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Abstract 
 
In the paper, we propose Tabu Search (TS) based schemes 
for image segmentation using Markov Random Field 
(MRF) model. The segmentation problem is formulated as 
pixel labeling problem and the MAP estimates of the 
labels were obtained by the two proposed TS algorithms. 
The TS algorithm was parallelized to improve the overall 
performance of the scheme. The performance of the 
algorithms was compared with Simulated Annealing (SA) 
algorithm and the algorithms outperformed the SA 
algorithm. The algorithms were tested for synthetic as 
well as real images. 
 

1. Introduction 
 
The image segmentation problem is an early 
computational vision problem which has been addressed 
for more than three decades [1,2,3]. Different strategies 
evolved with time to tackle various issues in 
segmentation. The early work on segmentation is broadly 
based on thresholding and region growing [1]. Broadly, 
the approach adopted can be viewed  as model based 
approach and over the last two decades stochastic 
modeling has been extensively used for image 
segmentation[2,3,4,5,6]. In many of the recent works the 
problem of image segmentation is cast as a pixel labeling 
problem. The label estimates are obtained by adhering to 
the Maximum a Posterior (MAP) estimation principle. 
 
Specifically, MRF model and its variants are often used to 
model the images [2, 3, 4, 6]. In [5], a tree MRF model 
based segmentation scheme is proposed. The authors in 
[5] employed the MAP estimation principles to obtain the 
label estimates. Spatio-Temporal MRF model has been 
used for tracking traffic scenes [4]. The MRF model 
parameters are either estimated a priori thus leading to 
supervised segmentation scheme, or estimated together 
with the labels leading to unsupervised schemes. The 
unsupervised schemes using the notion of evolutionary 
computation has been proposed to segment textured 
images [7]. Supervised image segmentation problem using 
evolutionary computation has been addressed in [8]. 
Image segmentation based on homotopy continuation 
method and MRF model has been achieved in [9].  
 
In this paper, we propose two Tabu algorithms for image 
segmentation in a stochastic frame work. We have 
formulated the problem as a pixel labeling problem and 
the label estimates are obtained using the MAP estimation 
criterion. We have modeled the label process as the MRF 
model. The MRF model parameters are assumed to be 

known a priori i.e. they are selected on an ad hoc basis. 
The MAP estimates of the labels are obtained by our 
proposed TS algorithm. Furthermore, we have parallelized 
the algorithm to improve the performance. Performance of 
the proposed algorithms is compared with the SA 
algorithm for synthetic as well as real images. In our 
experiments, it is observed that, the proposed algorithms 
outperformed the SA algorithm. 
 

2. Image Model 
 
The images are assumed to be defined on a discrete 
rectangular lattice M=(NxN). Let X denotes the random 
field associated to the noise free image and Z denotes the 
corresponding label process. Let z be a realization of Z 
and the label process Z is modeled as MRF. The observed 
image y is assumed to be a realization of the random field 
Y. The label process Z is assumed to be a MRF with 
respect to a neighborhood system η and is described by its 
local characteristics. 
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Since, Z is MRF, or equivalently distributed, the joint 
distribution can expressed as 
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the clique potential. We consider the following simple 
image model. 
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With a lexicographical ordering (1) will be  

NZY +=  
 

we assume the following : (a) ijW  is a white Gaussian 

sequence with zero mean and variance 2σ , (b) ijW  is 

statistically independent of ),(),(, lkandjiZ kl ∀  

belonging to (NxN), (c) ijZ  takes any value from the 
label set M=(1,…...,Mm) (typically Mm =256). In general, 
the parameter vector TTq ],[ 2σθ = .  
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3. Image Segmentation 
 
The image segmentation problem is formulated as a pixel 
labeling problem. The label process Z, of the image is 
modeled as MRF. We consider the degradation model 
given by (1). The number of regions M and the model 
parameter vector TTq ],[ 2σθ = are assumed to be 
known. The objective is to obtain the optimal estimate of 
the realization of the scene labels z* and hence 
segmentation. This is formulated based on the MAP 
criterion. We consider the following optimality criterion. 
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Where θ  denote the parameter vector, which is assumed 
to be known a priori, ẑ  is the MAP estimate of the labels. 
Since z is unknown in (2), the posterior probability of (2) 
is unknown. Using this Bayesian approach it can be 
shown that  
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Since y is known the denominator is a constant. Using the 
second assumption i.e. the noise is independent of z and 
the degradation model, ),|( θzZyYP ==  can be 
expressed as 
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It can be easily seen from (4) that the problem reduces to 
the following minimization problem. 
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This minimization is achieved by the proposed Tabu 
algorithms and SA.  
 

