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Abstract 

Finding locations of faults in a program is a crucial activity in reliable and effective 

software development. A large number of fault localization techniques exist, 

however, none of these techniques outperforms all other techniques in all 

circumstances for all kinds of faults. Under different circumstances, different fault 

localization techniques yield different results. In this study, we have proposed 

Ensemble of Mutation Based techniques for effective Fault Localization (EMBFL). 

EMBFL classifies statements of a program into Suspicious and Non-Suspicious sets. 

The model we have used in our research is straightforward and intuitive because it is 

based solely on information regarding statement coverage and test case execution 

results. This helps to reduce the search space significantly. Our proposed EMBFL 

approach, on average, is 31.34% more effective than the techniques for fault 

localization that currently exist such as DStar (D*), Tarantula, Back Propagation 

Neural Network, etc. 
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Introduction 

With the continuously growing usage of software in our daily lives, it has become 

critical to systems in several industries such as healthcare, teaching, marketing, etc. 

This has resulted in a substantial scale in the complexity and size of software. With 

so much of complexity and size, software faults are inevitable and these faults often 

lead to execution failure of the software. Therefore, testing and debugging the 

software has become highly crucial part of software development process. Fault 

localization is a vital step of software testing. It is the activity of finding out the faulty 

locations in a software and has been an expensive task in terms of manual effort, time 

and money, considering the size and complexity of the software. To overcome these 

limitations, researchers are trying to develop techniques that partially or fully 

automate this task and assist developers in the debugging. Many fault localization 

techniques are being used currently but no technique outperforms all available 

techniques in all circumstances. For instance, few techniques may perform really well 

for faults that are related to relational and logical operators whereas few other 

techniques may perform well for faults that are related to arithmetic operators.  
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The objective of this study is to develop effective and efficient techniques for fault 

localization. Our technique is inspired by the two famous domains of fault 

localization, i.e., Mutation Based Fault Localization (MBFL) and Spectrum Based 

Fault Localization (SBFL). We named this approach as EMBFL since we combined 

multiple Mutation Based Fault Localization techniques using an Ensemble classifier. 

 

The rest of the paper is structured in the following way. In the following section, few 

of the related works are discussed. Our proposed methodology is described in depth 

in Section 3. The last two sections summarize the experimental studies and conclusion 

of our work done respectively. 
 

Literature review 

In this section, we have attempted to summarize few of the existing works of authors 

related to fault localization. Weiser (1984) proposed a technique called Program 

Slicing technique that reduces the search space for inspection. There are some 

drawbacks of slicing techniques. For instance, slicing techniques are not suitable for 

assigning ranks to the statements. SBFL techniques as mentioned in the works of 

Jones et al. (2005), Renieres et al. (2003), and other researchers overcame such 

limitations by taking different coverage information like statement coverage, branch 

coverage along with the test case execution results and producing suspiciousness 

score for each of the program entity. Then they used ranking matrices to assign ranks 

to all of the executable statements in the program. Later, Wong et al. (2013) improved 

the results and came up with an effective technique named DStar (D*) which is 

currently the state-of-the-art.  

 

Problem with SBFL techniques is that they assign same rank to multiple statements 

and that increases the inspection domain in order to find the location of faults. To 

overcome this limitation, MBFL techniques such as Metallaxis and MUSE were 

introduced by Papadakis et al., (2015) and Moon et al., (2014) respectively. MBFL 

techniques focus on generating useful mutants to make fault localization more 

effective. Mutants are copies of the original program under test with the syntax being 

changed at least once based on mutation operators. Also, MBFL techniques are 

effective enough to deal with problem of coincidental correctness (Li et al., 2019). 

Although these MBFL techniques take impact information into consideration, there 

may be some cases where they perform poorly, e.g., some entities may not have any 

mutants to simulate their impacts. To eliminates such limitations, researchers 

currently use machine learning and deep learning-based techniques (Ascari et al., 

2009; Wong et al., 2011).  

