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Fractal Interpolation Functions (FIFs)

Iterated Function System (IFS): {X;wi, i = 1, 2, . . . , N − 1}, wi are

continuous maps on X.

Attractor: Hutchinson map on H(X) is defined as W (A) = ∪N−1
i=1 wi(A). The

unique fixed point is known as theAttractor of the IFS.

Interpolation data: {(xi, yi), i = 1, 2, . . . , N}, with increasing abscissae,

and Li : I = [a, b] 7→ Ii = [xi, xi+1], i ∈ {1, 2, . . . , N − 1} be contractive

homeomorphisms such that Li(x1) = xi, Li(xN ) = xi+1.

Let K = I × R and wi(x, y) = (Li(x), F(x, y)), where Fi : K 7→ R be

such that Fi(x1, y1) = yi, Fi(xN , yN ) = yi+1 and

|Fi(x, y)− Fi(x, y′)| ≤ αi|y − y′|, (x, y), (x, y′) ∈ K, 0 ≤ αi < 1.

Theorem 1 (Barnsley).
The IFS I = {K;wi : i = 1, 2, . . . , N} admits a unique attractor G. Further, G

is the graph of a continuous function f : I 7→ R which obeys f(xi) = yi for

i = 1, 2, . . . , N .



Sequence of Transformations and Trajectories

Consider a sequence of transformations {Ti}i∈N, Ti : X → X.

Invariant Set: A subset P of X is called an invariant set of the sequence

{Ti}i∈N if for all i ∈ N and ∀ x ∈ P, Ti(x) ∈ P.

Lemma:(Levin, Dyn, Viswanathan) Let Ti : X → X. Suppose there exists a

y ∈ X such that

d(Ti(x), y) ≤ cd(x, y) +M,

for all x ∈ X, c ∈ [0, 1) and M > 0. Then the ball Br(y) of radius r = M
1−c

centered at y is an invariant set for {Ti}i∈N.

For Wk = {w1,k, w2,k, . . . , wnk,k}, consider the sequence of set valued maps

Wk(A) =

nk⋃
i=1

wi,k(A), A ∈ H(X). (1)

Forward and Backward Trajectories: Let {Tk}k∈N be a sequence of Lipschitz

maps on X. We define forward and backward procedures

Φk := Tk ◦ Tk−1 ◦ . . . T1 and Ψk := T1 ◦ T2 ◦ . . . Tk.



Convergence of Trajectories

Theorem 2 (Levin, Dyn, Viswanathan).
Let {Wk}k∈N be a family of set-valued maps as described in (1), where the

elements are collections Wk = {wi,k : i ∈ Nnk} of contractions on a

complete metric space (X, d). Assume that

(i) there exists a nonempty closed invariant set P ⊂ X for

wi,k, i ∈ Nnk , k ∈ N and

(ii)
∞∑
k=1

k∏
j=1

Lip(Wj) <∞.

Then the backward trajectories {Ψk(A)} converges for any initial A ⊆ P to a

unique attractor G ⊆ P.



Results

Result1:(Levin, Dyn, Viswanathan) Let {Tk}k∈N be a sequence of Lipschitz

maps on a complete metric space X such that Tk has Lipschitz constant ck.

If limk→∞
∏k
i=1 ci = 0, then {Φk(x)}, {Φk(y)} are asymptotically similar for

all x, y ∈ X, and so are {Ψk(x)}, {Ψk(y)} for all x, y ∈ X.

Result 2:(Navascues, Verma) Let {Tk}k∈N be a sequence of Lipschitz maps

on a complete metric space X. If there exists x∗ ∈ X such that the sequence

{d(x∗, Tk(x∗))} is bounded, and
∑∞
k=1

∏k
i=1 ci <∞ then the sequence

{Ψk(x)} converges for all x ∈ X to a unique limit x.



Non-stationary fractal functions on SG

Let V0 = {p1, p2, p3} be the vertices of an equilateral triangle on R2 and

ui(x) = 1
2
(x+ pi), where i = 1, 2, 3, three contractions of the plane

which constitutes an IFS.

The Sierpiński gasket (abbreviated as SG) is the attractor of this IFS:

SG = u1(SG) ∪ u2(SG) ∪ u3(SG).

For fix n ∈ N, consider the iterations ui = ui1ui2 . . . uin for any sequence

i = (i1, i2, . . . , in) ∈ In := {1, 2, 3}n. The union of images of V0 under

these iterations constitutes the set of n-th stage vertex Vn of SG.

