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Abstract. The major issue in extracting pure water from humid air is design of energy-efficient dehumidifier and 

regenerator as well as optimization of the working processes. In the current study, a novel liquid desiccant air 

conditioning/drying cum desalination system is analyzed by incorporating M-cycle based dehumidification and flat plate 

type polyvinylidene difluoride (PVDF) membrane-based indirect contact regenerator has been proposed which is 

investigated by using two artificial neural network (ANN) models i.e., Levenberg-Marquardt (ANN-LM) and Bayesian 

Regularization (ANN-BR). To investigate the model three different activation functions i.e., Tangent Sigmoid in both 

layers, Tangent Sigmoid & Linear, and Logarithmic Sigmoid & Linear for hidden and output layers are applied using 

experimental data from the literature. To perform the numerical analysis four inlet parameters (mass flow rate of water 

and liquid desiccant, liquid desiccant concentration at inlet, regenerator inlet temperature of water, and liquid desiccant) 

is considered to predict three-outlet parameters which are pure water extraction rate, liquid desiccant regenerator outlet 

concentration, and liquid desiccant regenerator outlet temperature. These combinations are explored and it has been 

established that ANN-LM with activation function Tan-Sigmoid + Tan-Sigmoid is the best performing combination 

having R2 value of 0.98 for pure water extraction rate, 0.97 for liquid desiccant solution concentration, and 0.99 for liquid 

desiccant outlet temperature. It has also been observed that a combination of ANN-BR with activation function Log-

Sigmoid + Linear was the least accurate for predicting the exit parameters. The predicted values have been found to be in 

excellent concurrence with the experimental data. 

1. INTRODUCTION 

 

Development of the agricultural sectors and increase in demand for human comfort has resulted in a rise in high 

productivity and better air quality. In regions with high relative humidity such as in coastal zones, integrated 

Maisotsenko cycle (M-Cooler) based indirect (polyvinylidene fluoride hydrophobic membrane) contact 

dehumidifier (MCID) can be chosen as an alternative over the conventional structured based dehumidifier because 

of low energy consumption, ease of fabrication, low maintenance cost and capability to remove bacteria and virus 

[1], etc. The use of liquid desiccant (LD) dehumidification/desalination system has several promising advantages 

including effective utilization of industrial waste heat [2,3], low-quality energy, and renewable energy e.g., wind 

energy [4], solar energy [5,6]. The earlier developed liquid desiccant air conditioning systems (LACS) had certain 

drawbacks as due to direct interaction between liquid desiccant and air there is a chance of desiccant carryover with 

air which tends to corrode the air duct, room furniture, walls also may damage to the health of people in air 

conditioning space and may spoil perishable goods in the drying chamber, hence in this study a flat plate membrane-

based type indirect evaporative cooler is used where liquid desiccant i.e., Lithium chloride (LiCl) and air are 

separated by a flat plate hydrophobic PVDF (polyvinylidene fluoride) membrane is used which facilitates the 

exchange of mass and energy simultaneously with high efficacy and notable pressure drop. In dehumidifier, the 

liquid desiccant absorbs water vapour. The main driving force causing the energy and mass exchange to occur are 

temperature and vapour pressure gradient at the air-liquid desiccant boundary. Although air gets dehumidified in the 
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conventional system yet the exit air temperature of the dehumidifier is low which makes it incapable of drying 

purposes; even air that is being released into the atmosphere is almost saturated which could have been used to 

extract pure water. 

With the intention of predicting the performance of the system transport phenomena and thermodynamic 

properties are considered however predicting all possible combinations is difficult. In order to counteract this 

limitation, a data-driven approach can be implemented to accurately predict using artificial intelligence-machine 

learning (AI-ML) [12]. Artificial neural network (ANN) is extensively employed for solving complex systems. 

