Dimensional Analysis of Non-stationary Fractal Functions on the Sierpinski Gasket

Sangita Jha

Fractals and Related Fields IV

Department of Mathematics NIT Rourkela

September 6, 2022

Fractal Interpolation Functions (FIFs)

Iterated Function System (IFS): $\{X; w_i, i = 1, 2, ..., N - 1\}$, w_i are continuous maps on X.

Attractor: Hutchinson map on H(X) is defined as $W(A) = \bigcup_{i=1}^{N-1} w_i(A)$. The unique fixed point is known as the **Attractor** of the IFS.

- Interpolation data: $\{(x_i, y_i), i = 1, 2, ..., N\}$, with increasing abscissae, and $L_i : I = [a, b] \mapsto I_i = [x_i, x_{i+1}], i \in \{1, 2, ..., N-1\}$ be contractive homeomorphisms such that $L_i(x_1) = x_i, L_i(x_N) = x_{i+1}$.
- Let $K = I \times \mathbb{R}$ and $w_i(x, y) = (L_i(x), F_i(x, y))$, where $F_i : K \mapsto \mathbb{R}$ be such that $F_i(x_1, y_1) = y_i, F_i(x_N, y_N) = y_{i+1}$ and

 $|F_i(x,y) - F_i(x,y')| \le \alpha_i |y - y'|, \ (x,y), (x,y') \in K, \ 0 \le \alpha_i < 1.$

Theorem 1 (Barnsley).

The IFS $\mathcal{I} = \{K; w_i : i = 1, 2, ..., N\}$ admits a unique attractor *G*. Further, *G* is the graph of a continuous function $f : I \mapsto \mathbb{R}$ which obeys $f(x_i) = y_i$ for i = 1, 2, ..., N.

Sequence of Transformations and Trajectories

Consider a sequence of transformations $\{T_i\}_{i\in\mathbb{N}}, T_i : X \to X$. Invariant Set: A subset \mathcal{P} of X is called an invariant set of the sequence $\{T_i\}_{i\in\mathbb{N}}$ if for all $i\in\mathbb{N}$ and $\forall x\in\mathcal{P}, T_i(x)\in\mathcal{P}$. Lemma:(Levin, Dyn, Viswanathan) Let $T_i : X \to X$. Suppose there exists a $y \in X$ such that

$$d(T_i(x), y) \le cd(x, y) + M,$$

for all $x \in X$, $c \in [0, 1)$ and M > 0. Then the ball $B_r(y)$ of radius $r = \frac{M}{1-c}$ centered at y is an invariant set for $\{T_i\}_{i \in \mathbb{N}}$.

For $W_k = \{w_{1,k}, w_{2,k}, \dots, w_{n_k,k}\}$, consider the sequence of set valued maps

$$W_k(A) = \bigcup_{i=1}^{n_k} w_{i,k}(A), A \in H(X).$$
 (1)

Forward and Backward Trajectories: Let $\{T_k\}_{k\in\mathbb{N}}$ be a sequence of Lipschitz maps on *X*. We define forward and backward procedures

$$\Phi_k := T_k \circ T_{k-1} \circ \ldots T_1 \text{ and } \Psi_k := T_1 \circ T_2 \circ \ldots T_k.$$

Theorem 2 (Levin, Dyn, Viswanathan).

Let $\{W_k\}_{k\in\mathbb{N}}$ be a family of set-valued maps as described in (1), where the elements are collections $W_k = \{w_{i,k} : i \in \mathbb{N}_{n_k}\}$ of contractions on a complete metric space (X, d). Assume that

(i) there exists a nonempty closed invariant set $\mathcal{P} \subset X$ for

$$w_{i,k}, i \in \mathbb{N}_{n_k}, k \in \mathbb{N}$$
 and

(ii)
$$\sum_{k=1}^{\infty} \prod_{j=1}^{k} \operatorname{Lip}(W_j) < \infty.$$

Then the backward trajectories $\{\Psi_k(A)\}$ converges for any initial $A \subseteq \mathcal{P}$ to a unique attractor $G \subseteq \mathcal{P}$.

