E,11)"? = [In{1/(1 — ¥)}]/2 (30)

where E, and E, ;| are the energy stored in the system with amplitudes of vibration a; and
a1 respectively.
In the case that ¥ < 1, the Maclaurin expansion of equation (30) will yield

o= [V + (V?/2)] /2 (31

Similarly, in order to calculate the logarithmic damping decrement for multi-layered
cantilever beams, the number of interfacial layers must be taken into consideration. If m
layers are jointed together with connecting bolts to construct a multi-layered cantilever beam
so as to have uniform interface pressure, the damping ratio is given by

¥ = 1/[1+ {ky(,0)}/{4(m — 1) ubhpa}] (32)

3. EXPERIMENTAL TECHNIQUES AND EXPERIMENTS

In order to compare the numerical results produced by the theory in Section 2 with the actual
logarithmic damping decrement of layered and jointed copper beams, a series of experiments
were conducted. The experimental set-up with detailed instrumentation is shown in Figure 6.
The specimens were prepared from commercial copper strips (detailed in Table 1) by join-
ing two or more layers using equispaced connecting bolts, with the same tightening torque
applied to each bolt. The distance between consecutive connecting bolts was either 3.5 and
2.00211 times their diameter depending on whether non-uniform or uniform pressure distri-
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Figure 6. Schematic diagram of experimental set-up with detailed instrumentation.

bution at the interfaces was required. The cantilever lengths of the specimens were varied in
order to accommodate the different numbers of connecting bolts given in Table 1.

The specimens are rigidly fixed to the support to obtain perfect cantilever conditions and
the first experiments were conducted to determine the bending modulus of elasticity (E) of
the specimen materials. Solid cantilever specimens made from the same stock of commer-
cial copper strips were held rigidly at the fixed end and their free end deflection (A) mea-
sured by applying different static loads (W). From these static loads and the corresponding
deflections, the average static bending stiffness (W /A) was determined. The bending modu-
lus for the specimen material was then evaluated using the expression E = [(W/A)(3/31)].
The average value of E for the copper specimens used in the experiments was found to be
103.5 GN/m>.

The static bending stiffness (k) of the jointed specimens was determined and found to
be always lower than that of an equivalent solid specimen (k’), increasing with increasing
tightening torque on the connecting bolts up to a certain limiting value [10.370 N m (7.5 Ib
ft) for the example shown in Figure 7] beyond which it remains almost constant. The ratio of
this bending stiffness (at the limiting tightening torque condition) to the equivalent bending
stiffness of a solid cantilever (a’) was calculated for all specimens, and the average value of
o’ for each group of specimens utilized in the numerical analysis.

The logarithmic damping decrement and natural frequency of vibration of all the spec-
imens were determined experimentally at their first mode of free vibration. The tightening
torques on all the connecting bolts of the specimens were kept equal for each set of obser-



Table 1. Details of the specimens used in the experiment.

Dimensions of Diameter Number Condition Number Cantilever
the specimen of the connec- of layers  of interface  of bolts length,
(thickness x width), ting bolt, used pressure used (mm)
(mm x mm) (mm)
3.20 x 35.00 11 385.00
5.60 x 35.00 10 2 non-uniform 10 350.00
12.00 x 37.00 9 315.00
4.80 x 35.00 11 385.00
10 3 non-uniform 10 350.00
8.40 x 35.00 9 315.00
6.40 x 35.00 11 385.00
10 4 non-uniform 10 350.00
11.20 x 35.00 9 315.00
3.20 x 40.04 18 360.38
5.60 x 40.04 10 2 uniform 17 340.36
12.00 x 37.00 16 320.34
4.80 x 40.04 18 360.38
10 3 uniform 17 340.36
8.40 x 40.04 16 320.34
6.40 x 40.04 18 360.38
10 4 uniform 17 340.36
11.20 x 40.04 16 320.34
6.40 x 40.04 Solid beam 18 360.38

vations and observations made with torque of 3.46, 6.92, 13.84, 20.76, and 27.68 N m (i.e.,
2.50, 5.00, 10.00, 15.00 and 20.00 1b ft respectively). The lengths of these specimens were
also varied during experimentation. A spring loaded exciter was used to excite the specimens
at their free ends. Tests were conducted using various amplitudes of excitation (0.1, 0.2, 0.3,
0.4, and 0.5 mm) for all the specimens tested under the different conditions of the tightening
torque on the connecting bolts. The free vibration was sensed with a non-contacting type of
vibration pick-up and the corresponding signal was fed to a cathode ray oscilloscope through
a digitizer to obtain a steady signal. The logarithmic damping decrement was then evaluated
from the measured values of the amplitudes of the first cycle (a;), last cycle (a,+,) and the
number of cycles(n) of the steady signal by using the equation 6 = In(a,/a,y;)/n. The
corresponding natural frequency was determined from the time period (77) of the signal by
using the relationship f = 1/7;. It was found that the natural frequency of first mode
vibration of the layered and jointed beam is always less than that of an equivalent solid one,
and increases with an increase in the tightening torque on the connecting bolts up to a limiting
value [10.370 N m (7.5 Ib ft)] beyond which it remains constant, as shown in Figure 8.