 

The novelty of our study lies in that machine learning based ensemble classifier has 

been used in our approach to combine SBFL and MBFL techniques. As per research, 

ensemble classifiers perform much better than the constituent learning techniques 

alone (Roychowdhury et al., 2012; Dutta et al., 2021). Besides, the existing 



techniques are not effective enough for large sized programs. Our proposed EMBFL 

approach for fault localization addresses this problem as well. 

 

Proposed approach: EMBFL 

Overview 

In our approach, the original program is given as input and mutants are obtained for 

the given program. Then code coverage information is generated using these mutants 

along with the test cases. After getting code coverage, we give this information with 

the test case execution results to statement score generator which uses 40 different 

MBFL techniques to calculate the sequence of suspicious scores for all executable 

statements of the program. After getting sequence of score, we perform the 

normalization to bring the scores in a fixed range. Later we apply Ranking algorithms 

on all the forty MBFL techniques used which results in prioritised list of statements 

that can contain the faults in the program. 

Detailed description of EMBFL 

In this subsection, we have presented a detailed discussion on Mutator, Program 

Spectra Generator, Statement Score Generator and Learning to Rank algorithm. 

Figure 1 depicts the high-level architecture of our proposed methodology. 

 

Figure 1.  High level architecture of the methodology proposed in this study. 

Mutator: Since we are provided with the original program only, we need to generate 

mutants for that program in order to get the information about code coverage and 



results of test case execution. Mutator is a module which we have developed to 

generate different mutants for the original program. The original program is given as 

input to the mutator and mutants are obtained as output. Depending upon the available 

substitutes for a statement, the mutants are categorized as follows: Category-1 and 

Category-2. Category-1 contains the mutants which have finite number of possible 

replacements. These mutants can be generated by replacing a operator by one of its 

substitutes. Few of the operator-substitutes from Category-1 are given below. 

• AOR: Arithmetic Operator Replacement (e.g., multiplication (‘*’) in place of 

division (‘/’)) 

• (I/D)OR: Increment/ Decrement Operator Replacement (e.g., decrement (‘--’) in 

place of increment (‘++’)) 

• AsOR: Assignment Operator Replacement (e.g., plus equals to (‘+=’) in place of 

minus equals to (‘-=’)) 

• ROR: Relational Operator Replacement (e.g., less than (‘<’) in place of greater 

than (‘>’)) 

• LOR: Logical Operator Replacement (e.g., OR (‘||’) in place of AND (‘&&’)) 

 

Category-2 contains the mutants which have numerous numbers of possible 

replacements. Few of the mutation operations under Category-2 are given below. 

 

• SI: Statement Insertion 

• SD: Statement Deletion 

• VR: Variable Replacement (e.g., ‘x=y+d’ in place of ‘x=y+z’) 

• SIE: Swapping of ‘if' block with 'else’ block statements 

• SI: Sign Inversion (e.g., ‘x=-y’ in place of ‘x=y’) 
 

Program Spectra Generator: The next module that we developed is the Program 

Spectra Generator. It produces information regarding code coverage and results of 

test case execution by taking original program, its mutant, and all accessible test cases 

as input. If a test case covers a statement, then we use ‘1’ to represent the statement 

else we use ‘0’ to represent it. The result of a test case execution indicates whether 

the particular test case has failed (F) or passed (P). Table 1 depicts a sample program 

spectra along with the results of test case execution. Suppose that the sample program 

contains eight executable statements (ST1 to ST8) and our test suite contains five test 

cases (TC1 to TC5). Table 1 highlights that three of the five test cases (TC1, TC2 and 

TC5) passed while the other two failed. Let's pick a test case, say TC3, it can be 

observed that only the statements ST1 and ST8 are executed by TC3 and the 

remaining statements are not executed by it. 
 

Table 1: Sample program spectra with test case execution results. 
S. 

No. 

