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Abstract 

 
The rapid growth of todays IT demands reflects the increased use of cloud data centers. 

Reducing computational power consumption in cloud data center is one of the challenging 

research issues in the current era. Power consumption is directly proportional to a number of 

resources assigned to tasks. So, the power consumption can be reduced by a demotivating 

number of resources assigned to serve the task. In this paper, we have studied the energy 

consumption in cloud environment based on varieties of services and achieved the provisions 

to promote green cloud computing. This will help to preserve overall energy consumption of 

the system. Task allocation in the cloud computing environment is a well-known problem, and 

through this problem, we can facilitate green cloud computing. We have proposed an adaptive 

task allocation algorithm for the heterogeneous cloud environment. We applied the proposed 

technique to minimize the makespan of the Cloud system and reduce the energy consumption. 

We have evaluated the proposed algorithm in CloudSim simulation environment and 

simulation results show that our proposed algorithm is energy efficient in cloud environment 

compared to other existing techniques. 
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1. Introduction 

Cloud computing has been developed as one of the creative platforms which give dependable, 

virtualized and adaptable cloud resources over the Internet. To utilize these resources, the 

cloud customers do not require any hardware or software infrastructure. They can lease the 

cloud resources on demand from anyplace on the planet just by spending for that utilized 

resources like electricity supply. The cloud user got these resources from the cloud service 

providers (CSPs) through laptops, PCs, mobile devices, etc. The CSP offers membership to 

the clients for different services like infrastructure as a service (IaaS), platform as a service 

(PaaS) and software as a service (SaaS). 
 

Scheduling or allocation is the procedure of choosing how to submit resources to a variety 

of conceivable tasks. This allocation of resources is a basic and critical job for any business 

perspectives. The resource allocation in the cloud environment is carried out by the CSP. If 

the cloud resources are scheduled properly, then the effectiveness and performance of the 

system will be enhanced [1, 2]. Therefore, resource scheduling strikes a significant role in a 

system for getting successful and productive results. It increases throughput and also balances 

the computing load to avoid overloading and under-loading [3]. This scheduling or allocation 

problem is a well-known NP-Complete problem [4]. Therefore, suboptimal solutions are 

proposed for the allocation problem. Various researchers work on this scheduling problem by 

considering different objectives like energy consumption, resource utilization, makespan, load 

balancing, guaranteeing Quality of Service (QoS), enhancing throughput and Service Level 

Agreement (SLA) completion [1, 2, 3, 5, 6]. Here, in this work, makespan minimization is 

taken as primary objective along with the energy consumption of the system. Three crucial 

factors affect the task allocation in the cloud environments [7]. Those are waiting time in the 

task queue, execution time, and the relative performance of the off-premise cloud compared 

to the on-premises machines. The users could achieve the optimal turnaround time if they 

know the waiting time in the task queue, and the execution time in the cloud environment. 

However, this knowledge for the user is not available in advance. The problem of this work 

can be expressed as follows. Given a set of tasks, a set of virtual machines (VMs), and an 

arrangement of evaluations values in the form of an expected time to compute (ETC) matrix 

to demonstrate how well every VM can perform each task, such that the aggregate evaluations 

values are maximized [8, 19]. An ETC matrix has the expected execution time of all task one 

by one in different VMs. This ETC matrix introduces the heterogeneity of tasks as well as the 

resources (i.e., VMs). A single task can be executed in different VMs with different execution 

time which represents machine heterogeneity. Similarly, a single VM takes a different amount 

of time to execute different tasks that represent task heterogeneity. 

 

Energy-efficient data centers address green cloud computing system. Green cloud is a new 

terminology in the computing world in which consolidation of user requests or cloud resources 

plays a significant role. The green cloud system has various distinct components such as the 

energy consumed for computation, communication, the physical infrastructure of a data center, 

etc. To optimize the energy consumption of a cloud data center, either one can go for the 

allocation of user requests (tasks) to the existing finite set of VMs or can for the distribution 

of cloud resources (VMs) to a finite set of physical hosts. In this work, the mapping of a batch 

of tasks to VMs is performed. Among the three service models, the IaaS has a tendency to give 

a more fertile ground to reduce makespan as well as energy by task allocation. 