 4. Tabu Search 
 
The conventional optimization algorithm suffers from the 
problem of local minima trapping. This problem is 
circumvented by the stochastic optimization algorithms 
such as Simulated Annealing (SA) and Genetic Algorithm 
(GA). The stochastic optimization algorithms are 
computationally intensive. One of the reasons could be 
attributed to the revisiting of the candidate solutions 
already visited in the search space. Tabu Search (TS) is an 
adaptive procedure which incorporates the notion of 
guided search and avoids revisiting the points in the 
search space to reach the global optimum [10,11,12]. The 
application domain encompasses scheduling flow 
sequencing, traveling sales man problem and integrated 

circuit design [10,11,12]. Recently, evolutionary TS has 
been proposed for cell image segmentation [13]. The 
proposed algorithm in [13] has been shown to outperform 
GA. The notion of TS has also been applied to determine 
the optimal coefficients of the digital filter [14]. 
 
In our TS algorithm, the Tabu array consists of recent 
moves. These moves not only consists of moves that 
minimizes the energy but also consists of moves with 
higher energy. Thus moves corresponding to the higher 
energy has been accepted with probability. This represents 
our aspiration condition. The basic steps of the algorithm 
is as follows. 
 
4.1 Tabu Search Algorithm 
 
1.     Initialize the initial temperature Tin . 
2. The initial image for the algorithm is  the degraded 

image. 
3. A Tabu list, i.e. Tabu image set is created to store the 

recent moves, i.e. the image estimates of the 
algorithm. The set is of fixed length. 

4. From the current move or image the next Tabu image 
is generated. 
i)Perturb zij(t) with a zero mean Gaussian Distribution 
with a suitable variance. 
ii)Evaluate the energy  Up(zij(t+1)) & Up(zij(t)) . If ∆f 
= (Up(zij(t+1)) - Up(zij(t))) < 0 ,assign the modified 
value as the new value. If ∆f > 0, accept the zij(t+1) 
with  a probability. 
iii)Repeat  step (i) and (ii) for all the pixels of the 
image. 

5.    Compute the power of the updated image z(t+1) as 
Pz(t+1) and compare it with the powers of the tabu 
list named as Tabu energy, if Pz(t+1) < PTabu then 
z(t+1) is a Tabu image. 

6.    Aspiration condition:  If Pz(t+1) > PTabu , accept z(t+1) 
as  Tabu image with probability 

7. Update the Tabu list. 
8. Decrease the Temperature according to the 

logarithmic cooling schedule. 
9.  Repeat step 4 – 8 for a fixed number of iterations. 
 

5. Parallel Tabu Search  
 
In the proposed TS algorithm, the next move is decided 
based on the energy of all possible Tabu moves. This 
increases a substantial amount of computational burden. 
The computational burden is reduced by parallelizing the 
Tabu algorithm. The image is partitioned into a set of sub 
images, say for a example of size (16x16) and (32x32) . 
The energy can be computed over each sub image 
simultaneously. The energy for the whole image is the 
sum of the energies of individual sub-images. The 
computation of energy of each sub image can be achieved 
by submitting each job to individual processor. The total 
energy can be computed in parallel machines.  Thus, all 
possible Tabu moves are determined. If the energy of the 
next image i.e. the next move is lower than that of all the 
moves of the Tabu array then the next image is accepted 
as the next move. If the energy of the next image i.e. next 
move is  higher as compared to all the moves of the Tabu 
array then the next move is accepted with probability. 



This is our aspiration condition which helps the algorithm 
to overcome the problem of local minima trapping. The 
detailed steps of the algorithm are as follows.  
 
   5.1 Parallel Tabu Algorithm 
 

1. Initialize the initial temperature Tin . 
2. The initial image for the algorithm is the degraded 

image. 
3. A Tabu list, i.e. Tabu image set is created to store the 

recent moves, i.e. the image estimate of the 
algorithm. The set is of fixed length. 

4. The image is partitioned into Subimages of size 
(16x16) and (32 x32). 

5. For each sub image 
i)Perturb zij(t) with a zero mean Gaussian Distribution 
with a suitable variane. 
ii)Evaluate the energy  Up(zij(t+1)) & Up(zij(t)) . If ∆f 
= (Up(zij(t+1)) - Up(zij(t))) < 0 ,assign the modified 
value as the new value. If ∆f > 0, accept the zij(t+1) 
with  a probability. 

6. Repeat step 5 for all the subimages. 
7. Compute the total energy of the image by adding the 

energies of the subimages. 
8. Compute the power of the updated image z(t+1) as 

Pz(t+1) and compare it with the powers of the tabu list 
named as Tabu energy if Pz(t+1) < PTabu then z(t+1) is a 
Tabu image. 

9. Aspiration condition :  If Pz(t+1) > PTabu  , accept z(t+1) 
as Tabu image with probability 

10. Update the Tabu list. 
11. Decrease the Temperature according to the 

logarithmic cooling schedule. 
12.  Repeat step 4 – 9 for certain number of iterations. 
 

6. Results and Discussion 
 
We have considered the following first order MRF model 
with line field as the a priori model of the label process. 
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Where z denotes the realization of the label corresponding 
to the noise free image ijij vandh  are the horizontal and 

vertical line fields.  ijh =1 when  | 1, −− jiij zz | > threshold 

or ijh =0.  Similarly 1=ijv  when | jiij zz ,1−− | > 

threshold or 0=ijv . These line fields help in preserving 

the edges of the images βα and  are the image model 
parameters. The corresponding a posteriori model is 
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We have considered synthetic as well as real images. 
Synthetic images having three or four classes have been 
generated using Gibb’s sampler. These are shown in  
Fig.1(a) and Fig.3(a) respectively. The noisy image of 
SNR 15dB corresponding to Fig.1(a) is shown in Fig.1(b). 

