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Abstract—Ocean eddies are a common occurrence in ocean
water circulation. They have an enormous impact on the marine
ecosystem. One of the most active study topics in physical
oceanography is ocean eddy detection. Although using deep
learning algorithms to detect eddies is a recent trend, it is
still in its infancy. In this paper, an attention mechanism-based
ocean eddy detection approach using deep learning is proposed.
Attention mechanism has spatial and channel attention modules
that are cascaded to convolution blocks-based encoder model to
simulate spatial and channel semantic interdependencies. In the
spatial attention module, the feature at each point is aggregated
selectively by the sum of the features at all positions. The channel
attention module aggregates related data from all channel maps
to selectively highlight interdependent channel maps. The original
feature map and the feature map obtained through the attention
mechanism are appended to enhance the feature representation
further, resulting in more accurate segmentation results. The
findings of the experiments show that adopting an attention-
based deep framework improves eddy recognition accuracy
significantly.

Index Terms—Deep learning, semantic segmentation, attention
mechanism, eddy detection.

I. INTRODUCTION

The ocean eddies are circular water currents found
throughout the world’s oceans. They are essential for

transporting several ocean traces across the ocean. Eddies
influence ocean circulation and biological activity. The cy-
clonic (anti-cyclonic) eddies correspond to negative (positive)
sea surface height (SSH) anomalies. As a result, satellite-
measured sea surface height (SSH) images provide infor-
mation on the eddy characteristics [1], [2], [3]. Automatic
eddy detection algorithms derived from sea surface height
(SSH) data fall into four categories, physical methods, geo-
metrical methods, sea surface height (SSH) based methods,
and hybrid methods. The okubo-weiss (OW) algorithm uses
physical parameters to detect eddies automatically [4], [5]. The
winding angle (WA) method, based on geometrical attributes,
was modified and applied for ocean eddies detection [6],
[7]. Another method based on geometrical features is vector
geometry (VG) [8], which identifies eddies solely based on
the geometrical attributes of ocean current velocity and is
unaffected by the parameters calculated using its derivatives.
To extract eddies, the vorticity derived from SSH data was
processed using an eddy detection approach based on wavelet

analysis and projected onto a vorticity space to detect eddies
[9]. Because of the dataset’s limited dimensions, the eddies
detection accuracy of this method is poor. The automatic
eddy detection approach based on sea surface height (SSH) is
an example of threshold independent eddy detection method
[10]. A hybrid detection algorithm combines OW and SSH
approaches [11]. When both the OW algorithm and the SSH-
based technique are used to initialize cores, the noise impact
on the OW algorithm is reduced, and threshold sensitivity is
eliminated during initialization. To overcome the shortcom-
ings of aforementioned methods, a machine learning-based
strategy for detecting cyclonic and anti-cyclonic eddies was
proposed, which is independent of region-specific factors [12].
This machine learning-based approach requires pre-manual
eddy labeling, which necessitates specialist expertise. Manual
labeling of eddies is a tedious and time-consuming operation.

Artificial intelligence, in particular deep neural network-
based models, has demonstrated its ability to solve a wide
range of practical issues with tremendous efficiency, including
pattern recognition and computer vision, [13], [14], [15], [16],
[17], [18], [19]. To find and track maritime eddies in the
southwest Atlantic, EddyNet, a network based on the U-
Net network, was suggested [20]. A high-resolution network
was proposed for detecting eddies from sea surface height
data [21]. The aforementioned approaches are unable to fully
utilize semantic information to detect eddy borders. Semantic
segmentation is a key problem in remote sensing. Mapping
of land cover, detection of changes, urban planning, and
monitoring of environment are some of the applications of
semantic segmentation. The contributions of the proposed
framework are as follows:
• An efficient convolution blocks based encoder is used to

extract and discern the boundaries of eddies.
• Attention mechanism is proposed to enhance the feature

representation.
The rest of the paper is organised as follows: The details of
SSH datasets are covered in Section II. The architecture of the
proposed framework is illustrated in Section III. Section IV
discusses the experimental results of the proposed framework.
Conclusion is stated in section V.