 



Definition 1 (Makespan): Makespan is the maximum time required to complete a finite 

number of tasks by a VM among all virtual machines after allocation of tasks to VMs. 

 

Definition 2 (Server Availability): A physical server is available when the server has 

sufficient computing resources to host the required number of virtual machines. 

  

Contributions: This work has the following key contributions: 

 It presented a system model that includes a host model, virtual machine model, and 

task model. 

 It presented an adaptive allocation of tasks to virtual machines that adjust the 

execution time of tasks dynamically. 

 It evaluated the effect of different scenarios for makespan and energy consumption of 

the cloud system.  

 It provided a comparative analysis among our algorithm, Baseline (Random) 

algorithm, and Round-Robin algorithm. 

 

The remaining work is organized as follows: Section 2 discusses literature that focused on 

this problem and its solution. Section 3 discusses the problem statement along with some 

assumptions required for the system. The next section describes system model including task 

and resource model. Section 5 presents the proposed algorithm followed by a hand-tracing 

example. In Section 6, the evaluation of the algorithm is illustrated. Finally, we conclude our 

work with the future scope. 

2. Related Work 

Research in the area of cloud computing attracted greater attention in the recent times 

due to the huge capabilities in the IT-field. Task allocation in the cloud environment is one of 

the important research problems in order to optimize time, energy, cost, etc. [9]. In [1], Rimal 

and Maier have proposed an approach for the scheduling the workflow to minimize makespan, 

the task execution costs, and to use the idle cloud resources effectively. They have only 

considered the CPU-intensive task and dealt with both structured and unstructured workflow 

scheduling. They have compared their approach with the FCFS, EAST (Extensible Argonne 

Scheduling System) backfilling, and minimum completion time scheduling policies. 

 

Several states correspond to the different energy consumptions of the CPU, main 

memory, and secondary storage. From the recent work, it is studied that most processors 

support running state, an idle state, sleep state, and an off state. In [12], Mills-Tettey et al. have 

explained the allocation problem with changing costs using bipartite graph where the edge cost 

varies. For the solution of their problem, they have used a dynamic Hungarian algorithm, and 

they have presented correctness proofs of the algorithm including its efficiency. In [13], a near-

optimal solution of task assignment problem is proposed to maximize the cumulative profit or 

to reduce the energy cost of the cloud data center. They have compared their work with the 

random algorithm in the cloud environment. In [14], T. Penner, et al. have presented an 

algorithm for task distribution that dynamically adjusts the costs based on the previous 

allocation. The goal is to provide load balancing and collocating task executions. 

 

Beloglazov et al. [2] proposed an architectural framework and principles for green 

Cloud computing. Their method includes architectural principles for energy-efficient 



management of Clouds and energy-efficient resource allocation policies. In their work, the 

authors have validated their approach by a performance evaluation study using the CloudSim 

toolkit. A collaboration of optimization scheduling and estimation techniques with the power 

consumption in a cloud environment is shown in [3]. This technique improves the performance 

for green cloud computing. A randomized algorithm is proposed for task allocation [15] by 

reducing both time and space complexity. A middle-ware is proposed for performing a hybrid 

simulation of large-scale critical systems [16]. This middle-ware allows a multi-objective 

optimization approach to optimize the simulation task allocation on a private cloud. 

 

To improve the performance of the cloud system and also to conserve energy 

consumption of the data centers, we propose an algorithm for the allocation of cloud tasks to 

the cloud resources. We found that the resource allocation using the Round-Robin and 

Baseline (Random allocation) algorithms are well accepted by a large number of researchers 

[20-23]. Hence, we have compared the performance of our proposed technique with these 

standard algorithms by simulation. The random-based task allocation algorithm assigns tasks 

to VMs on a random basis without any constraints. 

3. Problem Statement 

The assignment problem of a huge number of tasks to a finite number of VMs in the 

cloud environment is addressed as task allocation problem. There are n number of tasks 

},...,,{ 21 nTTT and m number of VMs in the cloud system. The assignment of these n tasks to 

m VMs should be efficient so that the makespan, as well as the energy consumption of the 

system, are optimized. Makespan of the system is calculated from the Execution Time of 

Virtual machine (ETV) set. 

