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Abstract: A steel industry has different types of loads, and so the incoming supply voltage of
some units becomes distorted thus affecting those systems that depend on a distortionless supply.
A novel unsupervised scheme named the recursive hybrid parallel genetic algorithm based line
enhancer {(RHPGABLE) scheme is proposed, to track the desired power frequency signal from the
corrupted one. The RHPGABLE scheme 1s based on a proposed new crossover operator known as
the generatised crossover (GC) operator. The delay and the filter coefficients are estimated
recursively to yield optimal solutions. In the recursion of the proposed RHPGABLE algorithm,
a paralle] genetic algorithin (PGA) based on a coarse-grained approach is employed to estimate
the delay, while the filter coefficients arc estimated by PGA and a least mean squares (LMS)
algorithm. RHPGABLE is an unsupervised scheme in the sense that no @ prieri knowledge of
deiay or filter coefficients and the associated training signal component is assumed to be available.
The proposed scheme has been tested successfully on both syathetic data and data obtained from

the Steel Melting Shop of Rourkela Steel Plant, Orissa, India.

1 Introduction

Different types of load, such as linear, nonlinear, switching
and inductive, occur in a steel plant. The load weighing
system provided on the cranes determines the true weight
of loads on these crancs. The major cranes utilised in the
steel melting shop (8MS8) of Rourkela Steel Plant are of
250 tons capacity since molten hot metal and molten steel
weighing up to 250 tons or more is handied. The adopted
weighing system is controlled through programmable logic
controlters (PLC) designed by ABB Ltd. The accuracy of
the load weighing system depends greatly on the incoming
power supply to the system. However, the incoming power
supply to the load weighing system suffers from noise due
to: (1) the proximity of power supply cables; (ii) the effcct
of different loads; (iit) random load fluctuations and
switching actions; (iv) frequent switching of inductive
and passive elements such as contactors and timers;
(v} switching of motors.

The above mentioned interfering signals greatly affect
the weighing system. Interference may damage the equip-
ment associated with the weighing system and necessitate
frequent recalibrations. The problem of interference is
viewed as noise interference with periodic signals. The
input supply becomes distorted, with variable amounts of
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distorticn that depend on the load of a given shop floor or
the connected shops. Since there is a continuous change in
loading conditions in a steel melting shop, the levels of
contaminating noise alse change. Parameters of active and
passive filters need to be redesigned to meet the changing
conditions,

The proposed scheme adapts to the changing system
requirements, and bhencc is more suitable for the problem
described than filters with fixed parameters. The scheme
suppresses noise and, thus, protects any frequency-sensi-
tive devices connected to the load weighing system.

The problem of extracting noise-free signals from
corrupted signals has been pursued for at least three
decades [1-3]. Many adaptive filtering techniques have
been proposed to obtain viable solutions to this problem.
The problem can be considered in two forms: (i) when a
training signal is available; and (ii) when no training signal
is available. Whenever a training signal is available, the
usual approach is to obtain the optimal filter coefficicnts
using a suitable adaptive algorithm [1-3]. Often, in prac-
tice, the training signal or the desired component may not
be available. In such situations, one would employ the
notion of adaptive line enhancement to eliminate the
periodic interference with a broadband componeni [1, 2].
The performance of the adaptive line enhancer (ALE)
depends upon a proper choice of the delay clement and
the adaptive atgorithm. Usually, the delay is selected on an
ad hoc basis, while the filter cocfficients are estimated by a
suitable adaptive algorithm. In the proposed RHPGABLE
scheme, the delay is estimated together with the filter
coetficicnts. Adaptive algorithms, based on the notion of
gradient descent, suffer from the problem of local minima
trapping and, thus, can yield suboptimal solutions. This
inherent problem of local minima can be overcome by
employing random search algorithms. Recently, the basic
genetic  algorithm (BGA) and its variants have been
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cmployed to determine an optimal set of filter coefficients
[4, 5]. Because of the large population size, the computa-
tional burden is very high when implementing the BGA
f6, 7]. The processing time is reduced by employing a
parallel genetic algorithm (PGA) [8, 9] instead of the BGA
and it also yields better solutions than the BGA. We have
estimated the filter coefficients using the PGA and the
least mean squares (LMS) algorithm, and the delay using
the PGA.

