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Fractal Interpolation Functions (FIFs)
Iterated Function System (IFS): {X;w;,i =1,2,...,N — 1}, w; are
continuous maps on X.
Attractor: Hutchinson map on H(X) is defined as W(A) = UN'w;(A). The
unique fixed point is known as theAttractor of the IFS.

@ Interpolation data: {(zs,v:),7 =1,2,..., N}, with increasing abscissae,
and L; : I = [a,b] — I; = [xs,zi41],4 € {1,2,..., N — 1} be contractive
homeomorphisms such that L;(z1) = z;, Li(xn) = Tit1.

@ Let K =1 x Rand w;(z,y) = (Li(x), Fiz,y)), where F; : K — R be
such that Fi(z1,y1) = vi, Fi(zn, yv) = yi+1 and

|Fs(%,y) — Fi(z,y)| < asly =/, (z,y),(z,y) €K, 0<a; <1

Theorem 1 (Barnsley).

The IFST = {K;w; : i =1,2,..., N} admits a unique attractor G. Further, G
is the graph of a continuous function f : I — R which obeys f(z;) = y; for
i=1,2,...,N.



Sequence of Transformations and Trajectories

Consider a sequence of transformations {T; }ien, T3 : X — X.
Invariant Set: A subset P of X is called an invariant set of the sequence
{Ti}ienifforalli e NandV z € P, T;(x) € P.
Lemma:(Levin, Dyn, Viswanathan) Let T; : X — X. Suppose there exists a
y € X such that

d(Ti(z),y) < cd(z,y) + M,

forallz € X, ¢ € [0,1) and M > 0. Then the ball B..(y) of radius r = &£

1—c
centered at y is an invariant set for {7’ };cn.
For Wi, = {w1,x, wa .k, - - ., wn, & }, COnsider the sequence of set valued maps
3
Wi(A) = | Jwi(A), A € HX). (1)
i=1

Forward and Backward Trajectories: Let {T% }ren be a sequence of Lipschitz
maps on X. We define forward and backward procedures

Py =TpoTy_10.. Trand ¥y :=Tyo0Tr0...T}.



Convergence of Trajectories

Theorem 2 (Levin, Dyn, Viswanathan).
Let {Wy }ren be a family of set-valued maps as described in (1), where the
elements are collections Wy, = {w; i : © € N,,, } of contractions on a

complete metric space (X, d). Assume that

(i) there exists a nonempty closed invariant set’ P C X for
Wik, € Ny, k € N and
i) 5> IT Lin(W;) < oo.
k=1j=1
Then the backward trajectories {¥(A)} converges for any initial A C P to a
unique attractor G C P.



Results

Result1:(Levin, Dyn, Viswanathan) Let {T% } xcn be a sequence of Lipschitz

maps on a complete metric space X such that T, has Lipschitz constant cy.
If limg— o0 ]'[f:1 ¢ =0, then {®@,(z)}, {®r(y)} are asymptotically similar for
allz,y € X, and so are {Uy(z)}, {Vi(y)} forall z,y € X.

Result 2:(Navascues, Verma) Let {7} } rcn be a sequence of Lipschitz maps
on a complete metric space X. If there exists z. € X such that the sequence
{d(z+, Tx(z.))} is bounded, and 3>, T]4_, ¢ < oo then the sequence
{U(z)} converges for all z € X to a unique limit z.



Non-stationary fractal functions on SG

@ Let Vo = {p1,p2,p3} be the vertices of an equilateral triangle on R? and
ui(z) = %(m + pi), where ¢ = 1, 2, 3, three contractions of the plane

which constitutes an IFS.
@ The Sierpinski gasket (abbreviated as SG) is the attractor of this IFS:
SG = u1(SG) Uuz(SG) Uus(SG).
@ For fix n € N, consider the iterations u; = u;, us, . . . u,,, for any sequence
t = (i1,%2,...,1n) € I" := {1,2,3}". The union of images of V, under
these iterations constitutes the set of n-th stage vertex V,, of SG.