Makespan (M) = M ax(ETVi) (1) 
Here, ETVi represents the execution time of ith virtual machine. Our objective is to Minimize 

M as in equation (1). Another important performance parameter is energy consumption of the 

cloud system to execute a  finite number of heterogeneous tasks.  

 

The energy consumption of the system is calculated by adding the energy consumption of 

individual VMs using equation (2). 

 
𝐸𝑛𝑒𝑟𝑔𝑦 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 (𝐸) =  ∑ 𝐸𝑖

𝑚
𝑖=1    (2) 

 

Here, Ei is the energy consumption of ith VM, 1 ≤ i ≤ m. A virtual machine can be in one state, 

i.e., active or idle. So, to calculate the energy consumption of a VM, both active and idle state 

energy consumption are added. The idle state time of a VM is calculated by subtracting the 

active state time from the makespan of the system. Ai Joules/Million Instruction (J/MI) is the 

energy consumption of ith VM in an active state, and Ii J/MI is in an idle state. The energy 

consumption of a VM in idle state (Ii) is 60% of Ai [5]. The energy consumption of a virtual 

machine mainly depends on the speed (Million Instruction Per Second (MIPS)) of the VM as 

in equation (3) adopted from [10, 11] and (4). 
 

𝐴𝑖 =  10−8 × (𝑀𝐼𝑃𝑆𝑖)
2  𝐽𝑜𝑢𝑙𝑒𝑠/𝑀𝑖𝑙𝑙𝑖𝑜𝑛 𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛   (3) 

 

𝐼𝑖 =  0.6 × 𝐴𝑖    𝐽𝑜𝑢𝑙𝑒𝑠/𝑀𝑖𝑙𝑙𝑖𝑜𝑛 𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛    (4) 



Energy consumption of all VMs is required to calculate the total energy consumption of the 

system (E) by using equation (5). 
𝐸i = 𝐸𝑇𝑉𝑖 × 𝐴𝑖 + (𝑀 − 𝐸𝑇𝑉𝑖) × 𝐼𝑖     (5) 

 
Fig. 1. Two bipartite graphs with 8 tasks and 4 VMs. 

 
 

Table 1: ETC matrix of 8 tasks & 4 VMs. 

ETCij V1 V2 V3 V4 

T1 7 9 6 9 

T2 9 8 5 5 

T3 4 3 7 6 

T4 6 6 ∞ 7 

T5 4 5 2 3 

T6 8 9 5 7 

T7 15 14 14 15 

T8 5 7 ∞ 8 

 

Let say G = {T ; V ; E} be a bipartite graph as shown in the Fig. 1, T the set of tasks, V the set 

of VMs and E the set of edges that represent the allocation. 

It assumes a matrix edge cost, ET Cij , 0 ≤  i ≤ n, 0 ≤  j ≤ m, where n is the total number of 

tasks and m is the total number of VMs. Missing edge has a higher ETC value, i.e., infinity as 

illustrated in Table 1. If a task can not be assigned to a VM, then we make the corresponding 

ETC value as infinity (∞). 

 

3.1. Assumptions 

Virtualization technology supports the creation of multiple VMs on any of the possible 

host. The workload submitted to the cloud is considered to be in the form of tasks. The 

scheduler allocates the tasks to VMs of different hosts for execution. In order to solve the task 

allocation problem in the cloud environment, we have considered the following assumptions.  

 Each task is assigned to a single virtual machine.  

 Tasks cannot be preempted once they begin to execute on a VM. 

 When a VM executing a task, there is no priority distributions between the tasks 

with the VM. 

 A VM cannot remain idle when the tasks are in the waiting queue of the VM.  

 Each VM has a single core.  

 There is no failure of VM during execution of tasks.  

 The tasks are independent in nature. 