In this paper, a new scheme called the recursive hybrid
parallel  genetic  algorithm  based line enhancer
(RHPGABLE) is proposed. The efficacy of an adaptive
line enhancement scheme depends on a proper choice of
the delay that helps to separate the broadband component
from the periedic signal. Since the choice of delay is
crucial for devising an efficient scheme, we consider the
problem of joint estimation of delay and filter coefficients.
Joint estimation is difficult because the optimal estimate of
filter coefficients depends upon the optimal estimate of the
delay and vice versa. Hence, we formulate the problem so
that the delay and the filter coefficients are estimated
recursively. This recursive scheme yiclds partial optimal
solutions instead of optimal solutions. The RHPGABLE
scheme works in an unsupervised framework, where no
a prieri knowledge of the training signal, delay, and filter
coefficients is assumed to be available. In the proposed
scheme, the delay estimation step employs PGA, while the
filter coefficient estimation step uses both PGA and the
LMS algorithm. The PGA is based on a new crossover
operator known as the generaliscd crossover (GC) operator.
The proposed algorithm is validated with a tapped delay
finite impulse response (FIR) filter. This algorithm success-
fully extracted the power frequency component corrupted
by additive white Gaussian noise of varying strengths. The
algorithm was also validated with practical data obtained
from the steel melting shop of Rourkela Steel Plant. Since
the proposed scheme is based on a parallel genetic
algorithm, it is suitable for real-time implementation in
extracting desired components from corrupted ones. The
results presented in this paper correspond to a serial
implementation of the proposed parallel algorithm.

2 Problem statement

2.1 Adaptive line enhancer

Fig. ! shows a typical block diagram representation of an
adaptive line enhancer (ALE), where the input denotes the
corrupted signal and the output is the estimated signal. The
delay element A denotes the amount by which the input
signal is delayed before passing through the adaptive filter.
A reference signal is not used in the ALE, as shown in
Fig. 1. The delay element helps to separate the signal
component from the noise component. The signal tracking
capability depends greatly upon the proper choice of delay
element. The adaptive filter considered is the FIR filter,

cormypted Input efror

- z
; oulput
adaptive
filter 0
adapiive
glgorithm

Fig. 1 Adaptive line enhancer
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The dg]ay and the optimal filter cocfficients, h* = [k}, h3,
.. -, hyl, have to be determined, where N denotes the order
of the filter,

22 RHPGABLE scheme

To overcome the problem of ad hoc choice of delay, we
propose a RHPGABLE scheme in which a simultaneous
estimate of the delay as well as the filter coefficients are
obtained. The RHPGABLE scheme is shown in Fig. 2.
The following optimality criterion is adopted for the joint
estimation:

(h(JpI? A()p[) = :}l‘l'iﬂr; e(h' A) (1)

where e(h, A) is the error at the output of the adaptive filter,
h.p denote the optimal filter coefficients, and A,,,, is the
optimal delay. Solving (1} is difficult because the optimal
value of the filter cocfficients and the optimal value of the
delay are interdependent and unknown. A sct of optimal
values of k* depends upon the proper choice of A, and in
the sequel, the optimal valuc of the delay depends upon the
optimal value of £*. Hence, the above problem is split into
the following:

W = min e(h, AY) (2)
AY = mAin e(h*, A) (3)