II. DATASETS USED IN THE PROPOSED FRAMEWORK

Two datasets, such as the Southern Atlantic Ocean region
[20] and the South China Sea [23] are used to evaluate,
the EddyNet, DeepLabV3+ with xception backbone (Deep
framework), and the proposed framework. Python based eddy

978-1-6654-5136-9/22/$31.00 c©2022 IEEE



TABLE I: The evolution of existing ocean eddy detection systems and their hierarchy

Literature Proposition Remarks

Okubo, et al. [4] Physical parameters based approach The physical parameter derivation procedure creates noise

Weiss, et al. [5] and increases the eddy false detection rate making it

harder to identify the ideal threshold [6], [7]

Chaigneau, et al. [7] Vortex curve and geometric velocity based approach These approaches necessitate artificial parameter tweaking

Nencioli, et al. [8] Streampath based approach and their application range is relatively limited. [23]

Chelton, et al. [10] Threshold independent SSH based approach It detects eddies with more than one local extreme relying on

extra thresholds such as area and horizontal scale [11]

Yi, et al. [11] Hybrid eddy detection approach It requires a sensitivity test to determine the parameters

in the eddy selection phase

Ashkezari, et al. [12] Machine learning (SVM) based approach It requires pre-manual eddy labeling which necessitates specialist

expertise which is a tiresome and time-consuming operation

Lguensat, et al. [20] Deep learning based approach Eddy detection accuracy and intersection of union score is low.

Sun, et al. [23]

Proposed work Deep learning based approach with Eddy detection accuracy and intersection of union score

attention mechanism is better than existing deep learning models.

tracker (PET), a popular method, is used to detect eddies
and create ground-truth labels [24]. A pixel-level annotation
is performed on the detected eddies to prepare the database
required for training the deep learning models. Pixels are
labeled as 0 for non-eddy, 1 for anti-cyclonic eddy, and 2
for cyclonic eddy.

1) South china sea dataset: Training and validation data are
separated in the china sea data set. The training set contains
4750 SSH images from the first 13 years (2003-2016), and the
last two years (2017-2018) data is used to prepare validation
set which contains 730 validating SSH images. Each image is
a single-channel image with a resolution of 302× 184 pixels.

2) Southern Atlantic Ocean region dataset: Fourteen years
of data from the Atlantic Ocean (1998-2011) has been divided
into 5100 training images, with the latest year’s data (365
images) serving as testing. Each image is a single-channel
image with a resolution of 240× 280 pixels.

(a) (b)

Fig. 1: Representation of sea surface height map of (a) South
China Sea data. (b) Southern Atlantic Ocean data.
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Fig. 2: (a) Block diagram of attention mechanism based ocean
eddy detection. (b) Residual structure of convolution blocks.



III. DEEP LEARNING TECHNIQUE WITH ATTENTION
MECHANISM

To capture meaningful and accurate border context and
multi-scale data, a deep learning model with convolution
blocks as a base layer, atrous spatial pyramidal pooling
(ASSP), and mechanism based on attention is proposed. As
demonstrated in Fig. 2, the two primary components of the
proposed framework are an encoder and a decoder.

A. Encoder

The encoder module extracts the features from the input data
using multiple convolution blocks. The initial two convolution
blocks halve the amount of the input data, while the last
two convolution blocks maintain the same input data size.
Each convolution block has many residual structures, a 1× 1
convolution block of two distinct channels and a 3 × 3
convolution block. Skip connection is added to each residual
structure to deal with the gradient explosion caused by the
increase in the depth of the network layers, as shown in Fig.
2(b).

