
EMBFL: Ensemble of Mutation based techniques for

effective Fault Localization

Jitendra Gora a, Arpita Dutta b and Durga Prasad Mohapatra c

a Computer Science and Engineering, NIT Rourkela, Rourkela, India, E-mail:
jitendragora1305@gmail.com; b School of Computing, National University of

Singapore, Singapore, E-mail: arpitad10j@gmail.com; c Professor, Computer

Science and Engineering, NIT Rourkela, Rourkela, India, E-mail: durga@nitrkl.ac.in

Abstract

Finding locations of faults in a program is a crucial activity in reliable and effective

software development. A large number of fault localization techniques exist,

however, none of these techniques outperforms all other techniques in all

circumstances for all kinds of faults. Under different circumstances, different fault

localization techniques yield different results. In this study, we have proposed

Ensemble of Mutation Based techniques for effective Fault Localization (EMBFL).

EMBFL classifies statements of a program into Suspicious and Non-Suspicious sets.

The model we have used in our research is straightforward and intuitive because it is

based solely on information regarding statement coverage and test case execution

results. This helps to reduce the search space significantly. Our proposed EMBFL

approach, on average, is 31.34% more effective than the techniques for fault

localization that currently exist such as DStar (D*), Tarantula, Back Propagation

Neural Network, etc.

Keywords: debugging, ensemble classifier, fault localization, mutation analysis

Introduction

With the continuously growing usage of software in our daily lives, it has become

critical to systems in several industries such as healthcare, teaching, marketing, etc.

This has resulted in a substantial scale in the complexity and size of software. With

so much of complexity and size, software faults are inevitable and these faults often

lead to execution failure of the software. Therefore, testing and debugging the

software has become highly crucial part of software development process. Fault

localization is a vital step of software testing. It is the activity of finding out the faulty

locations in a software and has been an expensive task in terms of manual effort, time

and money, considering the size and complexity of the software. To overcome these

limitations, researchers are trying to develop techniques that partially or fully

automate this task and assist developers in the debugging. Many fault localization

techniques are being used currently but no technique outperforms all available

techniques in all circumstances. For instance, few techniques may perform really well

for faults that are related to relational and logical operators whereas few other

techniques may perform well for faults that are related to arithmetic operators.

mailto:jitendragora1305@gmail.com
mailto:arpitad10j@gmail.com

The objective of this study is to develop effective and efficient techniques for fault

localization. Our technique is inspired by the two famous domains of fault

localization, i.e., Mutation Based Fault Localization (MBFL) and Spectrum Based

Fault Localization (SBFL). We named this approach as EMBFL since we combined

multiple Mutation Based Fault Localization techniques using an Ensemble classifier.

The rest of the paper is structured in the following way. In the following section, few

of the related works are discussed. Our proposed methodology is described in depth

in Section 3. The last two sections summarize the experimental studies and conclusion

of our work done respectively.

Literature review

In this section, we have attempted to summarize few of the existing works of authors

related to fault localization. Weiser (1984) proposed a technique called Program

Slicing technique that reduces the search space for inspection. There are some

drawbacks of slicing techniques. For instance, slicing techniques are not suitable for

assigning ranks to the statements. SBFL techniques as mentioned in the works of

Jones et al. (2005), Renieres et al. (2003), and other researchers overcame such

limitations by taking different coverage information like statement coverage, branch

coverage along with the test case execution results and producing suspiciousness

score for each of the program entity. Then they used ranking matrices to assign ranks

to all of the executable statements in the program. Later, Wong et al. (2013) improved

the results and came up with an effective technique named DStar (D*) which is

currently the state-of-the-art.

Problem with SBFL techniques is that they assign same rank to multiple statements

and that increases the inspection domain in order to find the location of faults. To

overcome this limitation, MBFL techniques such as Metallaxis and MUSE were

introduced by Papadakis et al., (2015) and Moon et al., (2014) respectively. MBFL

techniques focus on generating useful mutants to make fault localization more

effective. Mutants are copies of the original program under test with the syntax being

changed at least once based on mutation operators. Also, MBFL techniques are

effective enough to deal with problem of coincidental correctness (Li et al., 2019).