Test 

Cases 

ST1 ST2 ST3 ST4 ST5 ST6 ST7 ST8 Result 

1 TC1 1 1 1 1 1 1 1 0 P 

2 TC2 0 0 1 0 0 0 1 1 P 

3 TC3 1 0 0 0 0 0 0 1 F 

4 TC4 1 0 1 1 1 1 1 0 F 



5 TC5 1 0 1 0 0 0 0 1 P 

 

Statement Score Generator: Statement Score Generator (SSG) is a module which we 

have developed to obtain statement score sequences. It takes program spectra and the 

results of test case execution as input and produces sequence of statement scores 

depending upon multiple MBFL techniques as output. Since we have used forty 

MBFL techniques in our approach, SSG produces forty score sequences. Table 2 

enlists the formulas of few of the SBFL techniques which we have used in our 

approach. N is the total number of test cases available; Np is the number of passed 

test cases among those available and Nf is the number of failed test cases among those 

available. The number of succeeded test cases that executed a statement is Nep, 

whereas the number of failed test cases that executed a statement is Nef. Similarly, 

Nnp represents the number of succeeded test cases that did not execute a specific 

statement, while Nnf represents the number of failed test cases that did not execute a 

specific statement. 

Table 2: Definitions of some SBFL Techniques 

S. No. Name of 

Technique 

Formula 

1 Tarantula (Nef/(Nef+Nnf )) / (Nef/(Nef + Nnf) + Nep/(Nep+Nnp)) 

2 Ample1 | (Nef/Nef*Nep) – (Nep/Nep*Nnp) | 

3 Ample2 Nef/Nf – Nep/Np 

4 Lee Nef + Nnp 

5 Goodman (2*Nef-Nnf-Nep)/2*Nef+Nnf+Nep 

6 Wong1 Nef 

7 Wong2 Nef-Nep 

8 DStar (D*) (Nef)*/(Nep*Nnf) 

9 Jaccard Nef/(Nf+Nep) 

10 Euclid √(Nef + Nnp) 

 

Learning to Rank: This algorithm considers a collection of objects and assigns a 

suitable rank to them. We are using forty MBFL techniques in our approach and each 

technique assigns a different score to all the statements of the input program for each 

mutant. Therefore, we have used Learning to Rank algorithm to all of the techniques 

and this results in assigning higher rank to the right technique in every different 

scenario. After applying this Learning to Rank algorithm we get a prioritised list of 

statements. 

Experimental Studies 

This section presents the data set, evaluation metrics used and the empirical results 

obtained in our approach. 



Data Set Used 

We have used Siemens suite as our input data set which contains 7 different programs 

named "printtokens", "printtoken2", "replace", "schedule", "schedule2", "tcas" and 

"totinfo". Table 3 shows the characteristics of Siemens suite 7 programs. We have 

generated different category-1 mutants for each program in the Siemens suite.  

Table 3: Characteristics of programs available in Siemen suite 

S. 

No. 

Name of Program Count of 

Faulty 

Versions 

Count of 

Executable 

LOC 

Count of 

Test 

Cases 

Count of 

Mutants 

1 Print_Tokens 7 195 4130 285 

2 Print_Tokens2 10 200 4115 314 

3 Replace 32 244 5542 508 

4 Tcas 41 65 1608 216 

5 Tot_info 23 122 1052 571 

6 Schedule 9 152 2650 406 

7 Schedule2 10 128 2710 350 

 

Evaluation Metrics 

For evaluating the performance of our approach EMBFL and comparing it with that 

of the existing fault localization techniques, Exam-Score evaluation metric has been 

used. Exam-Score is the percentage of statements that must be examined in order to 

locate faults in a program. It is computed using Equation 1. 

𝐸𝑥𝑎𝑚 − 𝑠𝑐𝑜𝑟𝑒 = (| 𝑆𝑒𝑥𝑎𝑚𝑖𝑛𝑒𝑑  |÷ | 𝑆𝑡𝑜𝑡𝑎𝑙  |) * 100    (1) 

where, |Sexamined| denotes the count of statements required to be examined to find the 

faulty locations. |Stotal| denotes the total number of statements in the program. The 

fault localization technique that has Exam-Score less than that of all others is the most 

effective technique. 

