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Abstract—Hardware implementation for faster real-time sig-
nal processing in multiple-input multiple-output (MIMO) radar
beamforming by estimating direction of arrival (DOA) using
multiple signal classification (MUSIC) is attractive. The above
subspace-based method works with a basic principle of eigenvalue
decomposition and is found suitable for application-specific in-
tegrated circuit (ASIC), field-programmable gate array (FPGA).
In that regard, the cyclic Jacobi method is used for computing
eigenvalues and eigenvectors, by orthonormal plane rotations in
accomplishing eigenvalue decomposition. However, the fasterness
and foremost, the accuracy of the DOA estimator realized in
such above hardware depends on the involved number of antenna
elements in an array, the number of snapshots, and the signal-to-
noise ratio. Therefore, the comparative study on DOA estimation
error on the above mentioned parameters in MUSIC and QR-
based algorithms is presented in this paper.

Index Terms—MIMO, DOA, MUSIC

I. INTRODUCTION

Multiple input multiple output (MIMO) radar [1], in which
antenna elements emit multiple independent waveforms at
the same time and multiple antennas receive the echo, has
drawn attention of researchers in recent years. MIMO radar
beamforming involves direction of arrival (DOA) estimation
and that can be accomplished using the real-time array signal
processing techniques available for applying to radar, sonar,
acoustics, and communication systems [2]. However, the esti-
mation of DOA precisely for obtaining accurate beamforma-
tion in an antenna array prefers to use high resolution tech-
niques that are realizable in hardwares, field-programmable
gate array (FPGA) and application specific integrated circuit
(ASIC) for faster applications of MIMO radar.

The methods of estimating DOA of signals using an antenna
array can be categorized as conventional and subspace based
methods. Conventional methods such as Bartlett and Capon
[3] rely on the physical size of the array aperture, resulting
in low resolution and precision. Subspace approaches such as
multiple signal classification (MUSIC) [4], and estimation of
signal parameters via rotational invariance technique (ESPRIT)
[5], provide accurate signal direction and are not limited by the
physical size of the array aperture, resulting in high resolution.

Attractively, the MUSIC is found to be promising in hard-
ware realization as reported in [6], [7] for various real-time
applications. Jacobi algorithm [8], is one of the methods

for eigenvalue decomposition (EVD) is used in the above
mentioned hardware.

This Jacobi approach employs the Coordinate Rotation
Digital Computer (CORDIC) algorithm [9] in hardware im-
plementation for planar rotations. In [10], the approximate
Jacobi approach is used, which requires one iteration of full
CORDIC. In [11], implemention is done for a scaling free
micro rotation CORDIC (µ- CORDIC) processor that executes
a specified number of CORDIC iterations. Hence, the speed
of the EVD processor is governed by the CORDIC structure
as is given in [12]. It can further be optimised, so that the
EVD processor provides superior performance which can be
quantified as estimation accuracy, the use of number of FPGA
resources, and compution time.

Interestingly, the QR decompostion based DOA estimation
similar to the search method of MUSIC is reported in [13]
which is attarctive in real-time FPGA implementation. Without
compromising with estimation accuracy, a required number of
antenna arrays, snapshots and sufficient amount of signal-to-
noise (SNR) ratio are often required in effective operation of a
real-time system after the respective hardware implementation.
The efficiency of these approaches is also dependent on the
array geometry and signal reception environments [14].

In this paper, a uniform linear array (ULA) is considered
with an assumption that received signals are uncorrelated. The
performances of MUSIC with cyclic Jacobi approach for EVD
and QR decomposition based approach which are suitable
for hardware implementation and hence, are examined. The
comparative study on average error in DOA estimation for
varying number of antenna elements, snapshots and various
SNR values is done and the corresponding results are pre-
sented.

The remainder of the paper is arranged as follows. Section
II introduces signal model for the ULA, Section III describes
the DOA estimation algorithms briefly. Simulation results are
discussed in Section IV and finally, in Section V conclusion
is drawn.