Although these MBFL techniques take impact information into consideration, there

may be some cases where they perform poorly, e.g., some entities may not have any

mutants to simulate their impacts. To eliminates such limitations, researchers

currently use machine learning and deep learning-based techniques (Ascari et al.,

2009; Wong et al., 2011).

The novelty of our study lies in that machine learning based ensemble classifier has

been used in our approach to combine SBFL and MBFL techniques. As per research,

ensemble classifiers perform much better than the constituent learning techniques

alone (Roychowdhury et al., 2012; Dutta et al., 2021). Besides, the existing

techniques are not effective enough for large sized programs. Our proposed EMBFL

approach for fault localization addresses this problem as well.

Proposed approach: EMBFL

Overview

In our approach, the original program is given as input and mutants are obtained for

the given program. Then code coverage information is generated using these mutants

along with the test cases. After getting code coverage, we give this information with

the test case execution results to statement score generator which uses 40 different

MBFL techniques to calculate the sequence of suspicious scores for all executable

statements of the program. After getting sequence of score, we perform the

normalization to bring the scores in a fixed range. Later we apply Ranking algorithms

on all the forty MBFL techniques used which results in prioritised list of statements

that can contain the faults in the program.

Detailed description of EMBFL

In this subsection, we have presented a detailed discussion on Mutator, Program

Spectra Generator, Statement Score Generator and Learning to Rank algorithm.

Figure 1 depicts the high-level architecture of our proposed methodology.

Figure 1. High level architecture of the methodology proposed in this study.

Mutator: Since we are provided with the original program only, we need to generate

mutants for that program in order to get the information about code coverage and

results of test case execution. Mutator is a module which we have developed to

generate different mutants for the original program. The original program is given as

input to the mutator and mutants are obtained as output. Depending upon the available

substitutes for a statement, the mutants are categorized as follows: Category-1 and

Category-2. Category-1 contains the mutants which have finite number of possible

replacements. These mutants can be generated by replacing a operator by one of its

substitutes. Few of the operator-substitutes from Category-1 are given below.

• AOR: Arithmetic Operator Replacement (e.g., multiplication (‘*’) in place of

division (‘/’))

• (I/D)OR: Increment/ Decrement Operator Replacement (e.g., decrement (‘--’) in

place of increment (‘++’))

• AsOR: Assignment Operator Replacement (e.g., plus equals to (‘+=’) in place of

minus equals to (‘-=’))

• ROR: Relational Operator Replacement (e.g., less than (‘<’) in place of greater

than (‘>’))

• LOR: Logical Operator Replacement (e.g., OR (‘||’) in place of AND (‘&&’))

Category-2 contains the mutants which have numerous numbers of possible

replacements. Few of the mutation operations under Category-2 are given below.

• SI: Statement Insertion

• SD: Statement Deletion

• VR: Variable Replacement (e.g., ‘x=y+d’ in place of ‘x=y+z’)

• SIE: Swapping of ‘if' block with 'else’ block statements

• SI: Sign Inversion (e.g., ‘x=-y’ in place of ‘x=y’)

Program Spectra Generator: The next module that we developed is the Program

Spectra Generator. It produces information regarding code coverage and results of

test case execution by taking original program, its mutant, and all accessible test cases

as input. If a test case covers a statement, then we use ‘1’ to represent the statement

else we use ‘0’ to represent it. The result of a test case execution indicates whether

the particular test case has failed (F) or passed (P). Table 1 depicts a sample program

spectra along with the results of test case execution. Suppose that the sample program

contains eight executable statements (ST1 to ST8) and our test suite contains five test

cases (TC1 to TC5). Table 1 highlights that three of the five test cases (TC1, TC2 and

TC5) passed while the other two failed. Let's pick a test case, say TC3, it can be

observed that only the statements ST1 and ST8 are executed by TC3 and the

remaining statements are not executed by it.