@ Let B:V, — R be a given function. We find an IFS whose attractor is
the graph of a continuous function on SG such that f|v,, = B. Fork € N,
define maps W, : SG x R — SG x R by

Wk (z,2) = (uw(ac),Fw,k(ar7 z)), wel"



® Fu,i(z,2): SG x R — R need to satisfy the following conditions:
1 Fw k(s 21) = Fuk(es 22) || < cwk |21 — 22|

and Fy k(pj, B(p;)) = B(ui(p;)) forevery w € I™, j € I, where

€ 1= SUp MAaX Cy,k < 1.
keN wel™

@ Consider Fy 1 (z, 2) = o,k ()2 + quw,x(x), Where oy, : SG — R and
Guw,k : SG — R are continuous functions with

let]| oo := sup max{||w,kllec : w € I"} < 1 and
keN

llglloo = supgey max{(lqu,klloc : w € 1"} < 00.

@ Let K = SG x R. We get a sequence of IFSs Z, := {K; Wy, : w € I™}.

Theorem 3.
Letn € N and B : V,, — R be given. The sequence of IFSs

{K; Wu, : w € I"} defined above produces a continuous function
g« : SG — R which satisfies g.|v,, = B.



Idea of the proof

o LetC*(SG,R) = {g € C(SG,R) : g|v, = Blv, }-

@ For k € N, we define a mapping T} : C*(SG,R) — C*(SG,R) by

(Teg)(@) = Fun(uy (2), g(un' (2)) ¥ @ € 0y (SG),w € 1",

@ One can check that T}, is a contraction map and the sequence
{IITxg — 9|l } is bounded.

@ Using Result 2, the backward trajectories @y :=Ti o T 0+~ 0 Ty of {1} }
converge for every g € C*(SG) to a unique attractor g. € C*(SG).



Oscillation Spaces

@ For g: SG — R, we define total oscillation of order n by

R(n,g)= > Rgluu(SG)],

we{l,2,3}n
where Ry[u.w (SG)] = sup{|g(z1) — g(z2)| : z1, 22 € uu(SG)}.

o Let

C?(SG) := {f :SG — R: f is continuous and sup Lg)) < oo},

log 3
neN 2"(10g 38

where 0 < 8 < 1.

Theorem 4 (Deliu,Jawerth).

Let f : I — R be a continuous function and let0 < v < 1. Then we have

dimp(Graph(f)) =2 -7 <= f € No<yV*(I)\ Ups, VP (I).



Theorem 5.

Letg: SG — R be a continuous function and let0 < v < 1. Then
dimp(Gr(g)) = 1 — v+ 123 if and only if

ge (mm ca(sc;))\( Upsny cﬁ(sa)).

Idea of the proof:
o Letdimp(Gr(f)) =1 -+ {25. Lete > 0 be given. As

dimp(Gr(g)) = 1 + im0 2550 we obtain

(1) 3 n* € N such that R(n, g) < 91853 =7+ for every n > n*,
(2) asequence (ng) with ny — oo and R(n, g) > 9 (1352 =71
@ Using item (1) and the boundedness of g, we obtain g € Na<,C*(SG).

@ The only if part follows from the oscillation R(n, g) and the definition of
box-dimension.



Dimension Result

Theorem 6.

Let f, by, vw ik (w e I™, k € N) € C°(SG) be such that by |v, = f|v,. Assume
that |[b]|cc = supyey ||bx||cc < co. Then, for

3"
max  ||alee +

n
—o5— Sup sup R(m, o)~ 3"[|oloo <1,
2”(1052_5) we )

I™,keENmeN QW(%—[B) ’ Qn(iggg -8B
there exists a non-stationary fractal function f& € C?(SG). Furthermore,
dimp (Gr(f&) <1 - + a3

log 2




Idea of the proof

@ Consider the space Cf(SG) ={g€C’(SG) : glv, = fln}-

e Define a sequence of mappings 7} : C{ (SG) — C{(SG) by
(Tig) (@) = f(@) + Qw(uw' () (9= br) (us' (2))

forall z € uy (SG), we I™.