Results

Result1:(Levin, Dyn, Viswanathan) Let $\{T_k\}_{k\in\mathbb{N}}$ be a sequence of Lipschitz maps on a complete metric space X such that T_k has Lipschitz constant c_k . If $\lim_{k\to\infty} \prod_{i=1}^k c_i = 0$, then $\{\Phi_k(x)\}, \{\Phi_k(y)\}$ are asymptotically similar for all $x, y \in X$, and so are $\{\Psi_k(x)\}, \{\Psi_k(y)\}$ for all $x, y \in X$.

Result 2:(Navascues, Verma) Let $\{T_k\}_{k\in\mathbb{N}}$ be a sequence of Lipschitz maps on a complete metric space X. If there exists $x_* \in X$ such that the sequence $\{d(x_*, T_k(x_*))\}$ is bounded, and $\sum_{k=1}^{\infty} \prod_{i=1}^{k} c_i < \infty$ then the sequence $\{\Psi_k(x)\}$ converges for all $x \in X$ to a unique limit \overline{x} .

Non-stationary fractal functions on SG

- Let $V_0 = \{p_1, p_2, p_3\}$ be the vertices of an equilateral triangle on \mathbb{R}^2 and $u_i(x) = \frac{1}{2}(x + p_i)$, where i = 1, 2, 3, three contractions of the plane which constitutes an IFS.
- The Sierpiński gasket (abbreviated as SG) is the attractor of this IFS:

 $SG = u_1(SG) \cup u_2(SG) \cup u_3(SG).$

- For fix n ∈ N, consider the iterations u_i = u_{i1}u_{i2}...u_{in} for any sequence i = (i₁, i₂,..., i_n) ∈ Iⁿ := {1, 2, 3}ⁿ. The union of images of V₀ under these iterations constitutes the set of n-th stage vertex V_n of SG.
- Let B: V_n → ℝ be a given function. We find an IFS whose attractor is the graph of a continuous function on SG such that f|_{Vn} = B. For k ∈ N, define maps W_{w,k} : SG × ℝ → SG × ℝ by

$$W_{w,k}(x,z) = \left(u_w(x), F_{w,k}(x,z)\right), \ w \in I^n$$

• $F_{w,k}(x,z): SG \times \mathbb{R} \to \mathbb{R}$ need to satisfy the following conditions:

$$||F_{w,k}(.,z_1) - F_{w,k}(.,z_2)|| \le c_{w,k} |z_1 - z_2|$$

and $F_{w,k}(p_j, B(p_j)) = B(u_i(p_j))$ for every $w \in I^n, j \in I$, where

$$c := \sup_{k \in \mathbb{N}} \max_{w \in I^n} c_{w,k} < 1.$$

• Consider $F_{w,k}(x,z) = \alpha_{w,k}(x)z + q_{w,k}(x)$, where $\alpha_{w,k} : SG \to \mathbb{R}$ and

$$q_{w,k}: SG \to \mathbb{R}$$
 are continuous functions with

$$\begin{aligned} \|\alpha\|_{\infty} &:= \sup_{k \in \mathbb{N}} \max\{\|\alpha_{w,k}\|_{\infty} : w \in I^n\} < 1 \text{ and} \\ \|q\|_{\infty} &:= \sup_{k \in \mathbb{N}} \max\{\|q_{w,k}\|_{\infty} : w \in I^n\} < \infty. \end{aligned}$$

• Let $K = SG \times \mathbb{R}$. We get a sequence of IFSs $\mathcal{I}_k := \{K; W_{w,k} : w \in I^n\}$.

Theorem 3.

Let $n \in \mathbb{N}$ and $B: V_n \to \mathbb{R}$ be given. The sequence of IFSs

 $\{K; W_{w,k} : w \in I^n\}$ defined above produces a continuous function

 $g_*: SG \to \mathbb{R}$ which satisfies $g_*|_{V_n} = B$.