There are several types of learning algorithms such as Quasi-Newton algorithms, Conjugate gradient algorithms 

(CG), Bayesian regularization (BR), and Levenberg-Marquardt (LM) are most commonly used [13-20]. Quasi-

Newton gives much faster results but they are more prone to memory loss [13]. ANN-LM is quicker without getting 

trapped with local minima [14-17]. The disadvantage associated with ANN-LM is that it suffers from low 

convergence while minimizing a nonlinear least-squares function [18]. ANN-BR is more robust compared to any 

other back-propagating algorithm. Overtraining and overfitting are avoided in ANN-BR nevertheless weight of the 

network [19]. BR comparatively takes less time than LM. ANN has gained popularity in recent years for predicting 

and optimization for energy application [20-22] humidification-dehumidification systems [23-25], performance of 

membrane [26], and cavitation [27]. 

As per the reported literature, it is evaluated that numerous thermal models have been proposed by researchers 

for evaluating the direct interaction-based structured packing chamber using LD during dehumidification-

regeneration performance [1-10]. Very limited researchers proposed thermal models for investigating the 

membrane-based LD dehumidification-regeneration performance [11-18]. Few investigators have presented thermal 

models for investigating the conventional LDAC system performance (direct contact structured packing chamber-

based LDAC system) [14, 19-24]. Moreover, limited thermal models were developed for analyzing membrane-based 

conventional LDAC system performance [16, 25-27]. Further, very few researchers analyzed the performance of the 

conventional LDAC system for drying cum desalination purposes [18, 27]. Furthermore, it is obvious from the 

literature that there is a deficit in thoughtful research on the suggested LDAC/drying cum desalination system by 

incorporating Maisotsenko cycle-based M-cooler during the dehumidification process. 

With respect to the above-mentioned, the current study explores a novel multipurpose LD air conditioning/drying 

cum desalination system by incorporating Maisotsenko cycle (M-Cooler) based indirect (polyvinylidene fluoride 

hydrophobic membrane) contact dehumidifier (MCID) and by employing indirect contact-based membrane 

technology for pure water extraction rate (σ) as well as flat plate polyvinylidene difluoride (PVDF) membrane-based 

indirect contact regenerator with water in place of air. For predicting pure water extraction rate (σ), LD outlet 

solution concentration (Xd,o), and outlet temperature (Td,o) two different backpropagating algorithms are proposed, 

which are ANN-based LM and BR using three different activation functions, which are Tan sigmoid in both layers, 

Tan sigmoid & Linear, and Logarithmic Sigmoid & Linear in hidden and output layer, respectively. The ANN 

model comparison is done using statistical criteria R2, MAE, MAPE, and RMSE for both training and testing data. 

The novelty of the present work is associated not only with the design of the MCID and restructuring of the 

regenerator but also with the use of AI-ML modelling for analyzing the relationship and validation of the novel 

system. In this article, both the challenges i.e., optimal design of the system and analysis based on AI-ML have been 

addressed simultaneously. 

2. NOVEL SYSTEM CYCLE 
 

The proposed multipurpose novel system cycle has two applications, they are air conditioning cum desalination 

and drying cum desalination applications as shown in FIGURE 1. The variation of desiccant concentration with 

vapour pressure for the novel model is shown in FIGURE 2. In the proposed model, the integrated Maisotsenko 

cycle (M-Cooler) based indirect (polyvinylidene fluoride hydrophobic membrane) contact dehumidifier (MCID) is 

used in place of structured packing chamber-based direct contact dehumidifier and cooling chamber for improving 

the dehumidification capacity (FIGURE 2 and 3a). Whereas flat plate polyvinylidene fluoride (PVDF) hydrophobic 

membrane-based indirect contact regenerator is proposed as an alternative to the structured packing chamber based 

direct contact regenerator and water is used in place of ambient air as a working fluid at the LD regenerator for 

extracting fresh/pure water vapour from the weak LD through the hydrophobic membrane (FIGURE 2 and 3b). 

Further, lithium chloride is used as an LD for the performance assessment of conventional and novel systems. LiCl 

is preferred as it is the most reliable and chemically stable liquid desiccant due to its virtue of low vapour pressure 



during the dehumidification and regeneration process. In addition, it is easier to compare conventional and novel 

systems, due to previously carried out research using LiCl. 

 

 

    
FIGURE 1. Schematic of proposed M-Cooler based novel air conditioning/drying cum desalination system. 

