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Abstract—Super-resolution (SR) reconstruction of thermal im-
ages has been one of the most active research areas specifically
for industrial applications. However, most of the conventional
RGB SR models available in the literature are not necessar-
ily applicable to thermal images due to their difference in
characteristics when compared to normal camera images. The
recent advancement in the field of deep learning-based SR has
helped achieve unbelievable results. Despite the advancement
in models like deep convolution neural networks (CNN) and
Generative adversarial networks, there remain multiple problems
unsolved that will help improve the spatial resolution of thermal
images. Not only the developed model should be computationally
efficient but also easily implementable in industrial applications.
Motivated to overcome the said limitations, in this work a
generative adversarial network (GAN) based single images super-
resolution architecture is proposed for thermal camera images.
The developed model not only generates at par results with the
other model but also is easy to implement and computationally
efficient. The modified architecture has an identical layout
inspired by SRGAN. In order to make the model faster to train
while having less training parameters, the number of residual
blocks was reduced to 5. The batch normalization layers were
excluded from the residual blocks of both the Generator and
Discriminator networks to remove the redundancy. Before each
convolution layer, reflective padding is utilized at the edges to
preserve the size of the feature maps. The comparative results
revealed that the proposed network trained on thermal images
produced high-quality images with enhanced details, while still
maintaining image features and perspective throughout. The
experimental results show that the proposed model has achieved
a reduction in computation time compared to the State-of-the-
Art method. The suggested strategy has outperformed the SOTA
methods with the improvement of approximately 2dB in PSNR
along with 0.9825 of SSIM.

Index Terms—Super Resolution; Thermal Images; Generative
Adversarial Networks.

I. INTRODUCTION

Thermal imaging is a technique for capturing images in far-
infrared bands by using special-purpose thermal cameras. Such
images are highly desirable in many industrial application
where the objects to be analyzed is invisible to naked eyes and
also to normal cameras [1]. Long-Wave IR has a wavelength
range of 8 to 15 micro-meters and provides quantifiable
thermal data or heat maps of the recorded image representing
temperature data. The evolution of thermographic imaging
technology allows for the vision of objects beyond the visible

Fig. 1. Thermogram

range, allowing it to be used in various applications like
military, medical, agricultural, and various industries, etc. This
system measures temperature using the heat of objects and
makes a thermogram, similar to as shown in Fig. I.

However, compared to visible range RGB cameras, thermal
cameras are constrained by technological limitations and have
a poor spatial resolution. Also, thermal cameras are more
expensive than visible cameras with similar resolution. The
cost of thermal sensors rises dramatically as the resolution
of the sensor rises. As a result, thermal cameras are utilized
in low-resolution (LR) and low-contrast environments. Such
LR images limit the image analysis process and prove disad-
vantageous for many applications where only high-resolution
(HR) images can only serve the purpose. Therefore, there
is an ultimate need of a low-cost solution to generate HR
images using post-processing techniques like super-resolution
(SR) of thermal images. SR is a method that improves spatial
resolution by integrating complementary information from
one or many LR images to produce HR images. As the SR
reconstructed image has the excellent perceptual quality and
contains high details and information, it can be employed in a
variety of applications such as surveillance, medical diagnosis,
industrial maintenance, etc.

Many SR methods are proposed in literature based on dif-
ferent strategies. As mentioned in paper [2], a comprehensive
overview of various single image SR, which tries to recover
a HR image from a LR image has been presented. But most978-1-6654-2337-3/21/$31.00 © 2021 IEEE



of them are not necessarily applicable on thermal images. For
thermal image datasets, the approach must be more efficient
than for visual image datasets due to the difference in their
characteristics. Traditional approaches function properly and
have demonstrated some patches in natural pictures, which
tend to redundantly reoccur multiple times inside the image
[3].

In order to learn multi-scale information and create a
deep network model for single image SR, the authors in
[4] developed a convolution-based inception model. Xudong
Zhang [5] proposed a novel SR method in which Compressive
sensing theory and deep learning are combined. The approach
is divided into two parts: the first is used to create an
HR image that contains high-frequency information, and the
second part is used to remove the fixed pattern of noise.
In 2020, Vishal Chudsama et al. proposed a computationally
efficient SR reconstruction method called TherlSuRNet [6],
in which progressive upscaling strategy with asymmetrical
residual learning in the network was used. This method
consists of low-high frequency feature extraction along with
upscaling blocks. Here, the author uses asymmetrical strategy
and residual learning methods for a different upscaling factor
like ×2, ×4, ×8 are used. Sometimes only a thermal image
or a RGB image is not much informative. Taking this into
consideration, Feras Almasri et al. [7] proposed a multi-modal
sensor fusion-based SR approach. Although the generated im-
ages are better but some artifacts were noticed in the generated
images. Rivadeneira et al. [8] proposed a SISR algorithm
to construct an HR thermal infrared image from subpixel
shifted aliased LR frames, wherein a stochastic regularized
SR approach is applied for x4 scaling factor. These method-
ologies have yielded better performance, but they lack in
exploring the correlation between spatial-spectral features and
non-linear mapping. Moreover, the above-mentioned learning-
based restoration algorithms ignore multi-scale information.
Motivated to overcome the said drawbacks, this paper pro-
poses a simple and computationally efficient model using
the generative adversarial network (GAN) for single image
SR of thermal images. The proposed model architecture is
inspired on the research of [9], [10]. The proposed method
shows improvement over the state-of-the-art SR models in
both qualitative and quantitative assessments. The rest of the
manuscripts is described as follows: A detailed discussion
on the proposed architecture and the designed blocks in the
model is given in Section II. Section III gives a brief overview
of the modalities of the architecture and the specification of
the training and testing experiments followed by the result
subsection. Final remarks are given in Section VI.

