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Abstract: A stecl industry has different types of loads, and so the incoming supply voltage of 
some units becomes distortcd thus affecting those systems that depend on a distortionless supply. 
A novcl unsupervised scheme named the recursive hybrid parallel genetic algorithm based line 
enhancer (RHPCABLE) schemc is proposed, to track the desired power frequency signal from the 
corrupted one. The RHPGABLE scheme is based on a proposed new crossover operator known as 
the generalised crossover (CC) operator. The delay and the filter coefficients are estimated 
recursively to yield optimal solutions. In the recursion of the proposed RHPGABLE algorithm, 
a parallel genetic algorithm (PGA) based on a coarse-grained approach is employed to estimate 
the delay, while the filter coefficients are estimated by PCA and a least mean squares (LMS) 
algorithm. RHPGABLE is an unsuperviscd scheme in the sense that no a priori knowledge of 
delay or filter coefficients and the associated training signal componcnt is assumed to be available. 
The proposed scheme has bcen tested successfully on both synthetic data and data obtained from 
the Steel Melting Shop oTRourkela Steel Plant, Orissa, India. 

1 Introduction 

Different types of loa4 such as linear, nonlinear, switching 
and inductive, occur in a steel plant. The load weighing 
system provided on the cranes determines the true weight 
of loads on these cranes. The major cranes utilised in the 
steel melting shop (SMS) of Rourkela Steel Plant are of 
250 tons capacity since molten hot metal and molten steel 
weighing up to 250 tons or more is handled. The adopted 
weighing system is controlled through progranimablc logic 
controllers (PLC) designed by ABB Ltd. The accuracy of 
the load weighing system depends grcatly on the incoming 
power supply to the system. However, the incoming power 
supply to the load weighing system suffers from noise due 
to: (i) the proximity of power supply cables; (ii) the effect 
of different loads; (iii) random load fluctuations and 
switching actions; (iv) frequent switching of inductive 
and passive elements such as conlactors and timers; 
(v) switching of motors. 

The above mentioned interfering signals greatly affect 
the weighing system. lnterferencc may damage the equip- 
ment associated with thc weighing system and necessitate 
frequent recalibrations. The problcm of interference is 
viewed as noise interference with periodic signals. The 
input supply becomes distortcd, with variable amounts of 
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distortion that depend on the load of a given shop floor or 
the connected shops. Since there is a continuous change in 
loading conditions in a steel melting shop, the levels of 
contaminating noise also change. Parametcrs of active and 
passive filters need to be redesigned to meet the changing 
conditions. 

The proposed scheme adapts to the changing system 
requirements, and hencc is more suitable for the problem 
described than filters with fixed parameters. The scheme 
supprcsses noise and_ thus, protects any frcquency-sensi- 
tivc devices connected to the load weighing system. 

The problem of extracting noise-free signals from 
corrupted signals has been pursued for at least three 
decades [1-3]. Many adaptive filtering techniques have 
been proposed to obtain viable solutions to this problem. 
The problem can be considered in two fonns: (i) when a 
training signal is available; and (ii) when no training signal 
is available. Whenever a training signal is available, the 
usual approach is to obtain the optimal filter coefficients 
using a suitable adaptive algorithm [l-31. ORcn, in prac- 
tice, the training signal or the desired component may not 
be available. In such situations, one would employ the 
notion of adaptive line enhancement to eliminate the 
periodic interference with a broadband component [ I ,  21. 
The performance of the adaptive line enhancer (ALE) 
depends upon a proper choice of the delay element and 
the adaptive algorithm. Usually, the delay is selected on an 
ud hoc basis, while the filter cocfficients are estimated by a 
suitable adaptivc algorithm. In the proposed RHPGABLE 
scheme, the delay is estimated together with the filter 
coefficients, Adaptive algorithms, based on the notion of 
gradient descent, suffer from the problem of local minima 
trapping and, thus, can yield suboptimal solutions. This 
inherent problem of local minima can be overcome by 
employing random search algorithms. Recently, the basic 
genetic algorithm (BCA) and its variants have been 
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cniployed to determine an optimal set of filter coefficients 
[4, 51. Because of the large population size, the computa- 
tional burden is vcry high whcn implementing the BGA 
[6, 71. The processing time is reduced by employing a 
parallel genetic algorithm (PGA) [S, Y ]  instead of the BGA 
and it also yields better solutions than the BGA. We have 
estimated the filter coefficients using the PGA and the 
least mean squares (LMS) algorithm, and the delay using 
the PGA. 