4. System Model 

In this section, we present a scheduling model for a Cloud data center along with the 

task model and VM model in a Cloud data center. The scheduling model of a cloud data center 

where the CSP schedule the task of users to the cloud resources is shown in Fig. 2. Here, we 

have an assumption that the cloud system has enough resources to provide services to the cloud 

user. The cloud users (User1, User2, …, Usern) submit their tasks to the CSP and all tasks (T1, 

T2, …, Tn) are in a task queue. The task classifier classifies all tasks into a CPU-bound task 

set, urgent CPU-bound task set, I/O-bound task set, urgent I/O-bound task set, and all classified 

tasks are submitted to the respective task queue. CPU-bound tasks and urgent CPU-bound 

tasks are submitted to the SCHEDULER1, and the tasks are allocated among x number of 

CPU-bound virtual machines (CV1, CV2, …, CVx). Similarly, all I/O-bound tasks and urgent 

I/O-bound tasks are submitted to the SCHEDULER2, and the tasks are allocated among y 

number of I/O-bound virtual machines (IV1, IV2, …, IVy). Both schedulers schedule the urgent 

tasks first, and if the urgent tasks queue is empty, then they assign regular CPU-bound and 

I/O-bound tasks to the respective VMs. 

 

4.1. Task Model 

 In the cloud environment, a large number of cloud users submit their independent tasks 

to the cloud service provider and access services from the cloud without understanding the 

system infrastructure. The tasks are heterogeneous in terms of length of the tasks and resource 

requirement of the tasks. There are n (finite) number of tasks and the set is T = {T1, T2, …, Tn}. 

Each tasks Ti, 1 ≤ i ≤ n  has 5 tuples i.e., Ti = {Wi, CPUi, Mi, λi, Ri}, where Wi is the workload 

of service Ti in terms of MI, CPUi is the CPU time required for the service Ti, Mi is the main 

memory requirement for the service Ti, λi is the bandwidth requirement of service Ti, and Ri 

represents the task-type. Ri value is 0 if Ti CPU-intensive, 1 if Ti Urgent CPU-intensive, 2 if Ti 

IO-intensive, and 3 if Ti Urgent IO-intensive. 

 
Fig. 2: An Adaptive Scheduling Model for Cloud System. 

 

4.1.1. Resource Model 

A cloud system can be developed from a single data center or from multiple data centers 

according to the resource requirement. To consider a general cloud system model, the data 

center set D has p number of data centers, i.e., D = {D1, D2, …, Dp}. Each data center has 

numerous hosts (and the set of hosts on ith data center is Hi = {Hi1, Hi2, …, Hi|Hi|}) in the cloud 

environment. Each host Hij , 1 ≤ i ≤ p, 1 ≤  j ≤ |H| can be modeled as 6 tuples, i.e., Hij ={PEij, 

Sij, Mij, SSij, λij, VMMij}, where:  



 Hij represents jth host of ith data center.  

 PEij is the number of processing elements or cores of Hij.  

 Sij is the processing speed of Hij in terms of MIPS.  

 Mij is the host main memory size of Hij.  

 SSij is the secondary memory size of Hij.  

 λij is the total bandwidth provided to Hij.  

 VMMij is the Virtual Machine Manager (VMM) running on the host Hij. 

 

One of the major advantages of cloud system is virtualization of cloud resources. This 

virtualization mechanism provides flexibility of partitioning the resources of the host into 

various virtual machines. A VMM, which is running on a host, is mainly responsible for the 

maintenance of all VMs on that host. Each host Hij has finite number of virtual machines (and 

the set of VMs on jth host of ith data center is 𝑉𝑖𝑗 = {𝑉𝑖𝑗,
1  𝑉𝑖𝑗,   

2 … , 𝑉𝑖𝑗 
𝑘 }). Each VM has 5 tuples, 

i.e., 𝑉𝑖𝑗
𝑘 = {𝑃𝐸𝑖𝑗,   

𝑘 𝑆𝑖𝑗,   
𝑘 𝑀𝑖𝑗,   

𝑘 𝑆𝑆𝑖𝑗,   
𝑘 𝜆𝑖𝑗

𝑘 }. 

 𝑉𝑖𝑗
𝑘 represents kth VM running on jth host of ith data center.  

 𝑃𝐸𝑖𝑗
𝑘  is the number of processing elements or cores of 𝑉𝑖𝑗

𝑘.  

 𝑆𝑖𝑗
𝑘   is the processing speed of 𝑉𝑖𝑗

𝑘 in terms of MIPS.  