 

 
FIGURE 2. Vapour pressure variation with LD for novel system. 



 

 
(a) Dehumidifier (b) Regenerator 

FIGURE 3. Schematics of dehumidifier and regenerator in the novel system. 

2.1. Importance of M-Cooler 
 

      

FIGURE 4. Internal structure of the MCID. 

 

The MCID present in the novel system has three loops (FIGURE 1 and 2a), they are humid air loop (i–iii), 

primary air loop (A–B), and LD loop (5–1). The detailed schematic of the MCID internal structure is illustrated in 

FIGURE 4. In the humid air loop (i–iii), the humid air enters the dehumidifier in a counter flow direction, and it is in 



indirect interaction with the strong and hot LD through the PVDF-based hydrophobic membrane. When the humid 

air comes in indirect contact with the LD, moisture removal from the humid air occurs due to vapour pressure and 

temperature gradients as well as an exothermic reaction. In MCID, incorporating membrane in the dehumidifier 

eradicates the carryover and improves the vapour absorption rate due to the hydrophobic nature of the membrane 

(i.e., only water vapour can penetrate through the membrane from humid air to the LD). In the primary air loop (A–

B), the primary air and water with one another are interacted in opposite directions. During this encounter, the 

evaporation of water film occurs resulting in lowering the water temperature. This phenomenon leads to cooling the 

LD which is in indirect contact with the water through a stainless-steel plate. In the LD loop (5–1), the LD comes in 

indirect contact with the cold water and humid air which are separated by the plate and membrane, respectively. 

Thus, the hot and strong LD entering the MCID converts to cold and weak LD. 

2.2. Dehumidified Air for Air Conditioning and Drying Applications  
 

In the present investigation, the usage of dehumidified air for AC and drying applications are explored to elevate 

the performance of the conventional air conditioning and drying systems in humid climates. In the present study, 

dehumidified air is passed through the DEC and solar heater for air conditioning and drying applications, 

respectively (FIGURE 1). For air conditioning applications, dehumidified air is cooled and humidified to the desired 

comfort conditions by interacting with the water flowing in opposite direction. Here, the cold and humidified air are 

achieved due to the evaporative cooling process (FIGURE 1). For drying application, the dehumidified air is made 

to pass through a solar air heater to raise the temperature (heat) of the dehumidified air to the required conditions 

(FIGURE 1).  

2.3. ANN-AI Tool 
 

 

FIGURE 5. Proposed single hidden layer ANN model structure. 

 

As per the reported literature [28] artificial intelligence tool such as artificial neural network (ANN-AI) has been 
used as an efficient learning algorithm out of which ANN-LM (Levenberg-Marquardt) and ANN-BR (Bayesian 

Regularization) have been confirmed to be very strong and quick learning algorithms when compared to others, such 

as Conjugate Gradient (CG) and Quasi-Newton. In the current study, two back-propagation learning algorithms, 

which are ANN-LM and ANN-BR are used along with three activation functions which are tangent sigmoid, 

logarithmic sigmoid, and linear transfer function to calculate the three outlet parameters (pure water extraction rate 



(σ), LD outlet temperature (Td,o) and water outlet temperature (Tw,o)) using five inlet parameters (mass flow rate of 

water & LD, solution concentration of LD, inlet temperature of LD and water). The study consisting of these six 

combinations of a learning algorithm in the hidden and output layer, respectively i.e., ANN-LM (Tan sigmoid in 

both layers), ANN-LM (Tan sigmoid & Linear), ANN-LM (Log sigmoid & linear), ANN-BR (Tan sigmoid in both 

layers), ANN-BR (Tan sigmoid & Linear), and ANN-BR (Log sigmoid & linear) are explored. The single hidden 

layer for the above-mentioned model is presented in FIGURE 5. In the present analysis, inputs of the targeted 

network are scaled in the range of ±5 whereas the output is scaled in the range of ±1. This is done in order to bring 

the input and output data to a common magnitude. The mathematical depiction of the six explored ANN models is 

discussed below, 

Input: N = [l1, l2………… ln] (1) 

where, ‘N’ is the input taken which varies from ‘l1’ to ‘ln’, and n is the number of inputs taken. 