In this paper, a new scheme called the recursive hybrid 
parallel genetic algorithm based line enhancer 
(RHPGABLE) is proposed. The efficacy of an adaptive 
linc enhancement scheme dcpends on a proper choice of 
the delay that helps to separate the broadband component 
from the periodic signal. Since the choice of delay is 
crucial for devising an efficient scheme, we consider the 
problem ofjoint estimation of delay and filter coefficients. 
Joint estimation is difficult because the optimal estimate of 
filter coefficicnts depends upon the optimal estinrate of the 
delay and vice w". Hence, we formulate the problem so 
that the delay and the filter coefficients are estimated 
recursively. This recursive scheme yiclds partial optimal 
solutions instead of optinial solutions. The RHPGABLE 
scheme works in an unsupervised framework, where no 
u priori knowledgc of the training signal, delay, and filter 
coefficients is assumcd to he available. In the proposed 
schemc, the delay estiniation step employs PGA, while the 
filter coefficient estimation step uses both PGA and the 
LMS algorithm. The PGA is bascd on a ncw crossover 
operator known as the generaliscd crossovcr (GC) operator. 
The proposed algorithm is validated with a tapped delay 
finite impulse response (FIR) filter. This algorithin success- 
fully extracted the power frequcncy component corrupted 
by additive white Gaussian noise of varying strengths. The 
algorithm was also validated with practical data obtained 
from the steel melting shop of Rourkcla Steel Plant. Since 
the proposed schcme is bascd on a parallel genetic 
algorithm, it is suitable for real-time implementation in 
extracting desired components from corruptcd ones. The 
rcsults prescnted in this paper correspond to a serial 
implementation of the proposed parallel algorithm. 

2 Problem statement 

2.7 Adaptive line enhancer 
Fig. I shows a typical block diagram representation of an 
adaptive line eiiliancer (ALE). where the input denotes thc 
corrupted signal and the output is the estimated signal. The 
delay element A denotes thc amount by which the input 
signal is delayed before passing through the adaptive filter. 
A referencc signal is not used in the ALE, as shown in 
Fig. I .  The delay element helps to separate the signal 
component from the noisc componcnt. The signal tracking 
capability depends greatly upon thc proper choice of dclay 
element. The adaptive filter considered is the FIR filter. 

corrupted input error 

O"IP"1 

filter 

adaptive 
algorithm 

Fig. 1 Adupriia line mlroiicrr 
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The delay and the optimal filter cocfficients, h* = [h ; ,  h;, 
. . , h;], have to be determined, where N denotes the order 
of thc filter. 

2.2 RHPGABLE scheme 
To overcome the problem of irrl  hoc choice of delay, we 
propose a RHPGABLE scheme in which a simultaneous 
estimate of the delay as well as the filter coefficients are 
obtained. The RHPGABLE scheme is shown in Fig. 2. 
The following optiinality criterion is adopted for the joint 
estimation: 

(h,,, = inin r(I7. A) (1) 
( b . A )  

where e(h, A) is the error at the output of the adaptive filter, 
It,,, denote the optimal filter coeficients, and A<>,>, is the 
optimal delay. Solving ( I )  is difficult because the optimal 
value of thc filter cocfficients and the optimal value of the 
delay are interdependent and unknown. A set of optimal 
values of h' depends upon the proper choice of A, and in 
the sequel, the optimal valuc of the delay depends upon the 
optimal value of h*.  Hence, the above problem is split into 
the following: 

h' = min e(h; A*) 

A* = min e@*, A) 

(2) 

(3) 
1, 

A 

I n  (2), determination of h* is dependent on A*, while in 
(3), determination of A* is dependent on I I*.  h* and A* are 
known as 'partial optimal' solutions. Sincc /I* and A* are 
not available, solving (2) and (3) is also a difficult task. For 
such problems in a deterministic framework [IO],  it has 
been shown that parametcrs can he recursively estimated to 
eventually converge to a partial optimal solution h* and 
A*. In thc limiting case, these recursive estimates convergc 
to partial optimal solutions. In the same spirit, we propose 
to adopt the following recursive scheme to find the partial 
optiinal solutions h* and A* in a stochastic framework. Let 
k denote the kth iteration of the proposed algorithni. The 
following rccursion is adopted for the above problem: 

h(k + 1) = niin e(h. A ( k ) )  

A(k + I )  = niin r(h(k + I ) .  A) 