 𝑀𝑖𝑗
𝑘  is the main memory size of 𝑉𝑖𝑗

𝑘.  

 𝑆𝑆𝑖𝑗
𝑘  is the secondary memory size of 𝑉𝑖𝑗

𝑘.  

 𝜆𝑖𝑗
𝑘   is the total bandwidth provided to 𝑉𝑖𝑗

𝑘. 

 

Algorithm 1 Adaptive Task Allocation Algorithm (ATAA) 

Input: ETC matrix, DAG graphs. 

Output: ET: Execution time of all VMs. 

1.  B = Batch Size of Tasks (= number of VMs). 

2.  NT = Total number of tasks. 

3.  ET = 0 

4.  for i = 1 to NT/B do 

5.         BETC = [(i – 1)  B + 1] to [i  B] rows of ETC 

6.         for j = 1 to B do 

7.                for k = 1 to B do 

8.                       METC[k, j] = BETC[k, j] + ET[j] 

9.                end for 

10.       end for 

11.       R_METC = RowUpdate(METC). 

12.       C_METC = ColumnUpdate(R_METC). 

13.       AMETC = Assigned_METC(C_METC). 

14.       if each row of AMETC has an assigned 0 then 

15.              Allocate tasks to the corresponding VM. 

16.              ET = ET + METC value of the allocation. 

17.              Continue for the next (i + 1)th iteration. 

18.       else 

19.              C_METC = Update_METC(C_METC) 

20.              Goto Step 13. 

21.      end if 

22. end for 



5. Proposed Task Allocation Algorithm 

This section discusses the details of the proposed scheduling algorithm, and the 

purpose is to reduce the overall energy consumption by minimizing the makespan of the 

system. For Algorithm 1: Adaptive Task Allocation Algorithm (ATAA), the ETC matrix of all 

tasks of a queue is provided as input. There are four queues for the task because of four type 

of tasks as shown in Fig. 2. Therefore, the ATAA algorithm is applied for all four-task queues. 

The ETC matrix has the completion time of tasks on all virtual machines according to the type 

of tasks. The output of ATAA algorithm is ET vector, which has time required by all VMs. 

Initially, the time required by all VMs, ET is set to zero. The tasks are allocated to the cloud 

resources (VMs) batch-wise. Batch size of the tasks is same as the total number of VMs. To 

allocate one batch of tasks, a portion of ETC matrix is required, i.e., BETC. This BETC is 

modified by adding the previous execution time of corresponding VM and form the modified 

ETC (METC) matrix. In RowUpdate, the smallest element of each row is subtracted from the 

elements of that row. In ColumnUpdate, the smallest element of each column is subtracted 

from the elements of that column. Then, the Assigned METC subroutine is called after which 

the allocation of tasks is determined by using the marking procedure. 

 

Algorithm 2 Assigned_METC(C_METC) 

Input: C_METC. 

Output: AMETC: After assignment on C_METC. 

1.  for each row do 

2.         if a single unmarked 0 is there then 

3.                Mark the 0 as assigned. 

4.               Ignore the elements of the corresponding row and 

column of the assigned element in step 3. 

5.         end if 

6.  end for 

7. for each column do 

8.        if a single unmarked 0 is there then 

9.               Mark the 0 assigned. 

10.             Ignore the elements of the corresponding row and 

column of the assigned element in step 9. 

11.      end if 

12. end for 

13. Return AMETC. 

 

The marking will be done for the elements row-wise first and if required then go for 

column-wise. If a single 0 is present in a row, then mark that 0 as gray color and strikes all 0's 

across the corresponding column. Similarly, for each column, we follow the same marking 

procedure as performed for the row. If the allocation is successful, then the ET vector is 

updated according to the allocation of a batch of tasks. If the allocation is not possible (or the 

step 14 of ATAA algorithm is not satisfied), then Update METC subroutine is called which 

updates the C_METC matrix by using ticking procedure. Here, we tick all unassigned rows 

(i.e., the row with no marked zeros). If the ticked rows have a 0, then tick the corresponding 

columns, and if the ticked column has an assignment (i.e., marked zeros), then tick the 

corresponding rows. This ticking procedure will repeatedly be continued until no more ticking 

is possible. After that, lines are to be drawn through unticked rows and ticked columns. The 

smallest number (θ) of the matrix that has no lines passing through is subtracted from the 



elements of the matrix that have one line passing through and add the θ value to the matrix 

elements that have two lines passing through. The updated METC matrix is returned to the 

Algorithm 1, where again Algorithm 2 is called for the marking procedure. Then, again step 

4: Assigned_METC subroutine is called and repeat this procedure till we have a successful 

allocation. 