Scaling of input is done as, 

Scaling of input: 
min

a a

a max min

a a

N - N
S = X10 -5 a = 1,2,3,....n

N - N

   
  
   

 (2) 

where, ‘Sa’ depicts the scaling of the input at ‘a’. max min

n nN ,and N is the maximum and minimum limit of inputs 

based on the range of pertinence of the model. 

Hb is the hidden layer input at the bth neuron, it is represented as,  

Hidden layer input: 
n

b a ab 0b d

a=1

H = S d + d b = 1,2,3,.......h  (3) 

where, ‘hd’, is the number of neurons present in the hidden layer, ‘dob’ and ‘dab’ denote the weight of input bias 

neuron attached to the bth neuron and ath neuron, respectively. 

Hidden layer output for Tan-Sigmoid: b d

b

2
= -1 b = 1,2,3,.......h

1+ exp(-2×H )


 
 
 

 (4) 

Hidden layer output for Log-Sigmoid: b d

b

1
= b = 1,2,3,.......h

1+ exp(-H )


 
 
 

 (5) 

where, ‘λb’ is the hidden layer output at the ‘bth’ neuron using Tan Sigmoid and Log Sigmoid function as shown in 

Eqs. 4 and 5, respectively. 

Output layer at cth neuron: 
c

n b bc 0c

b=1

= p + p c = 1,2,3,.......out   (6) 

where, ‘poc
’
 represents hidden bias neuron weight associated with the cth neuron in the output layer, and ‘pbc’ depicts 

the hidden bias neuron weight associated to with the cth neuron and bth neuron present in the in output and hidden 

layer, respectively, ‘out’ is the number of outputs present.  

Output for Tan-Sigmoid: c

c

2
= -1 c = 1,2,3,.......out

1+ exp(-2 )




 
 
 

 (7) 

Output for Log-Sigmoid: c

c

1
= c = 1,2,3,.......out

1+ exp(- )




 
 
 

 (8) 

   

Output for Linear: c c= c =1,2,3,.......out   (9) 

 

In the output i.e., ‘λc’, for the cth neuron can be calculated using the Eqs. 7-9 for Tan Sigmoid, Log Sigmoid, and 

linear function respectively. 

To calculate the cth neuron descaling can be done as, 

Descaling of output: ( )c min max min

1
m = m + m m c = 1,2,3,.......out

2

c + 
 − 

 
 (10) 
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(11) 

where, ‘α’ represent the total weight of the network 

ANN-LM algorithm [29] can be represented as,  

Levenberg-Marquardt: ( )
-1

T k

k+1 k k k kω =ω + J J +ν Ι J e  (12) 

where, ν is combination coefficient, ꙍ is weight vector, ‘I’ is the identity matrix, J and JT are Jacobian and its 

transpose. 

ANN-BR algorithm [30] can be represented as, 

Bayesian-Regularization: 

g h
2 2

i i j

i=1 j=1

ψ(w)=γ [y -f(x )] +Θ w   (13) 

where, ‘h’ is the number of weights, ᵞ and Θ are hyperparameters, ‘g’ is number of rows, ψ is minimized with 

respect to ‘w’ weight. 

Learning algorithm, ANN-LM [29] (Eq. 12) and ANN-BR [30] (Eq. 13) have been adopted in order to predict the 

output (Eqs. 6–11) in terms of input (Eqs. 1–3) through hidden layers (Eq. 4 and 5). 