Empirical Evaluation  

We have compared the effectiveness of EMBFL with four other prominent existing 

fault localization techniques. Among these four techniques, Tarantula and DStar (D*) 

are taken from SBFL family. On the other hand, BPNN and RBFNN belong to the 

neural network family of fault localization techniques. Figures 2 to 5 depict the 

effectiveness comparison of EMBFL with other techniques for fault localization 

using the line graphs. Best effectiveness means the statement containing fault is 

examined "first" among those with the same score of suspiciousness. Worst 

effectiveness, on the other hand, means that the statement containing fault gets 

examined "last" among those with the same score of suspiciousness. 



Figure 2 compares the effectiveness of Tarantula and EMBFL for Siemens suite. The 

figure suggests that by inspecting only 3% of program statements, EMBFL localizes 

faults in 25.77% of faulty versions. Tarantula (Worst) and Tarantula (Best) 

respectively localize faults in 10.31% and 20.61% of faulty versions only. On 

average, Tarantula (Worst) and Tarantula (Best) require 31.71% and 19.98% of 

program statement examination to localize bugs. On the other hand, EMBFL requires 

only 16.08% of code examination, on average. Our proposed EMBFL method is 

49.29% and 19.54% more effective than Tarantula (Worst) and Tarantula (Best) 

respectively. 

   

Figure 2. Effectiveness of EMBFL, and Figure 3. Effectiveness of EMBFL, and 

Tarantula for the Siemens suite  and D* for the Siemens suite 

Figure 3 presents the effectiveness comparison of DStar and EMBFL for Siemens 

suite. It is clearly evident from the figure that EMBFL is performing equally well as 

Dstar(Best) for most of the program points. However, there are several points present 

on which EMBFL is performing much better than DStar (Best). We observe that there 

is a huge gap between the effectiveness of DStar (Worst) and EMBFL. EMBFL 

requires 20% and 7.5% less code inspection than DStar(Worst) and DStar(Best), 

respectively, in the worst scenario. On average, EMBFL outperforms DStar (Worst) 

and DStar (Best) by 43.53% and 4.38% respectively. 

     



Figure 4. Effectiveness of EMBFL, and Figure 5. Effectiveness of EMBFL, and 

BPNN for the Siemens suite  and RBFNN for the Siemens suite 

Figure 4 compares the results of BPNN and EMBFL for Siemens suite. According to 

the graph, EMBFL only requires 8% code inspection to locate defects in 50% of the 

faulty versions, whereas BPNN requires at least 14.47% code inspection. In the worst-

case scenario, EMBFL requires 3% less code inspections than BPNN, and it is 

21.15% more effective on average.  

Figure 5 compares the effectiveness of RBFNN and EMBFL for Siemens suite. The 

figure indicates that EMBFL locates errors in 38.14% of faulty programs by 

evaluating only 5% of statements in the program, but RBFNN(Worst) and 

RBFNN(Best) locate faults in only 24.74% and 30% of faulty versions, respectively. 

On average, EMBFL outperforms RBFNN(Worst) and RBFNN(Best) by 52.01% and 

29.49%, respectively. EMBFL also has to examine 18.14% and 16.60% less code in 

the worst scenario than RBFNN(Worst) and RBFNN(Best). 

Table 4: Pairwise comparison between EMBFL and existing fault localization 

techniques with respect to Exam-Score. 