Moreover, in order to study the effect of the spacing between the consecutive connect-
ing bolts on the logarithmic damping decrement, experiments were conducted by varying
the distance between them; the results are shown in Figure 9. The distances tried between
consecutive connecting bolts were 5.0, 4.0, 3.0, and 2.00211 times the diameter of the con-
necting bolts.



Static bending stiffness in NNmm —»

=

= =
[ R o

N T
b = Mm@

Jointed two layered beams with bolt diameter = 10mm.

Crogs-section . )
. Stiffness of | Stiffhess of
haterial i Cantilever length
USRS 9 ol beam jointed beam
M mm
385.00 1 1
Copper 3.2%35.0 350.00 2 2
315.00 35 &)
------------- O e e X e e e e et S E
" 4 . 3
------------- SR
- - a7
| EEECEETEEEEOPLEREEPEPTRELE B-- o M- n 1
+ + s 1
13.84 2078 27 68
(1o {15.0) 200

Tightening torque in Nm(Ibfty —

Figure 7. Variation of static bending stiffness with applied tightening torque on the connecting bolts.

Natural frequency in Hz

Jointed two layered beams with bolted diameter = 10mm.

Material %Eiz;;;ml " Cantilever length — [Natural frequency | Matural frequency
! mm of solid beam
R of jointed beam
385.00 1 1
Copper 3.2:350 350.00 7 2
315.00 3 3
--------------- B B R !
3
........ S —————
2
------------- [ S T T [
1
346 £.92 1384 2076 2768
235 50 (om (sm (2000

Tightening torque in Nm{lb-ft} —
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Jointed two layered beams with bolt diameter = 10mm, Amplitude of excitation= 0.1mm.
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Figure 9. Variation of logarithmic decrement () with applied tightening torque on the connecting bolts.

4. DETERMINATION OF THE PRODUCT OF DYNAMIC SLIP RATIO
AND KINEMATIC COEFFICIENT OF FRICTION (a.u)

The experimental logarithmic damping decrement values for two layered jointed beams with
10 mm diameter connecting bolts under different conditions of excitation have been used
to evaluate the corresponding values of the product of dynamic slip ratio and kinematic co-
efficient of friction using equation (16). The variation in the dynamic slip ratios and natural
frequency of the first mode transverse vibration for a particular tightening torque on connect-
ing bolts was determined under different initial amplitudes of excitation. The results have
been plotted and one sample is presented in Figure 10. Figure 11 shows a plot of dynamic slip
ratios against the applied tightening torque on the connecting bolts for a particular specimen.
All these plots have been used in the evaluation of the numerical results for the logarithmic
damping decrement of multi-layered jointed beams using equations (15) and (31).

5. COMPARISON OF EXPERIMENTAL AND NUMERICAL RESULTS

The logarithmic damping decrements of three and four layered cantilever specimens with 10
mm diameter connecting bolts have been calculated from equation (15), using the values for
the product of dynamic slip ratios and kinematic coefficient of friction from the respective
plots discussed in Section 4. Figures 12, 13 and 14 show comparisons of these numerical
results with the corresponding experimental ones. It can be seen that the curves are very
close to each other, with a maximum variation of 1.53 %, which confirms the accuracy of the
values of the product of dynamic slip ratios and kinematic coefficient of friction determined
numerically from the experimental results for the logarithmic damping decrement.



Jointed two layered copper beams with bolt diameter = 10mm.
Tightening torque=3 46Mm (2 5lb-f1), p=Kinematic cosfficient of friction
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Figure 10. Variation of 4 x dynamic slip ratio (&) with natural frequency of vibration.

Jointed two layered copper beams with bolt diameter = 10mm.
Beam dimensions in mm = 385.0x35.0x3 2, Matural frequency=10.5Hz
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Figure 11. Variation of 1 x dynamic slip ratio (a) with applied tightening torque on the connecting bolts.



Jointed three layered copper beams with 10mm diameter connecting bolts.

0.03 7 Beam dimensions in mm = 385.00 x 25.00 x 4.80, Natural frecuency = 18.5Hz
0075 \“‘“- Theoretical
g -~ Experimental
§ 002
E' \
= et .
8 y Eé Amplitude of
o 0015 ~ ~4 04 (excitation inmm
E U.SJ
£ 001
o]
=]
-
0005 4
0 T T T T 1
0 346 .92 1384 2078 2768
(2.5) (5.0) (10,0 (150 {200

Tightening torque in Nm(lb-ft) —

Figure 12. Variation of logarithmic decrement (J) with applied tightening torque on the connecting bolts.