(4) 

( 5 )  

h 

B 

The combined recursion consists yf estimation o f $ k +  1) 
using A(k), and estimation. of A ( k +  I )  using h(k+ I ) .  
These recursive estimates, A(k) and h(k), will eventually 
converge to partial optimal solutions. "The PGA and the 
LMS algorithm are employed to obtain h(k+ I ) ,  while only 
the P G p  is employed to obtain the estimate of A ( k f  1). 
Thus, h(k+ I) and A(k+ I )  are recursively obtained in a 

ertor corrupted input 

delay 

adaptive 
algorithm 

Fig. 2 
rive line mhoncer (RHPGABLE) 
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stochastic framework until the convergence criterion is 
met. We considered the following cpnvergence criterion. 
The algorithm stops when lA(k) ~ A(k - I ) /  c threshold. 
The value of the threshold is 2. This indicates that two 
consecutive estimates are equal. 

3 Parallel genetic algorithm 

In GAS, the population size is one of the parameters that 
determines the quality of solution. As population size 
increases, the GA has a better chance of finding the 
global solution. The increase in population size results in 
a heavy computational burden. Hcnce with a serial GA, 
one has to choose between obtaining a good result with 
high confidence and paying a high computational cost, or 
reducing the confidence requirement and getting a possibly 
poor result more quickly. In contrast, parallel GAS can 
keep the quality of the results high and find them rapidly, 
because larger populations can bc processed in less time 
using parallel machines. Parallel genetic algorithms 
(PGAs) have been used to find solutions to many complex 
problems [X, 91. The motivation behind the use of PGAs is 
twofold: (i) to reduce the processing time needed to reach 
an acceptable solution; (ii) to obtain, in some sense, better 
solutions than those from comparably sized serial GAS. 
GAS can be parallelised using either a coarse- or fine- 
grained approach. In fine-grained parallel GAS, the evalua- 
tion of individuals and the application of genetic operators 
are explicitly parallelised so that every individual has a 
chance to mate with all the rest. The speedup gained is 
proportional to the number of processors used. 

In the coarse-grained approach, the population is divided 
into a few sub-populations that are kept relatively isolated 
from each other. This method of parallelisation introduces 
a migration operator and a migration policy which help to 
send some individuals from one sub-population to another. 
In the coarse-graincd approach, the two genetic models of 
population structures used extensively are: (i) the island 
model; and (ii) the stepping stone model. The population in 
the island model is partitioned into small sub-populations 
by geographic isolations where individuals can migrate to 
any other sub-population. In the stepping stone model, the 
population is partitioned into small sub-populations, but 
migration is restricted to neighbouring sub-populations. 
Our algorithm is implemented based on a coarse-grained 
approach incorporating the island model. Thcrc are 
different migration policies and the solutions depend 
upon the choice of migration policy. We have used a 
migration policy in which good migrants replace bad 
individuals of a sub-population. 

4 Generalised crossover (GC) operator 

In this paper, we introduce a new crossover operator 
known as the generalised crossover (GC) operator which, 
when applied to two parents, produces one offspring 
instead of two as in the basic genetic algorithm. The 
GC operator is shown in Fig. 3. The operator can be 
described as follows. Two parents pI and p 2  are selected 
at random and two crossover points are also selected at 
random. In between the two crossover points, two bits of 
the respective positions of the two selected parents are 
now passed through a nonlinear function (switching 
function) to produce one output. If x and y are two 
switching variables, then the possible switching functions 
f ( x ,  y )  are 0, x’y’> x’y, x‘, xy’, y’, x’y+.xy’, x‘+y’, xy, 
ry+x[v’, y, x’+y, x, x + g :  x + y ,  I. Of the above 16 
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;-- output 

functions, 0 and 1 are not used because they correspond 
to inconsistent functions. For the two-variable case, a 
switching function is selected at random from the above- 
mcntioned functions and the two bits are impressed as 
the input. The corresponding output is stored in the same 
bit position as one of the parents. Analogously, all other 
bits are generated by selecting the other respective bits 
from the two parents and passing them through the 
randomly selected switching function. So, a stream of 
bits between the two crossover points is generated that 
replaces one of the parents to generate one offspring. The 
motivation is twofold: (i) it helps to explore the diversity 
of solutions in the solution space; and (ii) this model is 
more plausiblc from the evolutionary sense in that two 
parents produce one offspring at a time. The samc GC 
operator is applied again to the same two parents with 
the two new randomly chosen crossover points to 
produce one more offspring. As a result of this operation, 
two offspring are produced from the two parents by 
applying the GC operator twice. Thus, N offsprings are 
generated from N parents and the total population is 
maintained constant by employing a suitable selection 
mechanism. 