The parameters choosen for Fig.1(b) are 
45,02.0 === σβα and . The parameters of the 

Tabu algorithm are: Initial temperature 1.0=inT , the 
length of the Tabu image array L=10, number of iteration 
is 300. Fig.1(c) shows the segmented image obtained 
using the Tabu algorithm. It is observed that the algorithm 
could segment the image satisfactorily except loosing the 
sharpness of few edges. Segmented images obtained from 
SA and parallel Tabu algorithms were very close to that of 
the Tabu algorithm. For the shake of illustration the 
results of Fig.2 corresponds to parallel Tabu algorithm. 
Fig2 shows decay of energy of the algorithm. It is seen 
from Fig.2 that the energy falls to a value of 55 around 15 
iterations for Tabu algorithm while the SA takes 
approximately 30 iterations. The rate of fall in case of 
Tabu algorithm is faster than that of the SA. Thus, Tabu 
algorithm converges faster than that of SA. The decay of 
energy in case of parallel Tabu is almost identical to that 
of Tabu algorithm. The reasons could be attributed to the 
following. (i)  Inter processor communication is not taken 
into account, (ii) The total energy computed by 
partitioning is very close to the energy computed without 
partitioning, (iii) The results correspond to serial 
implementation. 
 
Fig.3(a) shows the original image of three class and the 
corresponding noisy image is shown in Fig.3(b). All the 
three algorithms could be successfully tested and hence 
for the sake of illustration, the result yielded by Parallel 
Tabu algorithm is reported in Fig.3(c). The model 
parameters used are .85.5,02.0 === σβα and  
The other parameters were same as that of four class 
image. It is evident from Fig.3(c) that proper 
segmentation could be achieved. The behavior of the 
energy in this case is identical to that of the four class 
image. 
 
We have also validated our algorithms for real images as 
shown in Fig.4(a) and Fig.6(a). The corresponding noisy 
images are shown in Fig.4(b) and Fig.6(b). The segmented 
images are shown in Fig.4(c) and Fig.6(c). It is seen from 
Fig.4(c) that satisfactory segmentation could be achieved 
except some distortions in the edges. The model 
parameters used are 32,019.0 === σβα and  . The 
decay of the energy for three algorithms corresponding to 
Fig.4 are shown in Fig.5. It is again observed from the 
Fig.5 that the energy of Tabu algorithm decays at a faster 
rate than that of SA. Energy curve of Tabu and Parallel 
Tabu are close to each other. It is further evident that the 
algorithm converges at around 150 iterations where as SA 
takes approximately 250 iterations to converge. The rate 
of fall together with the number of iterations required for 
convergence, corroborates that the proposed algorithms 
outperform the SA.  
 
We also tested successfully our algorithms on another real 
image as shown in Fig.6(a).  The corresponding noisy 
image SNR=30dB is shown in Fig.6(b). The model 
parameters are .55.2,02.0 === σβα and  It is 
seen from Fig.6(c) that the algorithm could segment all 
the parts except a part of the edges is miss classified. The 



behavior of the energy exhibited in this case is similar to 
that of the real object of Fig.4(a). Thus, the two proposed 
algorithms could be validated for real and synthetic 
images. In the examples, the performance of Tabu and 
Parallel Tabu algorithms was superior to that of the SA.  
 

7. Conclusion 
 
We have proposed a Tabu algorithm for image 
segmentation. The performance of the Tabu algorithm is 
enhanced by proposing a parallel Tabu algorithm. Both 
the algorithms could be successfully tested for synthetic 
as well as real images. In all the cases, the two proposed 
algorithms outperformed the SA. Since we do not have a 
parallel machine, the parallel algorithm was implemented 
in a serial machine. The results reported for parallel Tabu 
corresponds to the serial implementation. Current work 
focuses on the parameter estimation of the image 
exploiting the notions of Tabu search and hence design an 
unsupervised scheme. 
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            (a)                            (b)                               (c) 
 Original (64x64)     Noisy(SNR=15dB)         Segmented  
 Fig.1 : Segmentation of synthetic image of four class 
 

 
 
Fig.2 : Energy plot for the algorithms corresponding to    
            Fig.1. 
 

                  
   (a) Original (128x128)              (b) Noisy (SNR =15dB)                  

 

 
                                  (c) Segmented 
Fig.3 : Segmentation of synthetic image of three class 
 



               
 (a) Original (128x128)               (b) Noisy (SNR=20dB) 

 
                              (c) Segmented 
Fig.4 : Segmentation of real image 
 

 
Fig.5 : Energy plot for the algorithms corresponding to  
            Fig.4 
 

                  
(a) Original (128x128)                   (b) Noisy (SNR=30dB) 

 

 
                           (c) Segmented 
Fig.6 : Segmentation of real image. 
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