Jointed three layered copper beams with 10mm diameter connecting bolts.
Beam dimensions inmm = 350,00 x 3500 = 480, Natural frequency = 20 0Hz
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Figure 13. Variation of logarithmic decrement (J) with applied tightening torque on the connecting bolts.



Jointed four layered copper beams with 10mm diameter connecting bolts.
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Figure 14. Variation of logarithmic decrement (J) with applied tightening torque on the connecting bolts.

Numerical results for two, three and four layered jointed cantilever beams with uniform
pressure distribution at the interfaces and 10 mm diameter connecting bolts have been deter-
mined using equation (31) in order to verify the accuracy of the numerical analysis. These
numerical results for logarithmic damping decrement have also been plotted along with the
corresponding experimental ones and one such plot for each case has been shown in Fig-
ures 15, 16, and 17; again, the plots are very close to each other, with a maximum variation
of 1.3 %.

6. CONCLUSIONS

From the theoretical analysis as well as the numerical and experimental results, the following
salient points have been observed.

1. The static bending stiffness of a layered and jointed structure is smaller than that of
an equivalent solid one and increases with an increase in the tightening torque on the
connecting bolts, but remains constant beyond a limiting value of the tightening torque
[in this case 10.370 N m (7.50 Ib ft)].

2. The natural frequency of the first mode of vibration for a layered and jointed structure is
smaller than that of an equivalent solid one and increases with an increase in the tighten-
ing torque on the connecting bolts due to the higher static bending stiffness. However,
the frequency remains constant beyond a limiting value of the tightening torque [in this
case, 10.370 N m (7.5 Ib ft)].



Jointed two layered copper beams with uniform interface pressure and 10mm diameter connecting bolts.

Beam dimensions in mm = 360 38x40.04x3 20 , Natural frequency = 12.0Hz
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Figure 15. Variation of logarithmic decrement (J) with applied tightening torque on the connecting bolts.

Jointed three layered copper beams with uniform interface pressure and 10mm diamete
connecting bolts
Beam dimensions in mm = 36038 x 40,04 < 4.80 , Natural frequency = 20.0Hz
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Figure 16. Variation of logarithmic decrement (J) with applied tightening torque on the connecting bolts.



Jointed four layered copper beams with uniform interface pressure and 10mm diameter
connecting bolts.
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Figure 17. Variation of logarithmic decrement (J) with applied tightening torque on the connecting bolts.

3. The spread of values for the interface pressure between layers joined by connecting bolts
increases with a decrease in the distance between consecutive connecting bolts and at-
tains uniformity throughout the contacting surfaces when the spacing of the connecting
bolts is 2.00211 times the diameter of the bolt. The logarithmic damping decrement de-
creases with any further decrease in the distance between consecutive connecting bolts
as the layered and jointed cantilever beam behaves like a solid one.

4. Several parameters play a major role on the damping capacity of layered structures
jointed with connecting bolts. They are: (a) Tightening torque applied to the connect-
ing bolts, (b) amplitude of excitation, (c) frequency of excitation, (d) arrangement of
connecting bolts, and (e) number of layers.

(a) Logarithmic damping decrement decreases with an increase in tightening torque
on the connecting bolts due to higher interface pressure with lower dynamic slip
ratio at the interfaces, which tend to behave increasingly like a solid beam. How-
ever, the logarithmic damping decrement increases with an increase in tightening
torque in the lower range.

(b) The logarithmic damping decrement of a layered and jointed structure decreases
with an increase in amplitude of excitation as a result of the introduction of higher
energy into the system, reducing the proportion of that energy dissipated by inter-
face friction.



(c) The logarithmic damping decrement of a layered and jointed structure decreases
with an increase in the natural frequency of vibration due to the increase in static
bending stiffness. The dynamic slip ratio increases, but the increase in static bend-
ing stiffness of the layered and jointed structure is greater compared to the energy
loss through friction at the interfaces, resulting in a decrease of the logarithmic
damping decrement. The static bending stiffness increases due to the increase in
the cross-section and decrease in the cantilever length of the specimens.

(d) The arrangement of the connecting bolts has an influence on the logarithmic
damping decrement of the layered and jointed structure. The logarithmic damp-
ing decrement increases with a decrease in distance between consecutive bolts
due to an increase in average interface pressure and attains its maximum under
the condition of uniform pressure distribution at the interfaces.

(e) The logarithmic damping decrement increases with an increase in the number of
layers in a layered and jointed structure because of the increase in the number
of interface friction layers, which causes an increase in the energy loss due to
interface friction.

Finally, it was established that the damping capacity of the layered and jointed structures
can be improved considerably (with a uniform pressure distribution at the interfaces) by
using connecting bolts with the minimum possible tightening torque on them, and a large
number of layers. This increase in logarithmic damping decrement may be 589.8 % higher
than that of an equivalent solid beam. Layered and jointed copper structures, having a higher
damping capacity, can be effectively used as beds for machine tools. This will also further
enhance the capability of machine tool beds to minimize the stick-slip motion.
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