5 Implementation 

Fig. 2 shows thc implementation of the proposed 
RHPGABLE scheme in which the delay as well as the 
filter coefficicnts are estimated recursively. Sincc the esti- 
mates of the filter coefficients are dependent on the choice 
of the delay, both filter coefficients and delay are estimated 
rccursively. Estimates of the delay and the filter coefficients 
eventually converge to the desired solution after several 
combined iterations. One estimation of the delay and 
estimation of one set of filter coefficicnts constitute one 
combined iteration. This process is repeated until the 
convergence criterion is met, that is, the error is below 
the pre-selected level. The algorithm starts with an 
arbitrary choice of delay, and using this delay, the filter 
coefficients are estimated using the PGA and the LMS 
algorithm. In the filter coefficient estimation step, the PGA 
is run for a sufficient number of iterations, such that the 
output error is below a threshold, or in other words, the 
average fitness is above 0.6. These estimated coefficients 
are used as the init ial  coefficients for the LMS algorithm. 
Thc fitness function used is.fit<(k) = 1/(1 +(e@))’). where 

.fit;(k) denotes the fitness of the ith parent in kth generation 
of a sub-population and e;(k) denotes the error for the i th  
parent at hth iteration of a sub-population. The fitness of an 
individual might grow and the maximum value of the 
fitness can be unity, which indicates that the string is the 
best fit. The current implementation of the RHPGABLE 
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algorithm is serial, and attempts are being made at its 
parallel implementation. Salient steps of the algorithm are 
given below. 

RHPGABLE algorithm 
Step I .  lnitialise the filter coefficients to random values 
from a uniform distribution. Select an arbitrary delay. 
Step 2. Using the delay and the randomly selected filter 
coefficients estimate the filter coefficients using the PGA 
and the LMS algorithm. 

(i) Initially the population is partitioned into a number of 
sub-populations. 

(u)  In each sub-population at kth generation of the 
GA, 

iA-1) 

n=O 
i ( k )  = .E h,(k)y(k - n - A) 

e(k)  = y ( k )  - i ( k )  

where N denotes the order of the filter. After every 
IO generations, 20% of the individuals of a sub- 
population migrate to other sub-populations with a 
migration probability P,nig. The individuals are ranked 
in descending order according to their fitness. The 
20% of individuals having high fitness are selected for 
migration. The sub-populations are connected so that 
the selected individuals are migrated to every other 
sub-population. 
(b)  Step (a) is repeated until the average fitness of the 
total population elements is above a threshold vaJue. 
The threshold value is 0.6. Thus an estimate of Ah(k) 
is obtained by minimizing e2(k).  

( i i )  The filter coefficients, h(k) are updated to h(k+ I ) =  
h(k) + Ah(k). 
(iii) Steps (i) and (ii) are repeated until the average fitness 
is above a selected thrcshold. 
(iv) The filter coefficients obtained from step (iii) are 
used as thc initial coefficicnts for the LMS algorithm. At 
the kth step of the LMS algorithm, 

e(k) = y(k)  - x(k )  
h(k + I )  = h(k)  + Zp(k)e(k)y(k - A )  

where N is the order of the filter, p is the convergence 
coefficient, and hc,, denotes the filter coefficients updated 
by the PGA. The filter coefficients are updated until the 
error is below a pre-selected threshold. 

Step 3. Using the estimatedfiltcr coefficients h(k+ I )  from 
step 2, the estimated dclay A ( k +  1) is obtained by employ- 
ing the PGA. The population is divided into a number 
of sub-populations. In each sub-population, at the kth 
iteration of the PGA, 

(4 
(N-I) 

tl=O 
x ( k )  = h,<(k + I)y(k - n - A) 

e(k)  = y(k) - x(k ) .  

The estimate of the delay is obtained for a few generations 
while minimising e2(k). Subsequently, the selected 
number of individuals are migrated to other sub-popula- 
tions with migration probability Pm,r. 
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(b) Step ( a )  is repeated until the average fitness of the 
tptal population elements is above a threshold and thus 
A(k+ I )  is obtained while minimising e'@). 

Step 4. Steps 2 and 3 are repeated until the Convergence 
criterion is met. The convergence criterion is that the 
estimated delay does not change for three consecutive 
iterations. 