II. SIGNAL MODEL

MIMO radar having M narrow band receive antennas which
form a ULA as is shown in Fig.1. Spacing between elements is
d which equals half of the wavelength (λ/2) of the transmitted



Fig. 1. Uniform linear array

signal. If x′
1(t) is the signal received by the 1st element of

the array, the ith array element receives the signal x′
i(t) with

a phase delay of

∆i = (i− 1)φk(θ),with φk(θ) =
2πdsin(θk)

λ
,

∀i = 1, 2, 3........M
(1)

Here φk(θ) is the spatial frequency of the incidence signal
with an arrival angle θ of the kth signal source and the tth

snapshot as received signal at ith array element is

x′
i(t) = ej∆isk(t) (2)

sk(t) = e−jωkt, ∀ k = 1, 2, · · · , L and t = 1, 2, · · · , N (3)

where ωk is the angular frequency of the source signal
sk(t). The signal which comprises L number of frequency
components as given in (3) is received at the ith array element
and is given by

xi(t) =

L∑
k=1

sk(t)e
j(i−1)φk(θ) + wi(t), (4)

where wi(t) is the white Gaussian noise with zero mean and
σ2 variance. Defining Steering vector matrix as A with steering
vectors a(θk) as its columns can be given as

A = [a(θ1), a(θ2), a(θ3), ..................a(θL)] (5)

a(θk) = [1, ejφk(θ), e2jφk(θ)................e(M−1)jφk(θ)]T (6)

where T represents transpose operation. Therefore, the re-
ceived signal can be represented for tth snapshot as

X(t) = AS(t) +W (t) (7)

where

X(t) = [x1(t), x2(t), x3(t).....................xM (t)]T (8)

S(t) = [s1(t), s2(t), s3(t)........................sL(t)]
T (9)

W (t) = [w1(t), w2(t), w3(t).....................wM (t)]T (10)

The signal covariance matrix of X(t) can be given by the
expression

Rx = E[X(t)XH(t)]

=

L∑
k=1

E[|sk(t)|2]a(θk)aH(θk) + σ2I
(11)

where H , E[.] represent Hermitian and expectation operations
respectively. I is an identity matrix of size M × M and |.|
represents absolute value of signal.

III. DESCRIPTION OF ALGORITHMS

In this section, we briefly describe the DOA estimation
methods, QR decompositon, the subspace-based method MU-
SIC, and also MUSIC with cyclic Jacobi method which are
suitable for DOA estimator realization in FPGA. All these
methods use signal covariance matrix given in section II.

A. DOA estimation by QR decompositon

The QR decomposition [15], [16], decomposes a matrix into
orthogonal matrix Q and upper triangular matrix R. With the
matrix Q and searching technique [17], the QR decomposition
of Rx may be represented as

Rx = QR =
[
Qs Qn

] [RL

O

]
(12)

The matrices Q, and R can be used to extract information
about incident source DOAs. The column vectors of signal
and noise space are given by Qs = [q(1), q(2), q(3).....q(L)]
and Qn = [q(L+1), q(L+2), q(L+3), .....q(M)] respectively.
RL and O represent signal space matrix of size (L×M) and
null matrix of size (M −L)×M . Multiplying (12) with QH

gives [
QH

s Rx

QH
n Rx

]
=

[
RL

O

]
(13)

From (13) we can write

QH
n ASAH = O (14)

which indicates that M − L column vectors of Qn are
perpendicular to column vectors of A and span the same
space, i.e, the noise space is orthogonal to the steering vectors
corresponding to the DOAs. The DOAs can be detected by
looking for the lowest peaks of ||QH

n A(θ)|| or by locating the
peaks of spatial spectrum given by

P (θ) = 1/AH(θ)QH
n QnA(θ) (15)

B. DOA estimation using MUSIC Algorithm

The MUSIC algorithm provides a spectrum for a spatial
angle predicted on the premise that steering vector of the
received signal is orthogonal to the noise subspace. The
signal’s DOA is then determined by locating the peak value
in the estimated spectrum. The EVD of covariance matrix, Rx

given in (11) can be given as

Rx = Js ∧s Js
H + σ2JnJn

H (16)

where Js and Jn are signal subspace and noise subspace
eigenvectors and ∧s is the diagonal matrix of eigenvalues
(µ1 ≥ µ2...... ≥ µL). From [4], the spatial spectrum search
function is given by

P (θ) =
1∑M

i=L+1|JH
i a(θ)|2

(17)



C. MUSIC with cyclic Jacobi method

The cyclic Jacobi method computes eigenvalues and eigen-
vectors by multiplying both sides of Rx of M×M dimension
with the orthonormal matrices and applying a sequence of
orthonormal rotations. The orthogonal matrix E(p, q, θ) can
be given by

1 . . . 0 . . . 0 . . . 0
...

...
...

...
0 . . . cos (θ) . . . sin (θ) . . . 0
...

...
...

...
0 . . . − sin (θ) . . . cos (θ) . . . 0
...

...
...