In (2), determination of A* is dependent on A*, while in
(3), determination of A* is dependent on 2%, i* and A* are
known as ‘partial optimal’ solutions. Since i* and A* are
not available, solving (2) and (3) is also a difficult task. For
such problems in a deterministic framework [10], it has
been shown that parameters can be recursively estimated to
eventually converge to a partial optimal solution A* and
A*. In the limiting case, these recursive estimates converge
to partial optimal solutions. In the same spirit, we propose
to adopt the following recursive scheme to find the partial
optimal solutions A* and A* in a stochastic framework. Let
k denote the ith iteration of the proposed algorithm. The
following recursion ts adopted for the above problem:

hk+1)= min e, A(k)) (4)
Atk + 1) = min etk + 1), A) (5)

The combined recursion consists of estimation ofﬁ(k+ 1
using A(k), and estimation of A(k+41) using h(k+1).
These recursive estimates, A(k) and f(k), will eventually
converge to parlial optimal solutions, The PGA and the
LMS algorithm are employed to obtain (4 + 1), while only
the PGA is employed to obtain the estimate of Atk +1).
Thus, A(k+ 1) and A(k+ 1) are recursively obtained in a
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Fig- 2 Recursive hvbrid parallel genetic algorithm based adap-
tive line enhancer (RHPGABLE)
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stochastic framework until the convergence criterion is
met. We considered the following convergence criteriomn.
The algorithm stops when |A(k) — A(k — 1)} < threshold.
The value of the threshold is 2. This indicates that two
consecutive estimates are equal.

3 Parallel genetic algorithm

In GAs, the population size is one of the parameters that
determines the quality of solution. As population size
increases, the GA has a better chance of finding the
global solution. The increase in population size results in
a heavy computational burden. Hence with a serial GA,
one has to choose between obtaining a good result with
high confidence and paying a high computational cost, or
reducing the confidence requirement and getting a possibly
poor result more quickly. In contrast, parallel GAs can
keep the quality of the results high and find them rapidly,
because larger populations can be processed in less time
using parallel machines. Parallel genetic algorithms
(PGAs) have been used to find solutions to many complex
problems [&, 9]. The motivation behind the use of PGAs is
twofold: (i) to reduce the processing time needed to reach
an acceptable solution; (ii) to obtain, in some sense, better
solutions than those from comparably sized serial GAs.
GAs can be parallelised using either a coarse- or fine-
grained approach. In fine-grained parallel GAs, the evalua-
tion of individuals and the application of genetic operators
are explicitly parallelised so that every individual has a
chance to mate with all the rest. The speedup gained is
proportional to the number of processors used.

In the coarse-grained approach, the population is divided
into a few sub-populations that are kept relatively isolated
from each other. This method of parallelisation introduces
a migration operator and a migration policy which help to
send some individuals from one sub-population to another.
In the coarse-grained approach, the two genetic models of
population structures used extensively are: (i) the island
model; and (it} the stepping stone model. The population in
the island model is partitioned into small sub-populations
by geographic isolations where individuals can migrate to
any other sub-population. In the stepping stone model, the
population is partitioned into small sub-populations, but
migration is restricted to neighbouring sub-populations.
Our algorithm is implemented based on a coarse-grained
approach incorporating the island model. There are
different migration policies and the solutions depend
upon the choice of migration policy. We have used a
migration policy in which good migrants replace bad
individuals of a sub-population.

4 Generalised crossover {GC) operator

In this paper, we introduce a new crossover operator
known as the generalised crossover (GC) operator which,
when applied to two parents, produces one offspring
instead of two as in the basic genetic algorithm. The
GC operator is shown in Fig. 3. The operator can be
described as follows. Two parents p; and p, are selected
at random and two crossover points are also selected at
random. In between the two crossover points, two bits of
the respective positions of the two selected parents are
now passed through a nonlinear function (switching
function) to produce one output. If x and y are two
switching variables, then the possible switching functions
fix, ¥y are 0, Xy, ¥y X, 0, 3, Xv+xy, X+¥, 0
xw+xV, v X+, x x+), x+x 1. Of the above 16
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Fig. 3 Generalised crossaver operator