6 Results and discussion 

In simulations, we have considered both synthetic data and 
practical data obtained from the load weighing system at 
the steel melting shop of Rourkela Steel Plant. In the case 
of synthetic data, we have considered the following signal 
models: 

y(t) = A  sin(w1) + n( t )  (6) 
A A 
3 5 

y(t) = Asin(~v~)+-sin(3wt)+-sin(Sw1)+n(t)  (7) 

where y(t) is the corrupted signal Asin(w'f) is the desired 
component, A is the amplitude of the signal, and n(I) is 
zero mean white Gaussian noise. In (6),y(t) corresponds to 
a simple sinusoidal signal, and in (7), y(t) is a periodic 
signal consisting of a fundamental component plus odd 
harmonics. Signal-to-noise ratio (SNR) is defined as 
SNR,,,= IOloglo(SP/NP), where SP and NP denote the 
signal and noise power respectively. The filter considered 
in both models is an FIR filter having order N=16. 
Although both models could be tested for different 
corrupted signals with varying noise strength, we present 
only a few typical cases. 

Fig. 4 shows the results obtained for a corrupted input 
with SNR = 10 dB while employing the RHPGABLE 
scheme. The signal model given by (6) is considered for 

2.51 

iterations 

'61 

5 10 15 20 25 
iterations 

b 

Fig. 4 RHPGABLE scheme 
a Time domain signals showing thc corrupted input of SNR = IO dB, 
simple sinusoidal desired signal and estimated signal 
b Estimated delay 
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simulation. The initial value of the delay is chosen to be 
I O .  Each filter coefficient is binary coded, of I O  bits length, 
and one chromosome consists of 16 coefficients with 
binary coding. Using the above selected delay, the PGA 
is run for a sufficient number of iterations that the output 
error is below a threshold, or equivalently, the fitness is 
above a threshold. We have fixed the threshold value of the 
fitness to be 0.6. Thc weights obtained from PGA are used 
as the initial weights for the LMS algorithm a n 4  thus, 
the filter coefficients are estimated for an arbitrarily chosen 
delay. 

The parameters used for the PGA are: number of 
population elements, M =  60; probability of crossover, 
pc= 0.85; probability of mutation, pm = 0.006; filter 
order, iV= 16; number of bits per filter coefficient, 
B = 10 bits; probability of migration, P . , , ~  = 0.9; number 
of sub-populations, d = 4; and migration rate, y = 20%. I t  is 
seen from Fig. 4h that the algorithm started from an 
arbitrary delay of I O  and converged to a delay of 1 I after 
22 combined iterations. Using this converged dclay of I I ,  
the filter coefficients are estimated using the PGA and the 
LMS algorithm. 1:hese estimated coefficients are able to 
track the desired components even under high noise 
conditions, as shown in Fig. 4a. The corresponding 
squared error settles at around -50 dB after 800 iterations. 

Fig. 5 shows the results obtained using the signal model 
given by (7) with input SNR=2OdB. The proposed 
scheme started with an arbitrary delay of 12 and converged 
to 12 after 9 combined iterations. The delay is estimated by 
the PGA algorithm. This converged value of the delay is 
used to estimate the filter coefficients and, thus, extract the 
desired signal components. I t  is observed from Fig. 5u, that 
for a complex periodic signal, the algorithm extracted the 
desired components only after a larger number of iterations 
compared to the results obtained using thc first model. The 
parameters used in the PGA are the same as those used in 
the signal model given by (6). The convergence coefficient 

14 - 
13 - 

~ 2 1 2 -  

n 11 - 
a 10-  
E 
j; 9 -  

8 -  

n 

.- 

2.07 

1 'estimated 

0 2 4 6 8 t o  
iterations 

b 

Fig. 5 RHPGABLE scheme 
a Time domain signals showing the corrupted input of SNR = 20 dB, 
complex sinusoidal desired signal and estimated signal 
6 Estimated delay 
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p ( k )  of the LMS algorithm is selected to be 0.06. LI is 
allowed to decrease with iteration in accordance with an 
exponentially decaying function. 