...
0 . . . 0 . . . 0 . . . 1


p

q
(18)

p q

The planar rotation iterative procedure reduces the covariance
matrix’s (p,q) and (q,p) entries to zero. The off diagonal
element of the covariance matrix, rpq is selected by the cyclic
Jacobi method sequentially in either row-by-row or column-
by-column fashions. For example, if M = 4, cycling for cyclic-
by-row as follows

(p, q) = (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)..... (19)

From [18], we can obtain the optimal angle for orthogonal
rotations as

θopt =
1

2
tan−1(

2rpq
rpp − rqq

) (20)

With the above optimum angle, the sequence of planar rota-
tions can be given by

R1
x = ET

1 RxE1 (21)
...

Rz
x = E′TRz−1

x E′ (22)

where E′T = E1
TE2

T · · ·Ez
T and E′ = E1E2 · · ·Ez

T

Here z denotes the number of iterations, and after z itera-
tions, Rz

x becomes almost diagonal, and these diagonal values
are the approximations to the eigenvalues, and corresponding
eigenvectors are the columns of E′. The complex covariance
matrix and complex search vector are transformed respectively
into a real matrix and real search vector using the unitary
transformation technique [19]. The unitary matrix is

U =
1√
2

[
I J
jII −jII

]
· · ·when M is even (23)

where II is the matrix with all unities on anti-diagonal
elements and zeros elsewhere, and both matrices are of size
M/2×M/2.

U =
1√
2

 I 0 II

0T
√
2 0T

jII 0 −jI

 · · ·when M is odd (24)

Here I , II are of size (M−1)/2×(M−1)/2 and 0 represents
a M/2 × 1 zero vector. With the unitary matrices (23), (24),

by performing URxU
H , and considering the real part of the

above matrix, the eigenvalues and eigenvectors are computed.
Let the computed eigenvalues of the real part of the

URxU
H matrix are µ1 ⩾ µ2 ⩾ µ3 · · · · · · ⩾ µM and the cor-

responding eigenvectors are {e1, e2, e3. . . . . . . . . ..eM}. To es-
timate θk, k =1,2. . . .L, search function is

P (θ) =
1∑M

i=L+1|eTi a′(θ)|
2 (25)

where
a′(θ) = Ue

−j(M−1)φ(θ)
2 a(θ) (26)

IV. RESULTS AND DISCUSSION

The simulations were done in MATLAB by considering
ULA, and three signal sources at −70◦,−30◦ and 50◦.

This simulation looks at three possibilities, each with one
parameter changing while the others remain constant. The
detailed estimates of three angles for various values of M ,
N and SNR are given in Table I, II and III respectively.

Fig.2 shows that the MUSIC with cyclic Jacobi method
narrows the angular spectrum beam width quite effectively.
The performance of the above methods is examined in terms
of average error of DOA of the signal as given by

Average error =
1

L

∑L

i=1
(θactuali − θesti ) (27)

where θactual and θest are respectively, the true DOA and
estimate of that.

The average error expressed in (27) is computed for the
results illustrated in above mentioned Tables I, II and III and
for summarizing, the figures are given in Fig.4, Fig.6 and
Fig.8.

Case 1: Varying number of array elements, M .
In Fig.3., the peaks at lower number of array elements are

not quite precise. As the array grows in size, the peaks become
more precise and closely correspond to the angles of arrival.
As a result, the angular spectral beam width narrows and the

Fig. 2. Angular spectrum



TABLE I
VARIATION WITH NUMBER OF ANTENNA ELEMENTS M

DOA (deg) = -70 DOA (deg) = -30 DOA (deg) = 50 Average error (deg)
M QR MUSIC-

eig
MUSIC-
Jacobi QR MUSIC-

eig
MUSIC-
Jacobi QR MUSIC-

eig
MUSIC-
Jacobi QR MUSIC-

eig
MUSIC-
Jacobi

6 -70.0317 -70.0396 -70.0363 -30.0357 -30.0394 -30.0385 49.9628 49.9727 49.9740 0.0349 0.0354 0.0336
10 -69.9787 -69.9818 -69.9811 -29.9962 -29.9978 -29.9977 49.9941 49.9958 49.9954 0.0103 0.0086 0.0082
20 -69.9969 -69.9979 -69.9978 -30.0039 -30.0040 -30.0040 49.9993 49.9994 49.9993 0.0026 0.0023 0.0022
50 -70.0013 -70.0014 -70.0014 -29.9999 -29.9999 -29.9998 49.9995 49.9996 49.9996 0.0006 0.0006 0.0006
70 -69.9994 -69.9996 -69.9996 -29.9996 -29.9996 -29.9996 50.0008 50.0009 50.0008 0.0006 0.0005 0.0005

100 -69.9943 -69.9992 -69.9992 -30.0004 -30.0004 -30.0004 50.0005 50.0005 50.0005 0.0006 0.0005 0.0005