Table 1: Sample program spectra with test case execution results.
S.

No.

Test

Cases

ST1 ST2 ST3 ST4 ST5 ST6 ST7 ST8 Result

1 TC1 1 1 1 1 1 1 1 0 P

2 TC2 0 0 1 0 0 0 1 1 P

3 TC3 1 0 0 0 0 0 0 1 F

4 TC4 1 0 1 1 1 1 1 0 F

5 TC5 1 0 1 0 0 0 0 1 P

Statement Score Generator: Statement Score Generator (SSG) is a module which we

have developed to obtain statement score sequences. It takes program spectra and the

results of test case execution as input and produces sequence of statement scores

depending upon multiple MBFL techniques as output. Since we have used forty

MBFL techniques in our approach, SSG produces forty score sequences. Table 2

enlists the formulas of few of the SBFL techniques which we have used in our

approach. N is the total number of test cases available; Np is the number of passed

test cases among those available and Nf is the number of failed test cases among those

available. The number of succeeded test cases that executed a statement is Nep,

whereas the number of failed test cases that executed a statement is Nef. Similarly,

Nnp represents the number of succeeded test cases that did not execute a specific

statement, while Nnf represents the number of failed test cases that did not execute a

specific statement.

Table 2: Definitions of some SBFL Techniques

S. No. Name of

Technique

Formula

1 Tarantula (Nef/(Nef+Nnf)) / (Nef/(Nef + Nnf) + Nep/(Nep+Nnp))

2 Ample1 | (Nef/Nef*Nep) – (Nep/Nep*Nnp) |

3 Ample2 Nef/Nf – Nep/Np

4 Lee Nef + Nnp

5 Goodman (2*Nef-Nnf-Nep)/2*Nef+Nnf+Nep

6 Wong1 Nef

7 Wong2 Nef-Nep

8 DStar (D*) (Nef)*/(Nep*Nnf)

9 Jaccard Nef/(Nf+Nep)

10 Euclid √(Nef + Nnp)

Learning to Rank: This algorithm considers a collection of objects and assigns a

suitable rank to them. We are using forty MBFL techniques in our approach and each

technique assigns a different score to all the statements of the input program for each

mutant. Therefore, we have used Learning to Rank algorithm to all of the techniques

and this results in assigning higher rank to the right technique in every different

scenario. After applying this Learning to Rank algorithm we get a prioritised list of

statements.

Experimental Studies

This section presents the data set, evaluation metrics used and the empirical results

obtained in our approach.

Data Set Used

We have used Siemens suite as our input data set which contains 7 different programs

named "printtokens", "printtoken2", "replace", "schedule", "schedule2", "tcas" and

"totinfo". Table 3 shows the characteristics of Siemens suite 7 programs. We have

generated different category-1 mutants for each program in the Siemens suite.

Table 3: Characteristics of programs available in Siemen suite

S.

No.

Name of Program Count of

Faulty

Versions

Count of

Executable

LOC

Count of

Test

Cases

Count of

Mutants

1 Print_Tokens 7 195 4130 285

2 Print_Tokens2 10 200 4115 314

3 Replace 32 244 5542 508

4 Tcas 41 65 1608 216

5 Tot_info 23 122 1052 571

6 Schedule 9 152 2650 406

7 Schedule2 10 128 2710 350

Evaluation Metrics

For evaluating the performance of our approach EMBFL and comparing it with that

of the existing fault localization techniques, Exam-Score evaluation metric has been

used. Exam-Score is the percentage of statements that must be examined in order to

locate faults in a program. It is computed using Equation 1.