functions, 0 and 1 are not used because they correspond
to inconsistent functions. For the two-variable case, a
switching function is selected at random from the above-
mentioned functions and the two bits are impressed as
the input. The corresponding output is stored in the same
bit position as one of the parents. Analogously, all other
bits are generated by selecting the other respective bits
from the two parents and passing them through the
randomly selected switching function. So, a stream of
bits between the two crossover points is generated that
replaces one of the parents to generate one offspring. The
motivation is twofold: (i) it helps to explore the diversity
of solutions in the solution space; and (ii) this model is
more plausible from the evolutionary sense in that two
parents produce one offspring at a time. The same GC
operator is applied again to the same two parents with
the two new randomly chosen crossover points to
produce one more offspring. As a result of this operation,
two offspring are produced from the two parents by
applying the GC operator twice. Thus, N offsprings are
generated from N parents and the total population is
maintained constant by employing a suitable selection
mechanismm.

5 Implementation

Fig. 2 shows thc implementation of the proposed
RHPGABLE scheme in which the delay as well as the
filter coefficients are estimated recursively. Since the esti-
mates of the filter coefficients are dependent on the choice
of the delay, both filter coefficients and delay are estimated
recursively. Estimates of the delay and the filter coefficients
eventually converge to the desired solution after several
combined iterations. One estimation of the delay and
estimation of one set of filter coefficients constitute one
combined iteration. This process is repeated until the
convergence criterion is met, that is, the error is below
the pre-selected level. The algorithm starts with an
arbitrary choice of delay, and using this delay, the filter
coefficients are estimated using the PGA and the LMS
algorithm. In the filter coefficient estimation step, the PGA
is run for a sufficient number of iterations, such that the
output error is below a threshold, or in other words, the
average fitness is above 0.6. These estimated coefficients
are used as the initial coefficients for the LMS algorithm.
The fitness function used is fit,(k) = 1 /(1 + (e (k)?), where

fiti(k) denotes the fitness of the ith parent in kth generation

of a sub-populiation and ¢;(k) denotes the error for the ith
parent at kth iteration of a sub-population. The fitness of an
individual might grow and the maximum value of the
fitness can be unity, which indicates that the string is the
best fit. The current implementation of the RHPGABLE
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algorithm is serial, and attempts are being made at its
parallel implementation. Salient steps of the aigerithm are
given below.

RHPGABLE algorithm
Step 1. Initialise the filter coefficients to random values
from a uniform distribution. Select an arbitrary delay.
Step 2. Using the delay and the randomly selected filter
coefficients estimate the filter coefficients using the PGA
and the LMS algorithm.
(i) Initially the population is partitioned into a number of
sub-populations.
(¢) In each sub-population at kth generation of the
GA,

(N=1)

k) = Z h (k)ylk—n—A)

e(k) = ,V(k) — Xk)

where N denotes the order of the filter. After every
10 generations, 20% of the individuals of a sub-
population migrate to other sub-populations with a
migration probability P,,,. The individuals are ranked
in descending order according to their fitness. The
20% of individuals having high fitness are selected for
migration. The sub-populations are connected so that
the selected individuals are migrated to every other
sub-population.
(b) Step (a) is repeated until the average fitness of the
total population elements is above a threshold value.
The threshold value is 0.6, Thus an estimate of Ak(k)
is obtained by minimizing (k).

(1) The filter coefficients, A(%) are updated to A{k+ 1)=

R(K) + Ah(k).

(iii) Steps (i) and (i) are repeated until the average fitness

is above a selected threshold.