  

If the total number of tasks is n and the total number of VMs is m, then the loop started 

in step-4 of Algorithm-1 will run for n=m times.  Their inner loops, as well as subroutines, 

will run at-most for O(m2) times. Therefore, the time complexity of the allocation result after 

performing the ATAA algorithm is O(mn), m ≪ n. Because the time complexity of Algorithm-

2 and Algorithm-3 is O(m2) which are called from the Algorithm-1. Therefore, the time 

complexity of ATAA algorithm is O( (n/m) × (m2+m2+:::+k times)) = O(mn), k is an integer 

constant. The time complexity of the basic Hungarian algorithm for solving assignment 

problem is O(n3) [12], which is larger than the time complexity of ATAA i.e., O(n2) > O(mn). 

 

Algorithm 3 Update_METC 

Input: C_METC. 

Output: C_METC: Updated matrix. 

1.  Tick all unassigned rows. 

2.  if Ticked row has a 0 then 

3.         Tick the corresponding column. 

4.  end if 

5.  if Ticked column has an assignment then 

6.         Tick the corresponding row. 

7.  end if 

8.  Repeat steps 2 to 7 till no more ticking is possible. 

9.  Draw lines through unticked rows and ticked columns. 

10. θ = Smallest number that have no lines passing through. 

11. C_METCij = C_METCij - θ, If no lines passing through. 

12. C_METCij = C_METCij, If one line passing through. 

13. C_METCij = C_METCij + θ, If two lines passing through. 

14. Return the updated METC. 

 

5.1. Example 

 

The explanation of the example will carry from the ETC matrix as shown in Table 1. 

There are eight tasks and we have to allocate those tasks to 4 VMs so that the makespan is 

minimum. For this example, we consider four as the batch size of the tasks, which is same as 

the number of VMs. So, Table 1 is split into Table 2 and Table 4. The step-by-step solution of 

the allocation problem for the given example is explained below with the corresponding 

remark.  

Table 2: ETC matrix of 4 tasks & 4 VMs. 

ETCij V1 V2 V3 V4 

T1 7 9 6 9 

T2 9 8 5 5 

T3 4 3 7 6 

T4 6 6 ∞ 7 

Table 4: ETC matrix of 4 tasks & 4 VMs. 



ETCij V1 V2 V3 V4 

T5 4 5 2 3 

T6 8 9 5 7 

T7 15 14 14 15 

T8 5 7 ∞ 8 

 

Table 3: Description of allocation problem for Table 2 data 

Stages Remarks 

7 9 6 9 

9 8 5 5 

4 3 7 6 

6 6 ∞ 7 
 

This is the ETC matrix for first four tasks (T1 to T4). Initially, the 

execution time of each VM is 0. So, no updating is required. 

1 3 0 3 

4 3 0 0 

1 0 4 3 

0 0 ∞ 1 
 

After RowUpdate step. Here, the smallest element of each row is 

subtracted from all elements of that row. 

1 3 0 3 

4 3 0 0 

1 0 4 3 

0 0 ∞ 1 
 

After ColumnUpdate step. Here, the smallest element of each 

column is subtracted from all elements of that column. 

1 3 0 3 

4 3 θ 0 

1 0 4 3 

0 θ ∞ 1 
 

After applying Algorithm 2. For each row, mark 0 as gray color, if 

that row has a single unmarked 0. Then, for each column, mark 0 

as a gray color, if that column has a single unmarked 0. Make strike 

to all 0's which is located on assigned rows of columns. 

T1 T2 T3 T4 

V3 V4 V2 V1 
 

After successful allocation. The execution time of each VM is ET 

& the vector is as follows. 