Idea of the proof

• Let
$$\mathcal{C}^*(SG, \mathbb{R}) = \{g \in \mathcal{C}(SG, \mathbb{R}) : g|_{V_0} = B|_{V_0}\}.$$

• For $k \in \mathbb{N}$, we define a mapping $T_k : \mathcal{C}^*(SG, \mathbb{R}) \to \mathcal{C}^*(SG, \mathbb{R})$ by

$$(T_kg)(x) = F_{w,k}(u_w^{-1}(x), g(u_w^{-1}(x))) \ \forall \ x \in u_w(SG), w \in I^n.$$

- One can check that *T_k* is a contraction map and the sequence {||*T_kg − g*||_∞} is bounded.
- Using Result 2, the backward trajectories Φ_k := T₁ T₂ · · · T_k of {T_k} converge for every g ∈ C^{*}(SG) to a unique attractor g_{*} ∈ C^{*}(SG).

Oscillation Spaces

• For $g: SG \to \mathbb{R}$, we define total oscillation of order n by

$$R(n,g) = \sum_{w \in \{1,2,3\}^n} R_g[u_w(SG)],$$

where $R_g[u_w(SG)] = \sup\{|g(x_1) - g(x_2)| : x_1, x_2 \in u_w(SG)\}.$

Let

$$\mathcal{C}^{\beta}(SG) := \left\{ f: SG \to \mathbb{R}: \text{ f is continuous and } \sup_{n \in \mathbb{N}} \frac{R(n,g)}{2^{n\left(\frac{\log 3}{\log 2} - \beta\right)}} < \infty \right\},$$
 where $0 \le \beta \le 1$.

Theorem 4 (Deliu, Jawerth).

Let $f: I \to \mathbb{R}$ be a continuous function and let $0 < \gamma < 1$. Then we have

 $\overline{\dim}_B(Graph(f)) = 2 - \gamma \iff f \in \cap_{\theta < \gamma} \mathcal{V}^{\theta}(I) \setminus \bigcup_{\beta > \gamma} \mathcal{V}^{\beta}(I).$

Theorem 5.

Let $g: SG \to \mathbb{R}$ be a continuous function and let $0 < \gamma < 1$. Then $\overline{\dim}_B(Gr(g)) = 1 - \gamma + \frac{\log 3}{\log 2}$ if and only if $g \in \left(\cap_{\alpha < \gamma} C^{\alpha}(SG) \right) \setminus \left(\cup_{\beta > \gamma} C^{\beta}(SG) \right).$

Idea of the proof:

- Let dim_B(Gr(f)) = 1 γ + log 3/log 2. Let ε > 0 be given. As dim_B(Gr(g)) = 1 + lim_{n→∞} log R(n,f)/n log 2, we obtain
 (1) ∃ n* ∈ N such that R(n,g) ≤ 2^{n(log 3/log 2) γ+ε)} for every n > n*,
 (2) a sequence (n_k) with n_k → ∞ and R(n, q) > 2^{n_k(log 3/log 2) γ-ε)}.
 - Using item (1) and the boundedness of g, we obtain $g \in \bigcap_{\alpha < \gamma} C^{\alpha}(SG)$.
 - The only if part follows from the oscillation *R*(*n*, *g*) and the definition of box-dimension.

Dimension Result

Theorem 6.