1) Atrous spatial pyramidal pooling (ASSP): Deeplab pro-
posed the ASPP module [25]. It has a parallel atrous convolu-
tion structure with multiple sampling rates. ASPP accurately
and effectively recognizes features of any scale since the re-
ceptive fields of the atrous convolution with different sampling
rates are different. A higher sampling rate degenerates 3 × 3
atrous convolutions in ASPP into 1 ×1 convolution which unfit
it to capture long-range information. Deeplabv3 upgraded the
ASPP module, which now comprises a 1 × 1 convolution and
three 3 × 3 convolutions with sampling rates of 6, 12, and 18
correspondingly, to overcome this problem while maintaining
a greater field of vision [26]. The feature extraction module
(encoder) executes numerous parallel atrous convolutions as
shown in Fig. 3 with variable rates to investigate constitutional
features at multiple scales.

2) Attention mechanism: Natural language processing and
computer vision are two disciplines where attention is com-
monly used [27], [28], [29], [30], [31]. The attention mecha-
nism is a matrix multiplication operation that can determine
each pixel’s reliance relationship in an image and assign a
higher weightage to those pixels that have a strong dependence
[32]. The attention mechanism constructs a spatial attention
matrix from the convolution block’s feature mappings to
display the pixel relationship in the spatial domain. The final
representations reflecting long-range contexts are obtained
by multiplying the spatial attention matrix and the original
feature map, then conducting an element-wise sum operation
on the multiplied resultant matrix. A similar process is applied
along the channel and the attention matrix is constructed
by multiplying the channel attention matrix and the original
feature map, followed by the addition of each element in the
multiplied resultant matrix.

As demonstrated in Fig. 4, F represents feature map, that
is, F ∈ RN where N ≡ C×H×W of width W, height H and
with number of channels C. F is fed into a convolution layer
to generate two new feature maps, that is, spatial feature map

1  x  1

 Conv

3  x  3  Conv

dilation-rate

6

Feature map

Concatenated

  feature map

3  x  3  Conv

dilation-rate

12

3  x  3  Conv

dilation-rate

18

Fig. 3: Block diagram of atrous spatial pyramidal pooling.

G ∈ RM , where M ≡ C× (H × W) and channel feature
map H ∈ RQ, where Q ≡ N × ( H × W) , N represents the
number of classes. The generated feature map G is reshaped
and fed as one of the inputs to multiplication block, where as
the feature map H is reshaped and transposed to RK , with
K ≡ H × W denoting the number of pixels is fed as another
input. The multiplication of aforementioned two feature maps
yields attention matrix A. The specific operation is as follows:

Am,n =
e(Gn×Hm)∑N
p=1 e

(Gn×Hm)
(1)

where Am,n represents the impact of the nth position on the
mthposition. Attention matrix A is multiplied with channel
matrix to generate intermediate feature map I which is then
concatenated with original feature map F to obtain the final
feature map F’.

I = A×H (2)

F ′ = F + I (3)

B. Decoder

The encoded features are up-sampled by four times in
the decoder module, and the low-level features from the
convolution blocks with the similar spatial resolution are then
concatenated. The softmax activation function is used in the
final layer of the proposed work to predict the output class
probability across the three-channel output layer.

C. Loss Metric

In deep learning, the categorical cross-entropy cost function
is widely used to train multi-class classification tasks, while
overlap-based metrics are preferred for segmentation prob-
lems. In segmentation problems, the dice-coefficient is a well-
known and commonly utilized cost function. The expression
for dice coefficient and dice-loss is given as follows:

Dice− coefficient(P,Q) =
2× (P ∩Q)

|P |+ |Q|
(4)
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Fig. 4: The process of obtaining an attention matrix using an
attention mechanism.

Diece− Loss(P,Q) = 1− 2× (P ∩Q)

|P |+ |Q|
(5)

where, P: Predicted output image, Q: Ground truth image

IV. RESULTS AND DISCUSSIONS

This section discusses the overall performance and displays
the findings gained from the suggested framework.