𝐸𝑥𝑎𝑚 − 𝑠𝑐𝑜𝑟𝑒 = (| 𝑆𝑒𝑥𝑎𝑚𝑖𝑛𝑒𝑑 |÷ | 𝑆𝑡𝑜𝑡𝑎𝑙 |) * 100 (1)

where, |Sexamined| denotes the count of statements required to be examined to find the

faulty locations. |Stotal| denotes the total number of statements in the program. The

fault localization technique that has Exam-Score less than that of all others is the most

effective technique.

Empirical Evaluation

We have compared the effectiveness of EMBFL with four other prominent existing

fault localization techniques. Among these four techniques, Tarantula and DStar (D*)

are taken from SBFL family. On the other hand, BPNN and RBFNN belong to the

neural network family of fault localization techniques. Figures 2 to 5 depict the

effectiveness comparison of EMBFL with other techniques for fault localization

using the line graphs. Best effectiveness means the statement containing fault is

examined "first" among those with the same score of suspiciousness. Worst

effectiveness, on the other hand, means that the statement containing fault gets

examined "last" among those with the same score of suspiciousness.

Figure 2 compares the effectiveness of Tarantula and EMBFL for Siemens suite. The

figure suggests that by inspecting only 3% of program statements, EMBFL localizes

faults in 25.77% of faulty versions. Tarantula (Worst) and Tarantula (Best)

respectively localize faults in 10.31% and 20.61% of faulty versions only. On

average, Tarantula (Worst) and Tarantula (Best) require 31.71% and 19.98% of

program statement examination to localize bugs. On the other hand, EMBFL requires

only 16.08% of code examination, on average. Our proposed EMBFL method is

49.29% and 19.54% more effective than Tarantula (Worst) and Tarantula (Best)

respectively.

Figure 2. Effectiveness of EMBFL, and Figure 3. Effectiveness of EMBFL, and

Tarantula for the Siemens suite and D* for the Siemens suite

Figure 3 presents the effectiveness comparison of DStar and EMBFL for Siemens

suite. It is clearly evident from the figure that EMBFL is performing equally well as

Dstar(Best) for most of the program points. However, there are several points present

on which EMBFL is performing much better than DStar (Best). We observe that there

is a huge gap between the effectiveness of DStar (Worst) and EMBFL. EMBFL

requires 20% and 7.5% less code inspection than DStar(Worst) and DStar(Best),

respectively, in the worst scenario. On average, EMBFL outperforms DStar (Worst)

and DStar (Best) by 43.53% and 4.38% respectively.

Figure 4. Effectiveness of EMBFL, and Figure 5. Effectiveness of EMBFL, and

BPNN for the Siemens suite and RBFNN for the Siemens suite

Figure 4 compares the results of BPNN and EMBFL for Siemens suite. According to

the graph, EMBFL only requires 8% code inspection to locate defects in 50% of the

faulty versions, whereas BPNN requires at least 14.47% code inspection. In the worst-

case scenario, EMBFL requires 3% less code inspections than BPNN, and it is

21.15% more effective on average.

Figure 5 compares the effectiveness of RBFNN and EMBFL for Siemens suite. The

figure indicates that EMBFL locates errors in 38.14% of faulty programs by

evaluating only 5% of statements in the program, but RBFNN(Worst) and

RBFNN(Best) locate faults in only 24.74% and 30% of faulty versions, respectively.

On average, EMBFL outperforms RBFNN(Worst) and RBFNN(Best) by 52.01% and

29.49%, respectively. EMBFL also has to examine 18.14% and 16.60% less code in

the worst scenario than RBFNN(Worst) and RBFNN(Best).

Table 4: Pairwise comparison between EMBFL and existing fault localization

techniques with respect to Exam-Score.

