ISOCLINISM AND FACTOR SET IN REGULAR HOM-LIE SUPERALGEBRAS

Nupur Nandi

National Institute of Technology, Rourkela, Odisha-769008, India nupurnandi999@gmail.com

Rudra Narayan Padhan

Centre for Applied Mathematics and Computing, Institute of Technical Education and Research, Siksha `O' Anusandhan (A Deemed to be University), Bhubaneswar-751030, Odisha, India rudra.padhan6@gmail.com

Kishor Chandra Pati

National Institute of Technology, Rourkela, Odisha-769008, India kcpati@nitrkl.ac.in

ABSTRACT

Hom-Lie superalgebras can be considered as the deformation of Lie super algebras; which are Z_2 -graded generalization of Hom-Lie algebras. The motivation of this paper is to introduce the concept of isoclinism and factor set in regular Hom-Lie superalgebras. Moreover, we obtain that, two finite same dimensional regular Hom-Lie superalgebras are isoclinic if and only if they are isomorphic.

Keywords: Hom-Lie superalgebra, Isoclinism, Factor set.

Isoclinism and factor set in regular Hom-Lie Superalgebras

Nupur Nandi

Department of Mathematics National Institute of Technology, Rourkela.

March 25, 2022

メロト メタト メヨト メヨト

Contents

Literature Review

Introduction

3 Work done

A References

Nupur Nandi (NIT, Rourkela)

・ロト ・回ト ・ヨト ・ヨト

A superalgebra is a vector superspace $L = L_{\overline{0}} \oplus L_{\overline{1}}$ endowed with an algebra structure such that $L_{\alpha}L_{\beta} \subseteq L_{\alpha+\beta}$ for $\alpha, \beta \in \mathbb{Z}_2$.

Definition

A Lie superalgebra is a vector superspace $L = L_{\overline{0}} \oplus L_{\overline{1}}$ with a bilinear mapping $[.,.]: L \times L \to L$ satisfying the following identities:

$$[L_{\alpha}, L_{\beta}] \subseteq L_{\alpha+\beta} \text{ for } \alpha, \beta \in \mathbb{Z}_2 \text{ (}\mathbb{Z}_2\text{- grading),}$$

2
$$[x, y] = -(-1)^{|x||y|}[y, x]$$
 (graded skew-symmetry),

● $(-1)^{|x||z|}[x, [y, z]] + (-1)^{|y||x|}[y, [z, x]] + (-1)^{|z||y|}[z, [x, y]] = 0$ (graded Jacobi identity), for $x, y, z \in L$.

Define the supercommutator bracket on L,

$$[x, y] = xy - (-1)^{|x||y|} yx$$
 for $x, y \in L$.

We write the superdimensions of L as sdim (L) = (m|n) = m + n, where sdim $(L_{\overline{0}}) = m$ and sdim $(L_{\overline{1}}) = n$.

- Kac [1977] introduced the \mathbb{Z}_2 -graded Lie algebras which are known as Lie superalgebras.
- Nayak [2018] studied isoclinism for Lie superalgebras.
- Nayak et al. [2019] gave the notion of factor set for Lie superalgebras.
- Hartwig et al. [2006] studied Hom-Lie algebras.
- Padhan et al. [2020] developed isoclinism and factor set for Hom-Lie algebras.
- Ammar et al. [2010] generalized Hom-Lie algebras to Hom-Lie superalgebras.

イロン イロン イヨン イヨン

A Hom-Lie superalgebra is a triple $(L, [., .], \alpha)$ which consists of a \mathbb{Z}_2 -graded vector space L, an even bilinear map $[., .] : L \times L \to L$ and an even homomorphism $\alpha : L \to L$ satisfying

• $[m_1, m_2] = -(-1)^{|m_1||m_2|}[m_2, m_1]$ (graded skew-symmetry),

②
$$(-1)^{|m_1||m_3|}[\alpha(m_1), [m_2, m_3]] + (-1)^{|m_3||m_2|}[\alpha(m_3), [m_1, m_2]] + (-1)^{|m_2||m_1|}[\alpha(m_2), [m_3, m_1]] = 0$$
 (graded Hom-Jacobi identity),

for homogeneous elements $m_1, m_2, m_3 \in L$.