Let $f, b_k, \alpha_{w,k}$ $(w \in I^n, k \in \mathbb{N}) \in C^{\beta}(SG)$ be such that $b_k|_{V_0} = f|_{V_0}$. Assume that $\|b\|_{\infty} = \sup_{k \in \mathbb{N}} \|b_k\|_{\infty} < \infty$. Then, for

$$\max\left\{\|\alpha\|_{\infty} + \frac{3^n}{2^{n\left(\frac{\log 3}{\log 2} - \beta\right)}} \sup_{w \in I^n, k \in \mathbb{N}} \sup_{m \in \mathbb{N}} \frac{R(m, \alpha_{w,k})}{2^{m\left(\frac{\log 3}{\log 2} - \beta\right)}}, \frac{3^n \|\alpha\|_{\infty}}{2^{n\left(\frac{\log 3}{\log 2} - \beta\right)}}\right\} < 1,$$

there exists a non-stationary fractal function $f^{\alpha}_* \in C^{\beta}(SG)$. Furthermore, $\overline{\dim}_B(Gr(f^{\alpha}_*) \leq 1 - \beta + \frac{\log 3}{\log 2}.$

Idea of the proof

- Consider the space $\mathcal{C}_f^\beta(SG) = \{g \in \mathcal{C}^\beta(SG) : g|_{V_0} = f|_{V_0}\}.$
- Define a sequence of mappings $T_k: \mathcal{C}^\beta_f(SG) \to \mathcal{C}^\beta_f(SG)$ by

$$(T_kg)(x) = f(x) + \alpha_{w,k}(u_w^{-1}(x)) \ (g - b_k)(u_w^{-1}(x))$$

for all $x \in u_w(SG), w \in I^n$.

- For $g, h \in C_f^\beta(SG)$, one can obtain that T_k is a contraction map on $C_f^\beta(SG)$ and $\{||T_kg g||_{C^\beta}\}$ is bounded.
- The backward trajectories $\Phi_k(g) := T_1 \circ T_2 \circ \cdots \circ T_k(g)$ of $\{T_k\}$ converges for every $g \in C_f^\beta(SG)$ to a unique attractor $f_*^\alpha \in C_f^\beta(SG)$.

• Since $f_*^{\alpha} \in \mathcal{C}^{\beta}(SG)$, Theorem 5 yields that $\overline{\dim}_B(\operatorname{Gr}(f_*^{\alpha}) \leq 1 - \beta + \frac{\log 3}{\log 2})$.

Following the work of Falconer(2011), we define

 $\mathcal{X}_{\beta}(SG) := \{ f \in \mathcal{C}(SG) : \overline{\dim}_B(\mathsf{Gr}(f) \le \beta \}.$

Again, following the result of (Falconer, 2011), we have

Theorem 7. Let $\beta \in \left[\frac{\log 3}{\log 2}, 1 + \frac{\log 3}{\log 2}\right)$. Then $X_{\beta}(SG) = \bigcap_{k \in \mathbb{N}} \mathcal{C}^{\beta + \frac{1}{k}}(SG).$

Moreover, $(X_{\beta}(SG), d)$ is a Banach space, where

$$d(f,g) = \sum_{k \in \mathbb{N}} \min \left\{ 2^{-k}, \|f - g\|_{\mathcal{C}^{\beta + \frac{1}{k}}} \right\}.$$

Theorem 8.

Let $f, b_k, \alpha_{w,k}$ $(w \in I^n, k \in \mathbb{N}) \in X_\beta(SG)$ be such that $b_k|_{V_0} = f|_{V_0}$. Assume that $\|b\|_{\infty} = \sup_{k \in \mathbb{N}} \|b_k\|_{\infty} < \infty$. Then, for

 $\sup_{l \in \mathbb{N}} \left\{ \|\alpha\|_{\infty} + \frac{3^n}{2^n \left(\frac{\log 3}{\log 2} - \beta - \frac{1}{l}\right)} \sup_{w \in I^n, k \in \mathbb{N}} \sup_{m \in \mathbb{N}} \frac{R(m, \alpha_{w,k})}{2^m \left(\frac{\log 3}{\log 2} - \beta - \frac{1}{l}\right)}, \frac{3^n \|\alpha\|_{\infty}}{2^n \left(\frac{\log 3}{\log 2} - \beta - \frac{1}{l}\right)} \right\} < 1,$ there exists a non-stationary fractal function $f_*^{\alpha} \in X_{\beta}(SG)$. Furthermore, $\overline{\dim}_B(\operatorname{Gr}(f_*^{\alpha}) \leq 1 - \beta + \frac{\log 3}{\log 2}.$