6.7 Practical data of SMS of Rourkela Steel Plant 
The RHPGABLE scheme was also tested using a set of real 
data, voltage signals obtained from the R, Y and B phases 
of the load weighing system. The input supply voltage was 
recorded by a recorder, and subsequently, the digital data 
were collected from the recorder. As observed in Fig. 6a, 
the input signal of the R-phase signal is quite distorted. 
The noise in this phase is modelled as Gaussian noise 
and the algorithm successfully tracked the desired compo- 
nent, as shown in Fig. 6a. For the sake of comparison with 
the estimated signal, the desired signal is also plotted in 
Fig. 6u. The algorithm started with an arbitrary delay of 13 
and converged to a delay o f  I 1  after 13 combined itera- 
tions. The corresponding error in dB is shown in Fig. 66, 
where it is seen that the error has reduced to a level of 
-60 dB in approximately 100 iterations of the LMS algo- 
rithm. The parameters used for the PGA are the same as  
those used in the case of synthetic data. The initial value of 
p is 0.09. It is clearly observed that the algorithm success- 
fully extracted the signal components, while the noise was 
modelled as Gaussian noise. 

Encouraging results are also obtained in case of Y- and 
B-phase signals. Although the Y-phase data is more 
distorted than the R-phase data, the algorithm tracked the 
desired component satisfactorily. The algorithm started 
with an arbitrary delay of 12 and converged to a delay of 
13 after six combined iterations. The corresponding error 
is shown in Fig. 76. The parameters for the PGA are 

1.91 

iterations 

-20, 

4 0  

g -60 
e -80 
& 
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P 
0 
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-140i I '  I 
i 

2000 
-1604 

0 500 1000 1500 
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b 

Fig. 6 RHPGABLE scheme 
o Practical data (corrupted signal) of R-phase, normalised voltage 
signal obtained from the SMS of Rourkela Steel Plant, extracted 
signal and corresponding desired signal 
6 Corresponding squared error 
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Fig. 7 RIIPGABLE sde,ne 
a Practical data (corrupted signal) o f  Y-phase, nomalised voltage 
signal obtained from thc SMS of Rourkela Stccl Plant. extracted 
signal and corresponding desired signal 
h Corresponding sqiiarcd error 
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Fig. 8 RHPGABLE scheme 
a Practical data (corrupted signal) of B-phase, nomialised voltage 
signal obtained from the SMS of Rourkcla Steel Plant, cxtracted 
signal and corresponding desired signal 
h Corresponding squared error 
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unchanged and the initial value of is 0.05. Using the 
converged value of 13, the algorithm tracked the desired 
component as shown in Fig. l a .  

Similarly, results obtained for the B-phase signal are 
shown in Fig. 8. Thc noise in the corrupted input is 
modelled as Gaussian. The algorithm started with an 
arbitrary delay of 10, and finally converged to the same 
delay after seven combined iterations. Even though the 
input signal of the B-phase is the worst of the three cases, 
the algorithm extracted the desired componcnt. With the 
converged delay of IO,  the PCA and the LMS algorithm 
are used to estimate the filter coefficients a n d  thus. extract 
the signal. Thc desired component is tracked within 300 
iterations of the LMS algorithm as shown in Fig. Sa. The 
corresponding error is shown in Fig. 8b, where the error is 
below -40 dB after 50 iterations. 

The efficacy of the proposed scheme with the GC 
operator is compared with that of using two-point cross- 
over as shown in Fig. 9. It is observed in Fig. 9 that the GC 
operator based scheme convcrges faster than the scheme 
using two-point crossover. Thus. the proposed scheme 
performed well on practical data in an unsupervised 
framework. 

7 Conclusions 

A new adaptive line enhancement scheme named as thc 
RHPGABLE scheme is proposed for extraction of peri- 
odic signals when training signals are not available. The 
scheme uses a novel crossover operator and the parallel 
genetic algorithm, thus, making it suitable from a prac- 
tical standpoint. This is an unsuperviscd scheme in the 
sense that one need not have a priori knowledge of the 
delay and the filter coefficients. Here, the delay is 
estimated rather than sclected on an ad hoc basis. The 
scheme was successfully tested on synthctic data as well 
as practical data obtained from the load weighing system 
of the SMS, Rourkcla Steel Plant. The practical data 
obtained from Rourkela Stcel Plant were for noisy load 
conditions. Application of this scheme could prevent 
damage to the costly equipment associated with the 
load weighing system. Furthermore, frequent calibration 
of the load weighing system may not now be required. 
The performancc of the scheme with the new operator is 
found to be superior to that of a schcme using a two-point 
crossover operator. The results presented in this paper are 
for serial implementation of the RHPGABLE scheme. 
Currently, attempts are being made to obtain results for 
parallel implcmentation. 
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