• A graded subspace $W \subseteq L$ is a *Hom-subalgebra* of L if $\alpha(W) \subseteq W$ and W is closed under the bracket operation [.,.], i.e. $[W, W] \subseteq W$. A Hom-subalgebra W is called a *ideal* of V if $[W, L] \subseteq W$. The ideal L' = [L, L] is called the *derived subalgebra*.

Introduction

• The center of a Hom-Lie superalgebra $(L, [., .], \alpha)$ is defined by

$$Z(L) = \{x \in L : [x, y] = 0 \text{ for } y \in L\}.$$

• An *abelian* Hom-Lie superalgebra is a vector superspace L equipped with trivial bracket and a linear map $\alpha : L \to L$.

- A Hom-Lie superalgebra $(L, [., .], \alpha)$ is called *multiplicative* if $\alpha[m_1, m_2] = [\alpha(m_1), \alpha(m_2)]$ for $m_1, m_2 \in L$. A multiplicative Hom-Lie superalgebra $(L, [., .], \alpha)$ is said to be *regular* if α is bijective.
- A regular Hom-Lie superalgebra $(L, [., .], \alpha)$ is called stem Hom-Lie superalgebra whenever $Z(L) \subseteq L'$.

イロト イヨト イヨト イヨト

Lemma

If $(L, [., .], \alpha)$ is regular Hom-Lie superalgebra, then Z(L) is an ideal of L.

• Let $(L, [., .]_1, \alpha_1)$ and $(W, [., .]_2, \alpha_2)$ be two Hom-Lie superalgebras. A homomorphism from $f : (L, [., .]_1, \alpha_1) \rightarrow (W, [., .]_2, \alpha_2)$ is a \mathbb{F} -linear map $f : L \rightarrow W$ such that $f([m_1, m_2]_1) = [f(m_1), f(m_2)]_2$ and $f\alpha_1 = \alpha_2 f$ for all $m_1, m_2 \in L$. They are isomorphic if $f : L \rightarrow W$ is bijective.

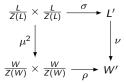
• For any ideal K of $(L, [., .], \alpha)$, we can define quotient Hom-Lie superalgebra on the quotient vector superspace L/K by defining $[., .] : L/K \times L/K \to L/K$ by

$$[\overline{m_1}, \overline{m_2}] = \overline{[m_1, m_2]}$$
 for $\overline{m_1}, \overline{m_2} \in L/K$,

and $\tilde{\alpha}: L/K \to L/K$ is induced by α , i.e. $\tilde{\alpha}(\overline{m}) = \alpha(m) + K$.

イロト 不得 トイヨト イヨト

Let $(L, [., .], \alpha_1)$ and $(W, [., .], \alpha_2)$ be two regular Hom-Lie superalgebras, $\mu : \frac{L}{Z(L)} \to \frac{W}{Z(W)}$ and $\nu : L' \to W'$ be Hom-Lie superalgebra isomorphisms such that the following diagram is commutative:



where $\sigma(\overline{m_1}, \overline{m_2}) := [\overline{m_1}, \overline{m_2}]$ for $m_1, m_2 \in L$ and $\rho(\overline{n_1}, \overline{n_2}) := [\overline{n_1}, \overline{n_2}]$ where $n_1, n_2 \in W$. Then (μ, ν) is called *isoclinism*.

イロト イヨト イヨト イヨト

Let $L = L_{\overline{0}} \oplus L_{\overline{1}}$ be a finite dimensional Hom-Lie superalgebra. The bilinear map;

 $r: L/Z(L) \times L/Z(L) \rightarrow Z(L),$

is said to be a factor set if the following properties hold:

• $r(\overline{m_1}, \overline{m_2}) \subseteq Z(L)_{\alpha+\beta}, \alpha, \beta \in \mathbb{Z}_2,$ • $r(\overline{m_1}, \overline{m_2}) = -(-1)^{|\overline{m_1}||\overline{m_2}|} r(\overline{m_2}, \overline{m_1}),$ • $r([\overline{m_1}, \overline{m_2}], \tilde{\alpha}(\overline{m_3})) = r(\tilde{\alpha}(\overline{m_1}), [\overline{m_2}, \overline{m_3}]) - (-1)^{|\overline{m_1}||\overline{m_2}|} r(\tilde{\alpha}(\overline{m_2}), [\overline{m_1}, \overline{m_3}]),$ for all homogeneous elements $\overline{m_1}, \overline{m_2}, \overline{m_3} \in L/Z(L)$, and $\tilde{\alpha}$ is an even homomorphism

 $\tilde{\alpha}: L/Z(L) \rightarrow L/Z(L)$ satisfying $\tilde{\alpha}(\overline{m}) = \alpha(m) + Z(L)$.