@ Forg,h e C?(SG), one can obtain that 7}, is a contraction map on
C{(SG) and {||Tkg — gl|cs } is bounded.

@ The backward trajectories ®(g) :=Ti 0Tz 0--- 0 Tk(g) of {T%}
converges for every g € Cff(SG) to a unique attractor f; € Cf(SG).

@ Since f& € C?(S@), Theorem 5 yields that dimp (Gr(f2) < 1 — 8+ 83,

log 2




Following the work of Falconer(2011), we define
X5(SG) := {f € C(SG) : dimp(Gr(f) < B}.

Again, following the result of (Falconer, 2011), we have

Theorem 7.

log 2’ log 2

Let§ e ['°g3 14 1°g3). Then

i

X3(SG) = NkenC?T* (SG).
Moreover, (X3(SG),d) is a Banach space, where

d(f,9) = Y min {275, |If = gll . -

kEN



Theorem 8

Let f,br, aw,k (w € I", k € N) € Xg(SG) be such that bi|v, = f|v,. Assume
that ||b]|cc = supyey ||bx[|cc < co. Then, for

3n R(m, aw, k) 3"[|er]loo
SUp 4 [|@fjcot—F 35—y Sup sup Y N
P { ledloo (1052 B—1) weln keNmeN Qm(i%?g_’g_%) ’ 2”(1022 -1) 7

there exists a non-stationary fractal function f;* € Xg(SG). Furthermore,
dimp(Gr(f&) <1 — B + a3,

log 2




Energy

Consider the vertex set V, and define Gy as the complete graph on it.
After constructing graph G, 1 with vertex set V,,_; for some n > 1, we
define the graph G,, on V,, as follows: for any z,y € V,,, x ~,, y holds if
and only if z = w;(x1),y = ui(y1) with z1 ~,,—1 y1 and i € I.
Equivalently, z ~,, y if and only if there exists ¢ € I"™ such that
z,y € u;i (Vo).
Forn=0,1,2,..., we define graph energies &, on G,, by

et =(3)" 3 (@) - F)*

r~YmyY
Note that the graph energy sequence {&,} satisfies
En—1(f) = min En(f), where the minimum is taken over all f satisfying
flv,,_, = fforany f: V.(:= U_,V,) — R and for any n > 1. Then for
each function f on V., we observe that {&.(f)}n=0 is an increasing
sequence. The energy of f on V, is defined as

E(f) :== lim &.(f).

n— 00



Harmonic Function

If fis continuous and satisfies £,—1(f) = Ex(f) for all n > 1, then we call f
is a harmonic function on SG. Next we consider the well-known “1 — 2” rule

of harmonic functions.

Lemma 9.

Consider a harmonic function h on SG, and (i, j, k) as a permutation of
(1,2,3). Then

hpi) = () + 2h(ps) + £h(pe)

In general, for any w = w1 ... w, € {1,2,3}", we have

2 % 1
h(pwij) = 5h(pwi) = 5h(pwj) + gh(pwk),

where wi, wj, wk and wij to be the word wi . .. wni, wi ... wnJ, Wi ... wrk

and w ... wyij, respectively.



Note that h is constant on SG if it is constant on V4. Let us define
dom(€) ={g € C(SG) : £(g) < oo}. The space (dom(E),|.||e) is complete
with [|g[le := [l + \/E(9)-

Theorem 10.
Letn € N. Let germ function f € dom(£) and b, € dom(&) with bi|v, = f|vy-

Assume that £(b) := sup,cy E(bx) < co and E(a) :=  sup  E(aw,k) < 0.
weIm keN

Ifllalle < 57z then f2 € dom(€).
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