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Abstract

The fractal interpolation functions with appropriate iterated function systems (IFSs) pro-
vide a method to perturb and approximate a continuous function on a compact interval I .
This method produces a class of functions fα ∈ C(I), where α is a scale parameter. As
essential parameters of the IFS, the scaling factors have important consequences in the prop-
erties of the function fα. Also, the interpolant or a certain derivative of it may have a
non-integer box-counting dimension depending on the scaling factors magnitude. In this
talk, we discuss an exact estimation of box dimension of α-fractal functions under suitable
hypotheses on IFSs.
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Introduction to α-fractal functions

The concept of fractal interpolation function (FIF) using the theory of

iterated function system (IFS) was first introduced by Barnsley 1.

The most extensively studied FIFs so far are defined by the IFS:

Li(x) = aix+ bi, Fi(x, y) = αiy + qi(x).

Let f ∈ C(I). For a fixed partition ∆ := {x0, x1, . . . , xN} of I = [x0, xN ],

Navascues 2 considered the maps qi(x) = f ◦ Li(x)− αib(x), where

α = (α1, . . . , αN ) is the scaling vector and b is the base function

satisfying b 6= f, b(x0) = f(x0), b(xN ) = f(xN ).

The family of fractal function {fα : α ∈ (−1, 1)N−1}, named as α-fractal

function interpolate and approximate f .

The map Fα : C(I)→ C(I) which sends f to fα is called α-fractal

operator. Furthermore, fα∆,b satisfies the self-referential equation

fα∆,b(x) = f(x)+αj(L
−1
j (x)).(fα−b)

(
L−1
j (x)

)
∀ x ∈ [xj−1, xj ], j ∈ NN−1.

(1)
1M. F. Barnsley, Fractal functions and interpolation, Constr. Approx., 2, (1986), 303-329
2M. A. Navascués, Fractal polynomial interpolation, Z. Anal. Anwendungen, 24(2), 2005,

401-418.



Box-dimension

Let F be a nonempty bounded subset of Rn and let Nδ(F ) denote the

smallest number of sets of diameter less than or equal to δ which covers

F .

The lower and upper box-counting dimension of F is defined as

dimB(F ) = lim inf
δ→0+

Nδ(F )

− log δ
, dimB(F ) = lim sup

δ→0+

Nδ(F )

− log δ
.

The Hausdorff dimension of F is denoted by dimH(F ) and for any

bounded subset F of Rn,

dimH(F ) ≤ dimB(F ) ≤ dimB(F ).

3 4

3K. Falconer, Fractal Geometry, 2nd ed., John Wiley and Sons, Inc., Hoboken, NJ, Mathematical

Foundations and Applications, 2003.
4P. R. Massopust, Fractal Functions, Fractal Surfaces, and Wavelets, Academic Press, Inc., San

Diego, CA, 1994.
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Results

Result: Let Wj = (Lj(x), Fj(x, y)), where Lj and Fj are as described

above. The map Wj : I × [−M,M ]→ I × [−M,M ] is a contraction map

with respect to the metric

d((x, y), (z, w)) = c1|x−z|+c2|(y−fα(x))−(w−fα(z))| ∀(x, y), (z, w) ∈ I×R,

where c1, c2 > 0 provided

max
{
aj +

2c2Mkαj
c1

, ‖αj‖∞
}
< 1

and αj : I → R satisfies |αj(x)− αj(y)| ≤ kαj |x− y|.

5
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Theorem 1.
Let I := {I × R;W1,W2, . . . ,WN−1} be the IFS such that

rj‖(x, y)− (w, z)‖2 ≤ ‖Wj(x, y)−Wj(w, z)‖2 ≤ Rj‖(x, y)− (w, z)‖2,

for every (x, y), (w, z) ∈ I × R, where

0 < rj ≤ Rj < 1 ∀ j ∈ {1, 2, . . . , N − 1}. Then s∗ ≤ dimH(Graph(fα)) ≤ s∗,

where s∗ and s∗ are determined by
N∑
j=1

rs∗j = 1 and
N∑
j=1

Rs
∗
j = 1 respectively.

Remark 2.

In particular, with the notation in 6 we can omit the following condition from

that theorem

t1.tN ≤ (Min{a1, aN})
( N∑
n=1

tln

)2/l

.

6M. F. Barnsley, Fractal functions and interpolation, Constr. Approx., 2, (1986), 303-329



Oscillation space

We define the total oscillation of order m,

Osc(m, f) =
∑

|Q|=p−m
Rf (Q),

where the sum ranges over all p-adic intervals Q ⊂ [0, 1] of length

|Q| = 1
pm

and Rf (Q) = supx,y∈Q |f(x)− f(y)|.

Let β ∈ R. The oscillation space Vβ(I) is defined by

Vβ(I) =
{
f ∈ C(I) : sup

m∈N

Osc(m, f)

pm(1−β)
<∞

}
.

Theorem 3.

Let f, b, αj (j ∈ J) ∈ Vβ(I) be such that b(x1) = f(x1) and b(xN ) = f(xN ).

Further we assume that |Lj(I)| = 1

p
kj

for some kj ∈ N with
∑
j∈J

1

p
kj

= 1. For

max

{
‖α‖∞ +

∑
j∈J

supm∈N
Osc(m,αj)

pm(1−β) ,
∑
j∈J
‖αj‖∞

}
< 1, we have fα ∈ Vβ(I).