A. Experimental Results

EddyNet [20], Deep framework [23] and the proposed
methods are implemented on the python platform (version
3.8.8) with TensorFlow as the backend and Keras as the
frontend on an Intel Xeon E5-2630 v4 (10 core, 2.2 GHz, 32
GB RAM) processor with NVIDIA Quadro M400 8 GB GPU.
The following parameters were used for the comparison of the
proposed method with [20], [23] in terms of quantitative eval-
uation: accuracy, sensitivity, and mean intersection of union
score (MIOU). Table II specifies the quantitative analysis of
three deep learning based frameworks. Table II shows that the
proposed framework outperforms the compared strategies on
all of the previously specified parameters.

Accuracy =
TP + TN

TP + TN + FP + FN
(6)

Sensitivity =
TP

TP + FN
(7)

where, TP: True Positive, TN: True Negative

IOU(P,Q) =
2× (P ∩Q)

P ∪Q
(8)

where, P: Predicted image, Q: Ground truth image
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Fig. 5: Representation of sea surface height map of (a) South
China Sea. (b) Ground truth. (c) EddyNet model prediction (d)
Deep framework prediction (e) Proposed work prediction. (f)
Southern Atlantic Ocean region (g) Ground truth. (h) EddyNet
model prediction (i) Deep framework prediction (j) Proposed
work prediction.

B. Discussions

The proposed method is compared with the existing tech-
niques such as EddyNet and deep framework to thoroughly
validate our model. The findings of the aforementioned meth-
ods, as well as the proposed method, are presented in Table II
with an average intersection of union score of 82.00 percent



TABLE II: Performance evaluation of existing techniques and proposed work

Dataset Method Accuracy Sensitivity Mean IOU

(%) (%) (%)

Lguensat, et al. [20] 88.60 88.56 81.00

Southern Atlantic Ocean [20] Sun, et al. [23] 89.56 89.47 80.21

Proposed work 90.85 90.85 82.00

Lguensat, et al. [20] 17.35 17.36 9.51

South China Sea [23] Sun, et al. [23] 60.37 60.05 42.00

Proposed work 63.25 64 46.11

on the Atlantic Ocean dataset and 46.11 percent on the South
China Sea dataset. The suggested method performs better than
the EddyNet and Deep framework in detecting eddies. It also
outperforms both methods in terms of detection accuracy.

The proposed method is trained with two different three-
class datasets that had a batch size of 4. The training consti-
tuted of 300 epochs. The model used 5100 and 4750 images
as datasets for this complete comparison. Day 10 detection
results of EddyNet, Deep framework and the proposed method
are visualized as shown in Fig. 5, to better comprehend our
findings. Fig. 5(a) to 5(e) represents one day (day 10) sea
surface height (SSH) data of South China Sea, ground truth
(eddy labeled) SSH image of South China Sea, EddyNet
predictions, Deep framework predictions and proposed method
predictions on South China Sea data. As it shown in Fig.
5(e) proposed method detected more eddies than the other
two methods, where as EddyNet is inaccurate in detecting
eddies in the South China Sea dataset. Fig. 5(f) to 5(j)
represents the South Atlantic Ocean region one day (day 10)
SSH data, ground truth (eddy labeled) SSH map, EddyNet
predictions, Deep framework predictions and the proposed
method predictions. As it shown in Fig. 5(j) the proposed
method detected eddies more accurately than the other two
methods. The suggested technique detects eddies with better
accuracy in the South Atlantic Ocean and the South China
Sea dataset due to the attention mechanism incorporated in
the proposed work. The proposed method is a substantial
improvement over current methods. The performance of the
proposed work on the South Atlantic Ocean region (dataset
1) is better than the south china sea (dataset 2) due to the
over-fitting nature of dataset 2.

V. CONCLUSION

The proposed work’s purpose is to solve the challenge of
autonomous ocean eddies recognition by employing semantic
segmentation approaches based on the most efficient feature
representation backbone. The attention module is appended
to the convolution blocks-based base layer to improve the
boundary accuracy of eddies detection. The quantitative and
qualitative result analysis shows that the proposed framework
performs better than the previous models.
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