6 5 3 6 
 

Table 4 has four tasks (T5 to T8) of Table 1 and is represented as BETC. Before allocation of 

tasks to the cloud resources (VMs), the addition of previous execution times of all VMs will 

be done and the updated matrix is shown in the second row of Table 5. The RowUpdate and 

ColumnUpdate methods are performed (Algorithm 1). As C_METC[1][3] contains a single 

unmarked 0, that particular cell is colored as gray, and the striking operation is done on all the 

0's in the corresponding rows and columns. The marking operation is accomplished using 

column value also. In this case, we can mark C_METC[4][1] and colored it as gray. Still, this 

algorithm (Algorithm 2) is not able to mark 0's for each row and column. Therefore, we follow 

another procedure as stated in Algorithm 3. Primarily, tick all unassigned rows (rows 2 and 3) 

and the corresponding column (column 3) where 0 is present. If there is a marked 0 present in 

that particular column, then tick that row too (row 1). The next step of the algorithm allows 

crossing a line between the unticked rows and ticked columns. As seen in Table 5 (7th row), 

we have colored the lines as light gray. Select the smallest number (θ) in the matrix that has 

one line passing through it. Here, the smallest number is 1. Then subtract the θ from the 

elements of the matrix that have no lines passing through it and add the particular to those two 

lines passing through it. After doing this, the updated matrix shown in Table 5 (8th row) is 

obtained. Then apply Algorithm-2 to this updated matrix as shown in the 9th row of Table 5. 

Then we get the successful allocation result along with the execution time of each VM. 

 



Table 5: Description of allocation problem for Table 4 data 

Stages Remarks 

4 5 2 3 

8 9 5 7 

15 14 14 15 

5 7 ∞ 8 
 

This is the ETC matrix for first four tasks (T5 to T8). 

10 10 5 9 

14 14 8 13 

21 19 17 21 

11 12 ∞ 14 
 

After adding the execution time of each VM i.e., in ET vector to the 

current ETC matrix. 

5 5 0 4 

6 6 0 5 

4 2 0 4 

0 1 ∞ 3 
 

After RowUpdate step. Here, the smallest element of each row is 

subtracted from all elements of that row. 

5 4 0 1 

6 5 0 2 

4 1 0 1 

0 0 ∞ 0 
 

After ColumnUpdate step. Here, the smallest element of each 

column is subtracted from all elements of that column. 

5 4 0 1 

6 5 θ 2 

4 1 θ 1 

0 θ ∞ θ 
 

After Algorithm 2. For each row, mark 0 as a gray color, if that row 

has a single unmarked 0. Then, for each column, mark 0 as gray 

color, if that column has a single unmarked 0. Make strike to all 0's 

that are located on assigned rows of columns. Still, 2 rows are 

unassigned. 

     

5 4 0 1  

6 5 0 2  

4 1 0 1  

0 0 ∞ 0  
 

After applying steps 1-8 of Algorithm 3. Make a tick mark on all 

unassigned rows and for those rows where ever 0 found, make a tick 

mark to the corresponding columns. 

     

5 4 0 1  

6 5 0 2  

4 1 0 1  

0 0 ∞ 0  
 

Step 9 of Algorithm 3. Make lines on the unticked rows and also 

make lines on the ticked columns. 

4 3 0 0 

5 4 0 1 

3 0 0 0 

0 0 ∞ 0 
 

After applying steps 10-14 of Algorithm 3. Make lines on the 

unticked rows and also make lines on the ticked columns. Here, 

instead of lines, we color those rows and columns with light gray 

color. 

4 3 θ 0 

5 4 0 1 

3 0 θ θ 

0 θ ∞ θ 
 

After applying Algorithm 2 again. For each row, mark 0 as gray 

color, if that row has a single unmarked 0. Then, for each column, 

mark 0 as a gray color, if that column has a single unmarked 0. Make 

strike to all 0's that are located on assigned rows of columns. 

T1 T2 T3 T4 

V

4 

V

3 

V

2 

V

1 
 

After successful allocation. The execution time of each VM is ET & 

the vector is as follows. 