2.4. Error Prediction Measures 
 

To analyze the performance of the model during training and testing in the current study statistical parameters 

are chosen which are coefficient of determination (R2), mean absolute error (MAE), mean absolute percentage error 

(MAPE), and root mean square error (RMSE) are considered. To depict strong relation between the input variables a 

closer value of 1 is desired. 0 depicts no correlation whereas 0.5 indicates moderate correlation. In the case of MAE, 

MAPE, and RMSE value closer to 0 is considered a better model. In order to calculate the respective values 

following correlations are used, 

Coefficient of determination: 

N
2

i i
2 i=1

N
2

i i

i=1

( - )

R = 1-

( - )

 

 





 
(14) 

Mean absolute: 
N

i i

i=1

1
MAE = | - |

N
   (15) 

Mean absolute percentage error: 
N

i i

i=1 i

-1
MAPE = *100

N

  
 
  
 

  
(16) 

Root mean square error: 

N
2

i i

i=1

( - )

RMSE =
N

 
 (17) 

where 
i i iΧ ,Χ ,Χ ,  and N are mean value of experimental dataset, predicted value, experimental data, and number 

of samples. 

3. RESULTS AND DISCUSSIONS 
 

As mentioned in the previous section, two AI-ML models, which are ANN-LM and ANN-BR are applied using 

three different types of activation function, which are Tan-Sig + Tan-Sig, Tan-Sig+ Linear, and Log-Sig + Linear 

using experimental data available in the literature [3]. These six models emanated through the combination of two 

backpropagation learning algorithms with three abovementioned activation functions are formed. The operating 

range for the five inlet parameters, which are mass flow rate of water & LD, solution concentration of LD, inlet 

temperature of LD, and water are mentioned in Table 1. Furthermore, in order to develop the model, the dataset is 

distributed into a ratio of 70:15:15 for training – testing – validation, respectively. In TABLE 2, hyperparameters for 



all the three models for the prediction of pure water extraction rate, LD outlet temperature, and water outlet 

temperature are mentioned. In order to obtain the optimal criteria R2
 should be closer to 1 whereas MAE, MAPE, 

RMSE should be minimum. Performance comparison of which is illustrated in FIGURE 6 in combination with 

TABLE 3. 

 

TABLE 1. Input parameters and experimental data range [3]. 

Parameters Mass flowrate of 

water (mL/min) 

Mass flowrate of 

LD (mL/min) 

LD solution 

concentration 

(kgLiCl/kgsol) 

LD inlet temperature 

(℃) 

Water inlet 

temperature (℃) 

Range 50-100 150-200 0.3-0.4 62-65 17-20.2 

 

 

 

 

TABLE 2.  LM and BR hyperparameters.  

Parameters Tan-S + Tan-S Tan-S + Linear Log-S + Linear 

Hidden layer neurons 8 8 8 

Maximum epochs 1000 1000 1000 

Minimum gradient 1.00e-7 1.00e-7 1.00e-7 

Training algorithm ANN-LM &ANN-BR ANN-LM &ANN-BR ANN-LM &ANN-BR 

TABLE 3. Performance comparison of ANN models. 
   Pure water extraction rate LD outlet concentration LD outlet temperature 

Error Algorithm  
Tan-S  

+ 

Tan-S 

Tan-S 

+ 

Linear 

Log-S 

+ 

Linear 

Tan-S 

+ 

Tan-S 

Tan-S 

+ 

Linear 

Log-S 

+ 

Linear 

Tan-S 

+ 

Tan-S 

Tan-S 

+ 

Linear 

Log-S 

+ 

Linear 

R2  

ANN-LM 
Train 0.98 0.96 0.92 0.97 0.95 0.90 0.99 0.96 0.87 

Test 0.97 0.95 0.90 0.97 0.95 0.89 0.98 0.95 0.86 

           

ANN-BR 
Train 0.96 0.92 0.89 0.96 0.94 0.91 0.97 0.93 0.89 

Test 0.94 0.90 0.88 0.96 0.93 0.90 0.97 0.91 0.88 

 

MAE  

ANN-LM 
Train 0.027 0.045 0.049 0.011 0.055 0.030 0.038 0.046 0.056 

Test 0.029 0.047 0.052 0.012 0.059 0.036 0.040 0.048 0.058 

           

ANN-BR 
Train 0.049 0.059 0.066 0.022 0.075 0.054 0.076 0.089 0.095 

Test 0.054 0.061 0.069 0.024 0.079 0.060 0.079 0.091 0.097 

 