Let B : Vn → R be a given function. We find an IFS whose attractor is

the graph of a continuous function on SG such that f |Vn = B. For k ∈ N,

define maps Ww,k : SG× R→ SG× R by

Ww,k(x, z) =
(
uw(x), Fw,k(x, z)

)
, w ∈ In



Fw,k(x, z) : SG× R→ R need to satisfy the following conditions:

‖Fw,k(., z1)− Fw,k(., z2)‖ ≤ cw,k |z1 − z2|

and Fw,k(pj , B(pj)) = B(ui(pj)) for every w ∈ In, j ∈ I, where

c := sup
k∈N

max
w∈In

cw,k < 1.

Consider Fw,k(x, z) = αw,k(x)z + qw,k(x), where αw,k : SG→ R and

qw,k : SG→ R are continuous functions with

‖α‖∞ := sup
k∈N

max{‖αw,k‖∞ : w ∈ In} < 1 and

‖q‖∞ := supk∈N max{‖qw,k‖∞ : w ∈ In} <∞.

Let K = SG×R. We get a sequence of IFSs Ik := {K;Ww,k : w ∈ In}.

Theorem 3.
Let n ∈ N and B : Vn → R be given. The sequence of IFSs

{K;Ww,k : w ∈ In} defined above produces a continuous function

g∗ : SG→ R which satisfies g∗|Vn = B.



Idea of the proof

Let C∗(SG,R) =
{
g ∈ C(SG,R) : g|V0 = B|V0

}
.

For k ∈ N, we define a mapping Tk : C∗(SG,R)→ C∗(SG,R) by

(Tkg)(x) = Fw,k(u−1
w (x), g(u−1

w (x))) ∀ x ∈ uw(SG), w ∈ In.

One can check that Tk is a contraction map and the sequence

{‖Tkg − g‖∞} is bounded.

Using Result 2, the backward trajectories Φk := T1 ◦ T2 ◦ · · · ◦ Tk of {Tk}
converge for every g ∈ C∗(SG) to a unique attractor g∗ ∈ C∗(SG).



Oscillation Spaces

For g : SG→ R, we define total oscillation of order n by

R(n, g) =
∑

w∈{1,2,3}n
Rg[uw(SG)],

where Rg[uw(SG)] = sup{|g(x1)− g(x2)| : x1, x2 ∈ uw(SG)}.

Let

Cβ(SG) :=

{
f : SG→ R : f is continuous and sup

n∈N

R(n, g)

2
n
(

log 3
log 2

−β
) <∞

}
,

where 0 ≤ β ≤ 1.

Theorem 4 (Deliu,Jawerth).
Let f : I → R be a continuous function and let 0 < γ < 1. Then we have

dimB(Graph(f)) = 2− γ ⇐⇒ f ∈ ∩θ<γVθ(I)\ ∪β>γ Vβ(I).



Theorem 5.

Let g : SG→ R be a continuous function and let 0 < γ < 1. Then

dimB(Gr(g)) = 1− γ + log 3
log 2

if and only if

g ∈
(
∩α<γ Cα(SG)

)
\
(
∪β>γ Cβ(SG)

)
.

Idea of the proof:

Let dimB(Gr(f)) = 1− γ + log 3
log 2

. Let ε > 0 be given. As

dimB(Gr(g)) = 1 + limn→∞
logR(n,f)
n log 2

, we obtain

(1) ∃ n∗ ∈ N such that R(n, g) ≤ 2
n( log 3

log 2
−γ+ε) for every n > n∗,

(2) a sequence (nk) with nk →∞ and R(n, g) ≥ 2
nk(

log 3
log 2

−γ−ε)
.

Using item (1) and the boundedness of g, we obtain g ∈ ∩α<γCα(SG).

The only if part follows from the oscillation R(n, g) and the definition of

box-dimension.



Dimension Result

Theorem 6.

Let f, bk, αw,k (w ∈ In, k ∈ N) ∈ Cβ(SG) be such that bk|V0 = f |V0 . Assume

that ‖b‖∞ = supk∈N ‖bk‖∞ <∞. Then, for

max

{
‖α‖∞ +

3n

2
n
(

log 3
log 2

−β
) sup
w∈In,k∈N

sup
m∈N

R(m,αw,k)

2
m

(
log 3
log 2

−β
) , 3n‖α‖∞

2
n
(

log 3
log 2

−β
)
}
< 1,

there exists a non-stationary fractal function fα∗ ∈ Cβ(SG). Furthermore,

dimB(Gr(fα∗ ) ≤ 1− β + log 3
log 2

.



Idea of the proof

Consider the space Cβf (SG) = {g ∈ Cβ(SG) : g|V0 = f |V0}.