Result

Theorem 4.
7 Let f be a real-valued continuous function defined on I, we have

dimB(Graph(f)) ≤ 2− γ ⇐⇒ f ∈ Vγ−(I) if 0 < γ ≤ 1

and

dimB(Graph(f)) ≥ 2− γ ⇐⇒ f ∈ Vγ+(I) if 0 ≤ γ < 1.

Remark 5.
Let 0 < γ ≤ 1 and f, b, αj be suitable functions satisfying the hypothesis of

Theorem 6. Then, Theorem 4 yields that dimB(Graph(fα)) ≤ 2− γ.

7A. Carvalho, Box dimension, oscillation and smoothness in function spaces, J. Funct. Spaces

Appl., 3 (2005), 287-320.



Hölder Space

We define the Hölder space as

Hs(I) := {g : I → R : g is Hölder continuous with exponent s}.

We use the norm ‖g‖H := ‖g‖∞ + [g]s, where

[g]s = sup
x6=y

|g(x)− g(y)|
|x− y|s

.

Theorem 6.

Let f, b and α be Hölder continuous with exponent s such that b(x1) = f(x1)

and b(xN ) = f(xN ). Then with the notation a := min{aj : j ∈ J} we have fα

is Hölder continuous with exponent s provided ‖α‖H
as

< 1.



Result

Theorem 7.
8 Let f be a germ function, and b, αj be suitable continuous functions such

that
|f(x)− f(y)| ≤ kf |x− y|s,

|b(x)− b(y)| ≤ kb|x− y|s,

|αj(x)− αj(y)| ≤ kα|x− y|s
(2)

for every x, y ∈ I, j ∈ J, and for some kf , kb, kα > 0, s ∈ (0, 1]. Further,

assume that there are constants Kf , δ0 > 0 such that for each x ∈ I and

δ < δ0 there exists y ∈ I with |x− y| ≤ δ, |f(x)− f(y)| ≥ Kf |x− y|s and

Kf − (‖b‖∞ +M)a−skα > 0. We have dimB

(
Graph(fα)

)
= 2− s provided

that ‖α‖H < as and ‖α‖∞ <
Kf−(‖b‖∞+M)kαa

−s

(kf,b,α+kb)a
−s .

8S. Jha, S. Verma, Dimensional analysis of α-fractal function, Results Math. 186(4), (2021),

1-24.



Results

Remark 8.

In 9, Akhtar et al. computed the box dimension of α-fractal function under

certain condition. But for the Hölder exponent s ∈ (0, 1) the author has

calculated an upper bound. In Theorem 7, we have obtained the exact

estimation of the box dimension of α-fractal function under suitable condition.

Theorem 9.

Let f, αj (j ∈ J) and b be Hölder continuous with exponent s such that

b(x1) = f(x1) and b(xN ) = f(xN ). If ‖α‖H < as with a = min{aj : j ∈ J}
then

1 ≤ dimH(Graph(fα)) ≤ 2− s.

9Md. N. Akhtar, M. G. P. Prasad, and M. A. Navascués, Box dimensions of α-fractal functions,

Fractals, 24(3), (2018) 1650037-13.



Bounded Variation

Let BV(I) denotes the set of all functions of bounded variation on I and

define a norm on BV(I) by ‖f‖BV := |f(t0)|+ V (f, I), where

V (f, I) = supP
∑n
i=1 |f(ti)− f(ti−1)|, the supremum is taken over all

partitions P of the interval I.

Result In 10, Liang showed that if f ∈ C(I) ∩ BV(I), then

dimH(Graph(f)) = dimB(Graph(f)) = 1.

Theorem 10.

Let f ∈ BV(I). Suppose that 4 = {x1, x2 . . . , xN : x1 < x2 < · · · < xN} is a

partition of I, b ∈ BV(I) satisfying b(x1) = f(x1), b(xN ) = f(xN ), and

αj (j ∈ J) are functions in BV(I) with ‖α‖BV < 1
2(N−1)

. Then fα ∈ BV(I).

Theorem 11.
Let f, b be continuous functions of bounded variations and αj (j ∈ J) are

functions of bounded variation with ‖α‖BV < 1
2(N−1)

. Then

dimH(Graph(fα)) = dimB(Graph(fα)) = 1.
10Y. S. Liang, Box dimensions of Riemann-Liouville fractional integrals of continuous functions of

bounded variation, Nonlinear Anal. 72(11), (2010), 4304-4306.



Absolute Continuous Space

Let AC(I) denotes the Banach space of all absolutely continuous functions

on I with its usual norm (denoted by ‖.‖AC).

Theorem 12.

Let f ∈ AC(I). Suppose that 4 = {x1, x2, . . . , xN : x1 < x2 < · · · < xN} is a

partition of I, b ∈ AC(I) satisfying b(x1) = f(x1), b(xN ) = f(xN ) , and

αj (j ∈ J) are functions in AC(I) with ‖α‖AC < a
2(N−1)

, where

a = min{aj : j ∈ J}. Then, the fractal perturbation fα corresponding to f is

absolutely continuous on I.

Theorem 13.
Let the germ function f and the parameter b be absolutely continuous

functions. Suppose αj (j ∈ J) are absolutely continuous functions with

‖α‖AC < a
2(N−1)

. Then dimH(Graph(fα)) = dimB(Graph(fα)) = 1.
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