MAPE  

ANN-LM 
Train 0.620 1.040 1.000 1.440 2.102 2.054 0.420 0.650 0.880 

Test 0.643 1.070 1.030 1.654 2.295 2.089 0.620 0.780 0.940 

           

ANN-BR 
Train 0.840 1.784 1.345 1.890 2.700 2.400 0.400 0.784 0.850 

Test 0.890 1.988 1.556 2.260 3.263 2.930 0.560 0.890 1.000 

 

RMSE  

ANN-LM 
Train 0.038 0.064 0.061 0.010 0.014 0.022 0.027 0.056 0.042 

Test 0.044 0.068 0.063 0.011 0.015 0.024 0.029 0.058 0.045 

           

ANN-BR 
Train 0.078 0.088 0.095 0.018 0.026 0.086 0.049 0.059 0.079 

Test 0.081 0.092 0.097 0.019 0.029 0.088 0.055 0.068 0.098 



  

a. R2 for ANN-LM activation function b. R2 for ANN- BR activation function 

  
c. MAE for ANN-LM activation function d. MAE for ANN- BR activation function 

  
e. MAPE for ANN-LM activation function f. MAPE for ANN- BR activation function 

  
g. RMSE for ANN-LM activation function h. RMSE for ANN-BR activation function 

FIGURE 6. Performance comparison of ANN-LM and ANN-BR using different statistical criteria. 



Fig. 6a and 6b represent the comparison of coefficient of determination (R2) (Eq. 14) between ANN-LM and 

ANN-BR based on the data evaluated in TABLE 3. Figs. 6c–6h illustrates the comparison of errors i.e., MAE, 

MAPE, and RMSE (Eqs. 15–17) which is evaluated for both the learning algorithms i.e., ANN-LM and ANN-BR, 

and three activation functions based on the data provided in TABLE 3. It can be observed from the comparison 

shown between ANN-LM and ANN-BR that the best performing combination of ANN model and activation 

function for pure water extraction rate is ANN-LM and Tan-Sigmoid in both layers since the value of R2 is 0.99 

which is highest whereas the MAE, MAPE, and RMSE are lowest with the value of 0.027, 0.62, and 0.038, 

respectively is minimum in this case. For LD outlet temperature and concentration Tan-Sigmoid in both the layers is 

the best performing combination with R2 0.97 and 0.99, respectively. It can be also be observed that the least-

performing model is ANN-BR with activation function of Log-Sigmoid + Linear for predicting pure water 

extraction rate and outlet temperature of LD, whereas in the case of LD solution concentration at the outlet the 

ANN-BR with activation function of Tan-Sigmoid + Linear is the least accurate combination. 

 

4. CONCLUSION 
 

Extraction of pure water is dependent on the design and optimization of a high-energy efficient dehumidifier and 

regenerator. Hence, the present study is an approach for predicting and designing MCID and membrane-based 

indirect contact regenerator using artificial intelligence-machine learning (AI-ML) tool to extract the maximum 

amount of pure water from the inlet humid air. After a thorough investigation of the available literature in the past 

decade, two algorithms are selected which are Bayesian Regularization (ANN-BR) and Levenberg-Marquardt 

(ANN-LM). These two algorithms are used in combination with three different activation functions which are Tan-S 

in both layers, Tan-S & L, and Log-S & Linear for hidden and output layers. It has been found that 8 neurons for the 

statistical measures i.e., R2, MAE, MAPE, and RMSE were observed to be optimum in the hidden layers. After 

analyzing all the six combinations it has been found that LM-based ANN with activation function Tan-Sigmoid in 

both layers is the best performing combination for predicting the pure/freshwater extraction rate, LD concentration, 

and LD outlet temperature with R2 0.98, 0.97, and 0.99, respectively. Furthermore, it has been also found that the 

predicted data is in good agreement with the experimental dataset. The present study showcases a novel approach 

towards dehumidifier and regenerator systems using AI and ML tools and opens a new pathway for investigators to 

apply the aforementioned system and AI-ML tools for analyzing mass and energy exchange system for the 

advancement of LD based air conditioning/drying systems for extracting pure water from humid air. 
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