II. PROPOSED MODEL

This work aims to convert an LR thermal image into an HR
thermal image while distinguishing between the HR and SR
images. The key idea is to establish a model that can achieve
the best perceptual quality of the thermal image and be easy
to implement and computationally efficient. The industrial
application requires the model to be fast and produce at

par results with the most complicated models. Therefore, we
design a simple yet powerful model with 5 residual blocks in
the generator model in the proposed architecture. To begin,
LR images thermal images are created by downscaling HR
images by a factor of four using Gaussian pyramids. The image
has been downscaled from its original size of (320×240) to
(80×60).

The baseline model comprises of Generative adversarial
network (GAN), which provides a framework consisting of
image generator-discriminator sub-networks. The generator
reproduces the image with high perceptual quality images.
The primary purpose of this research is to extract features
and map them on the original image size. The suggested
model has five residual blocks and has a similar layout to
the SRGAN model. The proposed model includes a generator
and discriminator network. Fig. 2 pictorially gives details of
the proposed architecture. The following sections provide a
detailed overview of each network module.

A. Generator network

The generator network as depicted in Fig. 2(a) is inspired
by the work of [11] and modeled using five residual blocks.
Two convolution layers make up each residual block with
a kernel size of 33 and 64 channels, followed by an ElU
activation function. The breakup of the residual blocks used
in the architecture is shown in Fig. 3 below.

The batch normalization layers were eliminated from the
leftover blocks, as illustrated in Fig.2, as these layers are
redundant as indicated in [11]. As presented in the Fig. 2,
reflective padding is employed to retain and to supplement
the feature maps. Then two subpixel convolution layers are
used for upsampling the resolution of output images. Each
convolution layer in the generator network used a stride of
2, eventually reducing the size of feature maps. Finally, the
pixelshuffle layer upscales the final output of the generator.

B. Discriminator network

To distinguish the generated image from that of the ground
truth image, the discriminator sub-network is used. Fig. 2(b)
illustrates the network design of the discriminator. Batch
normalization layers were also removed in the discriminator
too, similar to the generator. Eight convolution layers precede
the ELU activation function in the discriminator network. The
kernel size of these convolution layers is 33, and the channel
count rises by a factor of two in each level, from 64 to 512.
The channel count is doubled because we’re using convolution
of sride 2 between each layer. After the 512 feature maps,
average pooling layers are employed in this network followed
by two dense layers. Finally, a probability output is drawn out
using the sigmoid activation function to distinguish between
the ground truth and reconstructed images.

III. EXPERIMENT AND ANALYSIS

A. Collection of data

The dataset used to train the model comprises of 255 images
of Transformers with various short circuit rounds selected



Fig. 2. Architecture of Proposed Model, (a) Generator network, (b) Discriminator network

Fig. 3. Residual Block

from 600 to 80 short circuit rounds. This dataset contains the
thermal images of electrical machines i.e. transformers. All the
faults that occurred in the transformer are the internal faults
[12]. The thermal images were acquired under various short-
circuiting conditions, i.e., 8 different cases of common core
winding short circuit failures were considered. The dataset
used to train the model comprises of 255 images of Transform-
ers with various short circuit rounds selected from 600 to 80
short circuit rounds. A Dali-tech T4/T8 infrared thermal image
camera with a detector resolution of 384*288 and a measuring
range of −20° to + 650°c is used to acquire thermal images
at the workbench in an Electrical Machines Laboratory at a
temperature of 23°c.

This is a dataset of thermal images (IRT) used in the con-
dition monitoring of electrical equipment, specifically trans-
formers. All artificially generated flaws are internal flaws
that are not caused by external components or initial setup
component failure. Thermal images of an induction motor are
also included in the dataset. All artifact-generated flaws in this

dataset are created by internal issues rather than external pieces
or failures in the initial setup of electrical components. There
are 369 images in all. The induction motor is considered in
eight different instances of short circuit failures in the stator
windings, stuck rotor problem, and cooling fan failure.