TABLE II
VARIATION WITH NUMBER OF SNAPSHOTS N

DOA (deg) = -70 DOA (deg) = -30 DOA (deg) = 50 Average error (deg)
N QR MUSIC-

eig
MUSIC-
Jacobi QR MUSIC-

eig
MUSIC-
Jacobi QR MUSIC-

eig
MUSIC-
Jacobi QR MUSIC-

eig
MUSIC-
Jacobi

50 -70.0317 -70.0396 -70.0363 -30.0357 -30.0394 -30.0385 49.9628 49.9727 49.9740 0.0349 0.0351 0.0336
100 -70.0554 -70.0531 -70.0486 -30.0278 -30.0312 -30.0320 49.9815 49.9881 49.9853 0.0339 0.0323 0.0318
200 -69.9769 -69.9769 -69.9779 -29.9904 -29.9948 -29.9948 49.9598 49.9714 49.9717 0.0243 0.0190 0.0185
500 -70.0145 -70.0160 -70.0159 -29.9936 -29.9969 -29.9969 49.9890 49.9976 49.9829 0.0106 0.0072 0.0072

1000 -70.0226 -69.9992 -69.9992 -29.9914 -29.9947 -29.9947 49.9829 50.0191 50.0190 0.0101 0.0071 0.0070

TABLE III
VARIATION WITH SNR

DOA (deg) = -70 DOA (deg) = -30 DOA (deg) = 50 Average error (deg)
SNR (dB) QR MUSIC-

eig
MUSIC-
Jacobi QR MUSIC-

eig
MUSIC-
Jacobi QR MUSIC-

eig
MUSIC-
Jacobi QR MUSIC-

eig
MUSIC-
Jacobi

-10 -72.5018 -69.1500 -69.0995 -29.6912 -31.4331 -31.4331 47.3304 48.2750 48.4511 1.8267 1.3660 1.2942
-5 -70.4795 -70.0041 -70.0520 -29.6919 -30.7144 -30.7144 48.2894 49.2439 49.3291 0.8327 0.4915 0.4791
5 -69.9433 -70.1633 -70.1583 -30.0985 -30.2172 -30.2172 49.5651 49.8225 49.8367 0.1967 0.1860 0.1796
10 -70.0311 -70.1099 -70.1031 -30.0865 -30.1218 -30.1218 49.8154 49.9074 49.9133 0.1007 0.1081 0.1039
20 -70.0317 -70.0396 -70.0363 -30.0357 -30.0385 -30.0385 49.9628 49.9727 49.9740 0.0349 0.0351 0.0336

Fig. 3. Variation with number of elements M = 6, 10, 20, 50, 70, 100

resolution improves, making DOA extraction in MUSIC easier.
Fig.4. shows the variation of average error with the increase
of number of array elements. The average error for MUSIC
is substantially decreased with the increase of the number of
array elements.

Fig. 4. Average error versus number of array elements M

Case 2: Varying number of snapshots, N .
When the number of snapshots increased, the resolution

improved, resulting in prominent peaks and the array element’s
direction improved as illustrated in Fig.5. and also the average
error decreases with increase in the number of snapshots which
can be seen in Fig.6.



Fig. 5. Variation with snapshots N = 50, 100, 200, 500, 1000

Fig. 6. Average error versus number of snapshots N

Case 3: Varying SNR For a low SNR values, the spikes
indicating the arrival of a signal from a certain direction are
tiny and the response is flat which can be shown in Fig.7. As
a result, determining the angles of arrival is challenging. How-
ever, when the SNR value is higher, the resolution improves
noticeably, and the spikes become more prominent. This is
due to the fact that when the SNR decreases, the difference
between the eigenvalues associated with the signal and those
associated with the noise decreases, causing the peaks to de-
crease with respect to the noise levels. The difference between
the two sets of eigenvalues grows as the SNR increases, and
the peaks get higher in comparison to the noise levels and the
average error decreases as is depticted in Fig.8.

V. CONCLUSION

In this work, subspace and QR decomposition based DOA
estimation accuracy have been examined. Moreover, MUSIC
with cyclic Jacobi method of eigenvalue decomposition is
compared with MUSIC which uses in-build eig function of
MATLAB. The effectiveness of the DOA estimation algo-

Fig. 7. Variation with SNR (dB) = -10, -5, 5, 10, 20

Fig. 8. Average error versus SNR

rithms is evaluated by means of computing average error for
various values of M , N and SNR. The simulation results
indicated that the average error for MUSIC with in-build eig
function is better than QR decompositon method, further-
more, the MUSIC algorithm realization with cyclic Jacobi
method gives better satisfactory performace than the earlier
two and hence, FPGA implemenation of MUSIC is promising
in variety of applications, including accoustics, sonar, and
communication systems.
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