(iv) The filter coefficients obtained from step (iii) are

used as the initial coefficients for the LMS algorithm. At

the kth step of the LMS algerithm,

W=t
x(k} = Zb hG”(k)y(k —n—A)

e(k) = y(k) — x(k)
ik + 1) = h(k) + 2u(k)e(k)ytk — A)

where N is the order of the filter, p is the convergence
ceefficient, and hg_denotes the filter coefficients updated
by the PGA. The filter coefficients are updated until the
error is below a pre-selected threshold.
Step 3. Using the estimated filter coefficients 2(k + 1) from
step 2, the estimated delay A(k+ 1) is obtained by employ-
ing the PGA. The population is divided into a number
of sub-populations. In each sub-population, at the Ath
iteration of the PGA,
(a)

(N—1}
W= 3 b+ 1wk —n—A)
n=0

e(k) = y(k) — x(k).

The estimate of the delay is oblained for a few generations
while minimising ¢*(k). Subsequently, the selected
number of individuals are migrated to other sub-popula-
tions with migration probability £,,,. .
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() Step (a) is repeated until the average fitness of the
total population elements is above a threshold and thus
A(k+ 1) is obtained while minimising &*(k).

Step 4. Steps 2 and 3 are repeated until the convergence
criterion is met. The convergence criterion is that the
estimated delay does not change for three consecutive
iterations.

6 Results and discussion

" In simulations, we have considered both synthetic data and

practical data obtained from the load weighing system at
the steel melting shop of Rourkela Steel Plant. In the casc
of synthetic data, we have considered the following signal
models:

w6y = Asin(we) + n(h) (6)
Wiy = Asin(wr) + gsin(Bwt) + ? sin(3we) + nlt} (7)

where y(f} 1s the corrupted signal Asin(wt} is the desired
component, A4 is the amplitude of the signal, and n(#) is
zero mean white Gaussian noise. In (6), ¥(f) corresponds to
a simple sinusoidal signal, and in (7), ¥{f) is a periodic
signal consisting of a fundamental component plus odd
harmonics. Signal-to-noise ratio (SNR) is defined as
SNR 5= 10log o(SP/NP), where SP and NP denote the
signal and noise power respectively. The filter considered
in both models is an FIR filter having order N=16.
Although both models could be tested for different
corrupted signals with varying noise strength, we present
only a few typical cases.

Fig. 4 shows the results obtained for a corrupted input
with SNR=10dB while employing the RHPGABLE
scheme. The signal model given by (6) is considered for
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simulation. The initial value of the delay is chosen to be
10. Each filter coefficient is binary coded, of 10 bits length,
and one chromosome consists of 16 coefficients with
binary coding. Using the above selected delay, the PGA
is run for a sufficient number of iterations that the output
error is below a threshold, or equivalently, the fitness is
above a threshold. We have fixed the threshold value of the
fitness to be 0.6, The weights obtained from PGA are used
as the initial weights for the LMS algorithm and, thus,
the filter coefficients are estimated for an arbitrarily chosen
delay.

The parameters used for the PGA are: number of
population elements, M =60, probability of crossover,
p.=0.85; probability of mutation, p,,=0.006; filter
order, N=16; number of bits per filter coefficient,
B =10 bits; probability of migration, p,,,=0.9;, number
of sub-populations, d = 4; and migration rate, y =20%. Itis
seen from Fig. 45 that the algorithm started from an
arbitrary delay of 10 and converged to a delay of 11 after
22 combined iterations. Using this converged delay of 11,
the filter coefficients are estimated using the PGA and the
LMS algorithm. These estimated coefficients are able to
track the desired components even under high noise
conditions, as shown in Fig. 4a. The corresponding
squared error scttles at around —350 dB after 800 iterations.

Fig. 5 shows the results obtained using the signal mode!
given by (7) with input SNR=20dB. The proposed
scheme started with an arbitrary delay of 12 and converged
to 12 after 9 combined iterations. The delay is estimated by
the PGA algorithm. This converged value of the delay is
used to estimate the filter coefficients and, thus, extract the
desired signal compenents. It is observed from Fig. 5a, that
for a complex periodic signal, the algorithm extracted the
desired components only after a larger number of iterations
compared fo the results obtained using the first model. The
parameters used in the PGA are the same as those used in
the signal model given by (6). The convergence coefficient
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u(k) of the LMS algorithm is selected to be 0.06. u is
allowed to decrease with iteration in accordance with an
exponentially decaying function.