Define a sequence of mappings Tk : Cβf (SG)→ Cβf (SG) by

(Tkg)(x) = f(x) + αw,k(u−1
w (x)) (g − bk)(u−1

w (x))

for all x ∈ uw(SG), w ∈ In.

For g, h ∈ Cβf (SG), one can obtain that Tk is a contraction map on

Cβf (SG) and {‖Tkg − g‖Cβ} is bounded.

The backward trajectories Φk(g) := T1 ◦ T2 ◦ · · · ◦ Tk(g) of {Tk}
converges for every g ∈ Cβf (SG) to a unique attractor fα∗ ∈ Cβf (SG).

Since fα∗ ∈ Cβ(SG), Theorem 5 yields that dimB(Gr(fα∗ ) ≤ 1− β + log 3
log 2

.



Following the work of Falconer(2011), we define

Xβ(SG) := {f ∈ C(SG) : dimB(Gr(f) ≤ β}.

Again, following the result of (Falconer, 2011), we have

Theorem 7.

Let β ∈
[
log 3
log 2

, 1 + log 3
log 2

)
. Then

Xβ(SG) = ∩k∈NCβ+
1
k (SG).

Moreover, (Xβ(SG), d) is a Banach space, where

d(f, g) =
∑
k∈N

min
{

2−k, ‖f − g‖
Cβ+

1
k

}
.



Theorem 8.

Let f, bk, αw,k (w ∈ In, k ∈ N) ∈ Xβ(SG) be such that bk|V0 = f |V0 . Assume

that ‖b‖∞ = supk∈N ‖bk‖∞ <∞. Then, for

sup
l∈N

{
‖α‖∞+

3n

2
n
(

log 3
log 2

−β− 1
l

) sup
w∈In,k∈N

sup
m∈N

R(m,αw,k)

2
m

(
log 3
log 2

−β− 1
l

) , 3n‖α‖∞

2
n
(

log 3
log 2

−β− 1
l

)
}
< 1,

there exists a non-stationary fractal function fα∗ ∈ Xβ(SG). Furthermore,

dimB(Gr(fα∗ ) ≤ 1− β + log 3
log 2

.



Energy

Consider the vertex set V0 and define G0 as the complete graph on it.

After constructing graph Gn−1 with vertex set Vn−1 for some n ≥ 1, we

define the graph Gn on Vn as follows: for any x, y ∈ Vn, x ∼n y holds if

and only if x = ui(x1), y = ui(y1) with x1 ∼n−1 y1 and i ∈ I.

Equivalently, x ∼n y if and only if there exists i ∈ Im such that

x, y ∈ ui(V0).

For n = 0, 1, 2, . . . , we define graph energies En on Gn by

En(f) :=
(5

3

)n ∑
x∼my

(f(x)− f(y))2.

Note that the graph energy sequence {En} satisfies

En−1(f) = min En(f̃), where the minimum is taken over all f̃ satisfying

f̃ |Vn−1 = f for any f : V∗(:= ∪∞m=0Vm)→ R and for any n ≥ 1. Then for

each function f on V∗, we observe that {En(f)}∞n=0 is an increasing

sequence. The energy of f on V∗ is defined as

E(f) := lim
n→∞

En(f).



Harmonic Function

If f is continuous and satisfies En−1(f) = En(f) for all n ≥ 1, then we call f

is a harmonic function on SG. Next we consider the well-known “ 1
5
− 2

5
” rule

of harmonic functions.

Lemma 9.

Consider a harmonic function h on SG, and (i, j, k) as a permutation of

(1, 2, 3). Then

h(pij) =
2

5
h(pi) +

2

5
h(pj) +

1

5
h(pk).

In general, for any w = w1 . . . wn ∈ {1, 2, 3}n, we have

h(pwij) =
2

5
h(pwi) +

2

5
h(pwj) +

1

5
h(pwk),

where wi,wj, wk and wij to be the word w1 . . . wni, w1 . . . wnj, w1 . . . wnk

and w1 . . . wnij, respectively.



Note that h is constant on SG if it is constant on V0. Let us define

dom(E) = {g ∈ C(SG) : E(g) <∞}. The space (dom(E), ‖.‖E) is complete

with ‖g‖E := ‖g‖∞ +
√
E(g).

Theorem 10.
Let n ∈ N. Let germ function f ∈ dom(E) and bk ∈ dom(E) with bk|V0 = f |V0 .

Assume that E(b) := supk∈N E(bk) <∞ and E(α) := sup
w∈In,k∈N

E(αw,k) <∞.

If ‖α‖E < 1

2
√

5n
then fα∗ ∈ dom(E).
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