The factor set r is said to be multiplicative if

$$r(\tilde{\alpha}(\overline{m_1}), \tilde{\alpha}(\overline{m_2})) = \alpha r(\overline{m_1}, \overline{m_2})$$
 for $\overline{m_1}, \overline{m_2} \in L/Z(L)$.

Lemma

A factor set r exists in such a way that $L \cong (Z(L), L/Z(L), r)$ for any regular Hom-Lie superalgebra $(L, [., .], \alpha)$ of parity γ .

Lemma

Let $(L, [., .], \alpha_1)$ be a stem Hom-Lie superalgebra in an isoclinism family of Hom-Lie superalgebras C. Then for any stem Hom-Lie superalgebra $(W, [., .], \alpha_2)$ of C, there exists a factor set r over $(L, [., .], \alpha_1)$ such that $W \cong (Z(L), L/Z(L), r)$.

Theorem

Let $(L, [., .], \alpha_1)$ and $(W, [., .], \alpha_2)$ be two finite dimensional stem Hom-Lie superalgebras having same parity. Then $L \sim W$ iff $L \cong W$.

Theorem

Let C be an isoclinism family of finite dimensional regular Hom-Lie superalgebras. Then any $L \in C$ can be expressed as $L = T \oplus A$ where T is a stem Hom-Lie superalgebra and A is some finite dimensional abelian Hom-Lie superalgebra.

Theorem

If $(L, [., .], \alpha_1)$ and $(W, [., .], \alpha_2)$ be two regular Hom-Lie superalgebras with same dimension and having same parity. Then $L \sim W$ iff $L \cong W$.

Example

Let $(L, [., .], \alpha_1)$ be a (2|1) dimensional Hom-Lie superalgebra with the basis $\{e_1, e_2 \mid e_3\}$ and the commutator relations are defined by;

$$[e_1, e_3, e_3] = e_1, \ [e_2, e_3, e_3] = e_2,$$

and all other commutator relations are zero. Then $L' = \langle e_1, e_2 \rangle$ and Z(L) = 0 and hence, $L/Z(L) \cong L$. Now, let $(W, [.,.], \alpha_2)$ be a (3|1) dimensional Hom-Lie superalgebra with the basis $\{e'_1, e'_2, e'_3 \mid e'_4\}$ and the commutator relations are defined by;

$$[e_1',e_4',e_4']=e_1',\;[e_2',e_4',e_4']=e_2',\;$$

and all other commutators are zero. Then $W' = \langle e'_1, e'_2 \rangle$ and $Z(W) = \{e'_3\}$ and hence, $W/Z(W) = \{\overline{e'_1}, \overline{e'_2} \mid \overline{e'_4}\}$ where $\overline{e'_i} = e_i + Z(W)$ for i = 1, 2, 4. A simple verification shows that $L' \sim W'$ and $\frac{L}{Z(L)} \cong \frac{W}{Z(W)}$ from which one can deduce that $L \sim W$ while $\dim(L) \neq \dim(W)$, i.e., L and W are not isomorphic.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

F. Ammar, A. Makhlouf,

Hom-Lie superalgebras and Hom-Lie admissible superalgebras, J. Alg. 324, 1513–1528, 2010.

J. Hartwig, D. Larsson, S. Silvestrov, Deformations of Lie algebras using σ -derivations, J. Algebra 295, 314–361, 2006.

V. G. Kac, Lie superalgebras, Adv. Math. 26, 8-96, 1977.

S. Nayak, Isoclinism in Lie superalgebras, https://arxiv.org/abs/1804.10434.

S. Nayak, R. N. Padhan, K. C. Pati, Some properties of isoclinism in Lie superalgebras, *Comm. Algebra*, 2019.

R. N. Padhan, N. Nandi, K. C. Pati, On factor set in regular Hom-Lie algebras, https://arXiv:2005.05555.

< □ > < 同 > < 回 > < 回 >

Thank You

▲□▶ ▲圖▶ ▲国▶ ▲国▶