 EMBFL

v/s

Tarantula

(Best)

EMBFL

v/s

Tarantula

(Worst)

EMBFL

v/s

DStar

(Best)

EMBFL

v/s

DStar

(Worst)

EMBFL

v/s

RBFNN

(Best)

EMBFL

v/s

RBFNN

(Worst)

EMBFL

v/s

BPNN

More

Effective

49.48 81.44 18.56 68.04 43.3 69.07 58.76

Equally

Effective

32.99 5.15 39.18 10.31 8.25 7.22 6.19

Less

Effective

17.53 13.4 42.27 21.65 48.45 23.71 35.05

Table 4 presents the pairwise comparison of EMBFL with Tarantula, DStar, RBFNN,

and BPNN. The table illustrates the percentage of faulty versions on which EMBFL

performs more effectively, equally effectively and less effectively than the respective

fault localization techniques in rows 2, 3, and 4 respectively. It can be observed that

EMBFL performs at least as effective than all the other techniques in more than 55%

of faulty versions. There are substantially a smaller number of faulty versions present

on which EMBFL is lesser effective than the existing methods of fault localization.

Conclusion and Future Scope

Fault localization is a crucial part of developing reliable and effective software. To

make fault localization easier and more effective, in this study we have proposed an

ensemble classifier-based technique. We have combined different mutation-based

fault localization techniques. Our method is able to effectively identify locations of

common as well as intrinsic faults present in the program. From our empirical

evaluation we have observed that, on average, EMBFL performs 31.34% more

effectively in terms of less code examination than the related fault localization

techniques such as Tarantula, DStar, BPNN, and RBFNN.

As part of future scope of our work, we intend to apply EMBFL on multiple faulty

programs and also attempt to improve its performance. We also intend to further

improve our approach such that it makes use of the individual fault exposing

capabilities of a test case.

References

Weiser, M. (1984). Program slicing. IEEE Transactions on software engineering. 4:

352-357.

Jones, James, A., and Harrold, M. J. (2005). Empirical evaluation of the tarantula

automatic fault-localization technique, In Proceedings of the 20th IEEE/ACM

International Conference on Automated software engineering (pp. 273-282).

Renieres, M. and Reiss, S. P. (2003). Fault localization with nearest neighbor queries,

In 18th IEEE International Conference on Automated Software Engineering, 2003.

Proceedings. (pp. 30-39). IEEE.

Wong, W. E., Debroy, V., Gao, R. and Li, Y. (2013). The DStar method for effective

software fault localization. IEEE Transactions on Reliability. 63(1): 290-308.

Papadakis, M. and Traon, Y. L. (2015). Metallaxis‐FL: mutation‐based fault

localization. Software Testing, Verification and Reliability. 25(5-7):605-628.

Moon, S., Kim, Y., Kim, M. and Yoo, S. (2014). Ask the mutants: Mutating faulty

programs for fault localization, In 2014 IEEE Seventh International Conference on

Software Testing, Verification and Validation (pp. 153-162). IEEE.

Ascari, L. C., Araki, L. Y., Pozo, A. R. and Vergilio, S. R. (2009). Exploring machine

learning techniques for fault localization, In 2009 10th Latin American Test

Workshop (pp. 1-6). IEEE.

Roychowdhury, S. (2012). Ensemble of feature selectors for software fault

localization, In 2012 IEEE International Conference on Systems, Man, and

Cybernetics (SMC) (pp. 1351-1356). IEEE.

Wong, W. E., Debroy, V., Golden, R., Xu, X. and Thuraisingham, B. (2011).

Effective software fault localization using an RBF neural network. IEEE Transactions

on Reliability. 61(1): 149-169.

Li, X., Li, W., Zhang, Y. and Zhang, L. (2019). Deepfl: Integrating multiple fault

diagnosis dimensions for deep fault localization, In Proceedings of the 28th ACM

SIGSOFT International Symposium on Software Testing and Analysis (pp. 169-180).

Dutta, A., Srivastava, S. S., Godboley, S. and Mohapatra, D. P. (2021). Combi-FL:

Neural network and SBFL based fault localization using mutation analysis. Journal

of Computer Languages. 66: 101064.