6.1 Practical data of SMS of Rourkela Steel Plant

The RHPGABLE scheme was also tested using a set of real
data, voltage signals obtained from the R, Y and B phases
of the load weighing system. The input supply voltage was
recorded by a recorder, and subsequently, the digital data
were collected from the recorder. As observed in Fig. 6a,
the input signal of the R-phase signal is quite distorted.
The noise in this phase is modelled as Gaussian noise
and the algorithm successfully tracked the desired compo-
nent, as shown in Fig. 6a. For the sake of comparison with
the estimated signal, the desired signal is also plotted in
Fig. 6a. The algorithm started with an arbitrary delay of 13
and converged to a delay of 11 after 13 combined itera-
tions. The corresponding error in dB is shown in Fig. 6b,
where it is seen that the error has reduced to a level of
—60dB in approximately 100 iterations of the LMS algo-
rithm. The parameters used for the PGA are the same as
those used in the case of synthetic data. The initial value of
ft 15 0.09. It 1s clearly observed that the algorithm success-
fully extracted the signal components, while the noise was
maodelled as Gaussian noise.

Encouraging results are also obtained in case of Y- and
B-phase signals. Although the Y-phase data is more
distorted than the R-phase data, the aigorithm tracked the
desired component satisfactorily. The algorithm started
with an arbitrary delay of 12 and converged to a delay of
13 after six combined iterations. The corresponding error
is shown in Fig. 7b. The parameters for the PGA are
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unchanged and the initial value of x is 0.05. Using the
converged value of 13, the algorithm tracked the desired
component as shown in Fig. 7a.

Similarly, results obtained for the B-phase signal are
shown in Fig. 8. The noise in the corrupted input is
modelled as Gaussian. The algorithm started with an
arbitrary delay of 10, and finally converged to the same
delay after seven combined iterations. Even though the
input signal of the B-phase is the worst of the three cases,
the algorithm extracted the desired component. With the
converged delay of 10, the PGA and the LMS algorithm
are used to estimate the filter coefficients and, thus, extract
the signal. The desired component is tracked within 300
iterations of the LMS algorithm as shown in Fig. 8a. The
corresponding error is shown in Fig. 85, where the error is
below —40 dB afier 50 iterations.

The efficacy of the proposed scheme with the GC
operator 1s compared with that of using two-point cross-
over as shown in Fig. 9. It is observed in Fig. 9 that the GC
operator based scheme converges faster than the scheme
using two-point crossover. Thus, the proposed scheme
performed well on practical data in an unsupervised
framework.

7 Conclusions

A new adaptive line enhancement scheme named as the
RHPGABLE scheme is proposed for extraction of peri-
odic signals when training signals are not available. The
scheme uses a novel crossover operator and the parallel
genetic algorithm, thus, making it suitable from a prac-
tical standpoint. This is an unsuperviscd scheme in the
sense that one need not have a priori knowledge of the
delay and the filter coefficients. Here, the delay is
estimated rather than sclected on an ad hoc basis. The
scheme was successfully tested on synthetic data as well
as practical data obtained from the load weighing system
of the SMS, Rourkela Steel Plant. The practical data
obtained from Rourkela Steel Plant were for noisy load
conditions. Application of this scheme could prevent
damage to the costly equipment associated with the
load weighing system. Furthermore, frequent calibration
of the load weighing system may not now be required.
The performance of the scheme with the new operator is
found to be superior to that of a scheme using a two-point
crossover operator. The results presented in this paper are
for serial implementation of the RHPGABLE scheme.
Currently, attempts are being made to obtain resuits for
parallel implementation.
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