B. Implementation

A normal distribution initialization with zero mean and a
standard deviation of 0.02 is used to initialize the generator
and discriminator networks. We use the Adam optimizer for
both the network with a learning rate of 0.01 and a batch
size of 12. The model was trained for 2000 epochs, with the
learning rate halved for every 50 epochs. The models are all
trained in a Pytorch environment and run on a RTX 2080TI.

IV. EVALUATION METRICES

The peak signal to noise ratio (PSNR) and structural simi-
larity (SSIM) metrics given by Eqn. 1 and Eqn. 2 are used to
verify efficacy of the proposed method.

PSNR = 10log10

(
MAX2

f

MSE

)
(1)

SSIM =
(2µxµy + c1) (2σxy + c2)(

µ2
x + µ2

y + c1
) (

σ2
x + σ2

y + c2
) (2)

MAX is the maximum pixel value in f th band while f refers
to the reconstructed image thermal image.

V. EXPERIMENT RESULT

In order to test the performance of the trained model, the
network is tested on the test dataset split from the thermal
image dataset and the results for some of the images in
Fig. 4 and 5. The pictures were taken under various short



Fig. 4. SR reconstruction result from left to right a 400-round short-circuit situation image: (a) Low resolution image, (b) Bicubic interpolation, (c) SRResNet,
(d) SRGAN, (e) Proposed, (f) Ground truth image

Fig. 5. SR reconstruction result from left to right for a 600-round short-circuit situation image : (a) Low resolution image, (b) Bicubic interpolation, (c)
SRResNet, (d) SRGAN, (e) Proposed, (f) Ground truth image



circuit conditions, as shown in Fig. 4 and 5. The results of
various SOTA methods are compared with the findings of
the proposed model. The illustration depicts the transformer’s
LR Fig. 4(a) and 5(f) and ground truth images. While Fig.
4 and 5 (b) represents the bicubic interpolation result, (c)
represents the SRResNet result, (d) represents the SRGAN
model result, and (e) represents the results of the proposed
model architecture. We can see that the study activity gives
outcomes that are the most accurate representations of the
real-world images. The winding in the transformer core is
visible and matches the ground truth images. Fig. 4 shows the
image of a transformer in a 400-round short-circuit situation,
whereas Fig. 5 shows images in a 600-round short-circuit
condition. In the ground truth images, the lower half of
the transformer is visible; however, bicubic interpolation and
SRResNet lose that information. SRGAN generates images
that are comparable to ground truth images, but there are
some artifacts in the model output. The proposed method
reconstructs images which is highly similar to the HR images.
Table I shows the results of a fair comparison using the settings

TABLE I
STATISTICAL PARAMETER COMPARISON OF PROPOSED MODEL WITH

OTHER SOTA MODELS (400 ROUND SC)
NOTE:THE VALUES REPORTED ARE THE AVERAGE VALUES OVER THE

WHOLE TEST DATASET

Methods PSNR(dB) SSIM
Bicubic interpolation 35.2932 0.9433

SRResNet 36.8239 0.9581
SRGAN 38.3261 0.9693
Proposed 40.5427 0.9763

specified by the creators of SOTA methods such as Bicubic
interpolation, SRResNet, and SRGAN. In terms of PSNR and
SSIM, this comparison is conducted for the 400 round of
short circuit transformer images. When compared to other
statistical measures in table I, the proposed model outperforms
others in terms of SSIM and PSNR. Additionally, Table II
shows the fair comparison for 600 round of short circuiting
transformer images. The visual quality comparison as shown

TABLE II
STATISTICAL PARAMETER COMPARISON OF PROPOSED MODEL WITH

OTHER SOTA MODELS (600 ROUND SC)
NOTE:THE VALUES REPORTED ARE THE AVERAGE VALUES OVER THE

WHOLE TEST DATASET

Methods PSNR(dB) SSIM
Bicubic interpolation 39.6521 0.9573

SRResNet 40.5724 0.9677
SRGAN 41.2967 0.9791
Proposed 43.9239 0.9825

in Fig. 4 and 5 shows that the SR image from the trained
generator of the proposed model has high perceptual quality
and is significantly similar to the corresponding ground truth
image. This conclusion is supported through the tremendous
out performance in statistical metrics such as PSNR and SSIM.
Therefore, the suggested model outperformed earlier state-of-

the-art methods by improving statistical and visual parameters
significantly.

VI. CONCLUSION

In this research work a learning-based GAN model is
proposed for super resolution of thermography images. The
proposed model comprises of a generator and a discriminator
networks. In the proposed model architecture, the core of the
proposed model performs feature extraction and mapping on
the input images. The key motive is to use a computationally
efficient, fast and easy to implement model for thermal image
super resolution. Moreover, in comparison to other SOTA
approaches, the suggested method has shown considerable
improvement in statistical indicators such as PSNR and SSIM
metrics. Furthermore, when compared visually, the proposed
methodology has demonstrated improved perceptual quality.
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