Energy

- Consider the vertex set V_0 and define \mathcal{G}_0 as the complete graph on it.
- After constructing graph G_{n-1} with vertex set V_{n-1} for some n ≥ 1, we define the graph G_n on V_n as follows: for any x, y ∈ V_n, x ~_n y holds if and only if x = u_i(x₁), y = u_i(y₁) with x₁ ~_{n-1} y₁ and i ∈ I.
- Equivalently, $x \sim_n y$ if and only if there exists $i \in I^m$ such that $x, y \in u_i(V_0)$.
- For n = 0, 1, 2, ..., we define graph energies \mathcal{E}_n on \mathcal{G}_n by

$$\mathcal{E}_n(f) := \left(\frac{5}{3}\right)^n \sum_{x \sim_m y} (f(x) - f(y))^2.$$

• Note that the graph energy sequence $\{\mathcal{E}_n\}$ satisfies $\mathcal{E}_{n-1}(f) = \min \mathcal{E}_n(\tilde{f})$, where the minimum is taken over all \tilde{f} satisfying $\tilde{f}|_{V_{n-1}} = f$ for any $f : V_*(:= \cup_{m=0}^{\infty} V_m) \to \mathbb{R}$ and for any $n \ge 1$. Then for each function f on V_* , we observe that $\{\mathcal{E}_n(f)\}_{n=0}^{\infty}$ is an increasing sequence. The energy of f on V_* is defined as

$$\mathcal{E}(f) := \lim_{n \to \infty} \mathcal{E}_n(f).$$

Harmonic Function

If f is continuous and satisfies $\mathcal{E}_{n-1}(f) = \mathcal{E}_n(f)$ for all $n \ge 1$, then we call f is a harmonic function on SG. Next we consider the well-known " $\frac{1}{5} - \frac{2}{5}$ " rule of harmonic functions.

Lemma 9.

Consider a harmonic function h on SG, and (i, j, k) as a permutation of (1, 2, 3). Then

$$h(p_{ij}) = \frac{2}{5}h(p_i) + \frac{2}{5}h(p_j) + \frac{1}{5}h(p_k).$$

In general, for any $w = w_1 \dots w_n \in \{1, 2, 3\}^n$, we have

$$h(p_{wij}) = \frac{2}{5}h(p_{wi}) + \frac{2}{5}h(p_{wj}) + \frac{1}{5}h(p_{wk}),$$

where w_i, w_j, w_k and w_{ij} to be the word $w_1 \dots w_n i$, $w_1 \dots w_n j$, $w_1 \dots w_n k$ and $w_1 \dots w_n ij$, respectively. Note that *h* is constant on SG if it is constant on V_0 . Let us define $dom(\mathcal{E}) = \{g \in \mathcal{C}(SG) : \mathcal{E}(g) < \infty\}$. The space $(dom(\mathcal{E}), \|.\|_{\mathcal{E}})$ is complete with $\|g\|_{\mathcal{E}} := \|g\|_{\infty} + \sqrt{\mathcal{E}(g)}$.

Theorem 10.

Let $n \in \mathbb{N}$. Let germ function $f \in \text{dom}(\mathcal{E})$ and $b_k \in \text{dom}(\mathcal{E})$ with $b_k|_{V_0} = f|_{V_0}$. Assume that $\mathcal{E}(b) := \sup_{k \in \mathbb{N}} \mathcal{E}(b_k) < \infty$ and $\mathcal{E}(\alpha) := \sup_{w \in I^n, k \in \mathbb{N}} \mathcal{E}(\alpha_{w,k}) < \infty$. If $\|\alpha\|_{\mathcal{E}} < \frac{1}{2\sqrt{5^n}}$ then $f_*^{\alpha} \in \text{dom}(\mathcal{E})$. Thank you