 EMBFL 

v/s 

Tarantula 

(Best) 

EMBFL 

v/s 

Tarantula 

(Worst) 

EMBFL 

v/s 

DStar 

(Best) 

EMBFL 

v/s 

DStar 

(Worst) 

EMBFL 

v/s 

RBFNN 

(Best) 

EMBFL 

v/s 

RBFNN 

(Worst) 

EMBFL 

v/s 

BPNN  

More 

Effective 

49.48 81.44 18.56 68.04 43.3 69.07 58.76 

Equally 

Effective 

32.99 5.15 39.18 10.31 8.25 7.22 6.19 

Less 

Effective 

17.53 13.4 42.27 21.65 48.45 23.71 35.05 

 

Table 4 presents the pairwise comparison of EMBFL with Tarantula, DStar, RBFNN, 

and BPNN. The table illustrates the percentage of faulty versions on which EMBFL 

performs more effectively, equally effectively and less effectively than the respective 

fault localization techniques in rows 2, 3, and 4 respectively. It can be observed that 

EMBFL performs at least as effective than all the other techniques in more than 55% 

of faulty versions. There are substantially a smaller number of faulty versions present 

on which EMBFL is lesser effective than the existing methods of fault localization. 

Conclusion and Future Scope 

Fault localization is a crucial part of developing reliable and effective software. To 

make fault localization easier and more effective, in this study we have proposed an 

ensemble classifier-based technique. We have combined different mutation-based 

fault localization techniques. Our method is able to effectively identify locations of 

common as well as intrinsic faults present in the program. From our empirical 

evaluation we have observed that, on average, EMBFL performs 31.34% more 



effectively in terms of less code examination than the related fault localization 

techniques such as Tarantula, DStar, BPNN, and RBFNN. 

As part of future scope of our work, we intend to apply EMBFL on multiple faulty 

programs and also attempt to improve its performance. We also intend to further 

improve our approach such that it makes use of the individual fault exposing 

capabilities of a test case. 

References 

Weiser, M. (1984). Program slicing. IEEE Transactions on software engineering. 4: 

352-357. 

Jones, James, A., and Harrold, M. J. (2005). Empirical evaluation of the tarantula 

automatic fault-localization technique, In Proceedings of the 20th IEEE/ACM 

International Conference on Automated software engineering (pp. 273-282). 

Renieres, M. and Reiss, S. P. (2003). Fault localization with nearest neighbor queries, 

In 18th IEEE International Conference on Automated Software Engineering, 2003. 

Proceedings. (pp. 30-39). IEEE. 

Wong, W. E., Debroy, V., Gao, R. and Li, Y. (2013). The DStar method for effective 

software fault localization. IEEE Transactions on Reliability. 63(1): 290-308. 

Papadakis, M. and Traon, Y. L. (2015). Metallaxis‐FL: mutation‐based fault 

localization. Software Testing, Verification and Reliability.  25(5-7):605-628. 

Moon, S., Kim, Y., Kim, M. and Yoo, S. (2014). Ask the mutants: Mutating faulty 

programs for fault localization, In 2014 IEEE Seventh International Conference on 

Software Testing, Verification and Validation (pp. 153-162). IEEE. 

Ascari, L. C., Araki, L. Y., Pozo, A. R. and Vergilio, S. R. (2009). Exploring machine 

learning techniques for fault localization, In 2009 10th Latin American Test 

Workshop (pp. 1-6). IEEE. 

Roychowdhury, S. (2012). Ensemble of feature selectors for software fault 

localization, In 2012 IEEE International Conference on Systems, Man, and 

Cybernetics (SMC) (pp. 1351-1356). IEEE. 

Wong, W. E., Debroy, V., Golden, R., Xu, X. and Thuraisingham, B. (2011). 

Effective software fault localization using an RBF neural network. IEEE Transactions 

on Reliability. 61(1): 149-169. 

Li, X., Li, W., Zhang, Y. and Zhang, L. (2019). Deepfl: Integrating multiple fault 

diagnosis dimensions for deep fault localization, In Proceedings of the 28th ACM 

SIGSOFT International Symposium on Software Testing and Analysis (pp. 169-180). 

Dutta, A., Srivastava, S. S., Godboley, S. and Mohapatra, D. P. (2021). Combi-FL: 

Neural network and SBFL based fault localization using mutation analysis. Journal 

of Computer Languages. 66: 101064. 

 