9 8 19 11 
 

 



6. Evaluation of the Algorithm 

 

The CloudSim-3.0.3 simulator is used to simulate the service allocation problem using 

the ATAA algorithm. The CloudSim simulator provides a generalized simulation framework 

for modeling purpose, simulation purpose and experimenting purpose in the cloud 

infrastructure [17, 18]. Let TH and MH represents task heterogeneity and machine 

heterogeneity respectively. In this paper, we have adopted the range based ETC generation 

algorithm [19]. The ETC matrix for simulation is formed by employing two uniform 

distribution U(1, TH) and U(1, MH) and are realized as: 1 + (TH − 1)  rand(1) and 1 + (MH 

− 1)  rand(1), where rand() function generates a value within (0, 1). For the ETC matrix 

generation, we have used TH = 1000 and MH = 50 respectively. We have compared the 

proposed algorithm with the baseline algorithm (where the allocation performed randomly, 

which means any task can be allocated to a VM with 1=m probability) and with the Round-

Robin algorithm (which is the default scheduling algorithm in the CloudSim simulator). We 

have considered makespan and energy consumption of the system as performance metrics to 

evaluate the algorithm. 

For the simulation purpose, we have considered a single data center with multiple 

heterogeneous hosts and `Xen' as VMM. We have estimated tasks and resources with diverse 

requirements as the environment support for heterogeneous system modeling. The key 

properties of the elements for the simulation are:  

 Speed of VM (MIPS) : 200, 400, 500, 800, 1000, 2000, 4000, 5000, 8000, 10000;  

 Main Memory size (RAM) : 512, 1024, 2048, 4096, 8192, 16384;  

 We also varied the secondary storage size; 

 

We have examined the performance of the cloud system in two different scenarios as 

follows. Scenario-1: In this scenario, the number of virtual machines is fixed, i.e., 40 and the 

number of tasks varies from 100 to 1000 in the interval of 100. The makespan of the system 

is determined for each set of tasks (for all three algorithms), and the energy consumption is 

calculated. The comparison graph for this scenario is shown in Fig. 3 (makespan), and Fig. 4 

(energy consumption). 

 
Fig. 3: Makespan Comparison as in scenario-1. 



 
Fig. 4: Energy Consumption Comparison as in scenario-1. 

 

 

 

 

 
Fig. 5: Makespan Comparison as in scenario-2. 

 



 
Fig. 6: Energy Consumption Comparison as in scenario-2. 

 

Scenario-2: In this scenario, the number of tasks is fixed, i.e., 500 and the number of VMs 

varies from 20 to 60 in the interval of 5. Here, also the makespan and energy consumption is 

calculated. The comparison graph for this scenario is shown in Fig. 5 (makespan), and Fig. 6 

(energy consumption).  

 

The makespan of the system increases when the number of input task increases for a 

fixed number of VMs as shown in Fig. 3. The makespan value is more when the number of 

VMs is less as displayed in Fig. 5. This makespan value gradually reduced as the number of 

VMs increases as presented in the bar-chart (Fig. 5). The energy consumption of the system 

increases rapidly when the number of tasks increases with a certain number of VMs as shown 

in Fig. 6. However, the energy consumption of the system increases slowly when the number 

of VMs increases as shown in Fig. 6. Here, the energy consumption rate is slow due to fixed 

number of tasks. 

 

7. Conclusion 

 

This paper incorporates a detailed evaluation of the system framework towards the 

resource distribution and task allocation in the cloud computing system. In this paper, we have 

proposed a novel task-scheduling algorithm ATAA in the cloud environment. We presented a 

system model including task model and resource model (includes host model, VM model) for 

the cloud environment. Due to the importance of urgent CPU-bound tasks and urgent IO-

bound tasks for the proposed method, the percentage of execution of tasks before the deadline 

(i.e., one of the SLA constraints) is much more, i.e., a higher rate of execution achieved. The 

work in this paper also addresses the heterogeneity with the help of ETC matrix. A hand-traced 

example of the algorithm for given ETC is discussed which shows the basic steps of the 

algorithm. The principle of mathematical modeling is taken into consideration to evaluate the 

performance of the proposed allocation technique. The simulation results for the comparison 

of algorithms results in favor of ATAA algorithm.  

This finding can further lead to the dynamic form of resource allocation algorithms that permit 

preempted tasks according to a supplied priority. 
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