
LETO: An Efficient Load Balanced Strategy for
Task Offloading in IoT-Fog Systems

Chittaranjan Swain, Manmath Narayan Sahoo, Anurag Satpathy
Department of Computer Science and Engineering
National Institute of Technology, Rourkela, India.

{chittaranjanswain518, anurag.satpathy}@gmail.com, sahoom@nitrkl.ac.in

Abstract—The resource-constrained IoT devices often offload
tasks to Fog nodes (FNs) owing to the intermittent WAN delays
and multi-hopping by executing at remote cloud servers. An
efficient allocation strategy satisfies the users’ requirements by
ensuring minimum offloading delays and provides a balanced
assignment from the service providers’ (SPs) viewpoint. This
paper presents a model called LETO that reduces the total
offloading delay for real-time tasks and achieves a balanced
assignment across FNs. The overall problem is modeled as
a one-to-many matching game with maximum and minimum
quotas. Owing to the deferred acceptance algorithm (DAA)
inapplicability, we use a proficient version of the DAA called
multi-stage deferred acceptance algorithm (MSDA) to obtain a
fair and Pareto-optimal assignment of tasks to FNs. Extensive
simulations confirm that LETO can achieve a more balanced
assignment compared to the baseline algorithms.

Index Terms—Load Balancing, Task Offloading, IoT, Fog
Systems, Matching Theory, Max-Min Quota

I. INTRODUCTION

Task offloading refers to delegating the execution of a
service from a resource-constrained Internet of Things (IoT)
device to a nearby Fog device or a remote cloud server.
Offloading services to a remote cloud server often leads to
a higher response time owing to intermittent WAN delays,
multi-hopping, and scarce spectrum resources. However, of-
floading to Fog nodes (FNs) not only improves the users’
response time but also provides additional benefits such as
location awareness and real-time mobility support [1]. From a
SP’s viewpoint allocating resources to offloaded services is a
complex operation owing to its heterogeneous demands and
limited resources of FNs [2]. Moreover, for the increasing
number of offloading requests, it is particularly challenging
to simultaneously realize the desired quality of service (QoS)
for real-time applications and balance the load of the FNs.
Achieving both will improve the resource utilization of FNs
and assist applications that include augmented reality (AR)
and online gaming to realize tolerable latency.

The literature on task offloading focused independently on
addressing QoS requirements of applications such as com-
pletion time and deadlines. The authors in [3] [4] [5] [6]
modelled the offloading as optimization problem to reduce
the latency of IoT services. Although optimization solvers may
guarantee sub-optimal solutions, they suffer from the following
pitfalls. Firstly, they focus on system-wide objectives that may
not align with the objectives of individual stakeholders. Sec-
ondly, they are computationally expensive and non-scalable.

Matching theory-based solutions overcome these drawbacks
and are primarily focused on reducing the completion time,
energy consumption, and outages, i.e., the number of tasks
overshooting their deadlines [1] [7]. However, Zhang et al.
[8] pointed out that an unbalanced assignment may create a
bottleneck of computational resources at certain FNs, thereby
causing QoS violations. Hence, it is essential to incorporate
load balancing mechanisms while generating an offloading
schedule without compromising with the offloading delay of
services. These can be achieved by enforcing minimum quotas
at the FNs. Although the deferred acceptance algorithm (DAA)
generates efficient assignments, it is incapable of achieving an
assignment satisfying the minimum quota of FNs [9]. Hence,
in this paper, we utilize a variation of DAA called multi-
stage deferred acceptance algorithm (MSDA) to achieve the
aforementioned objectives. The overall contributions of the
paper are as follows:
• We propose a model called LETO that aims to reduce the

total completion/offloading delay and outages from the
users’ perspective. In the viewpoint of a SP, LETO aims
at achieving a balanced assignment across FNs.

• The offloading game is modeled as a one-to-many match-
ing game with minimum and maximum quota at the FNs.

• To validate the performance of LETO, we perform exten-
sive simulations and compare its effectiveness with two
different baselines: Highest Data Rate (HDR) and Highest
Computing Device (HCD) [10]. Simulation results con-
firm that LETO can achieve a more balanced assignment
across baselines for all test cases.

The rest of the paper is organized as follows. Section II
discusses the literature that we have reviewed. In Section III
and IV, we discuss the system model and solution approach in
detail. Performance analysis of LETO is discussed in Section
V and conclusions are drawn in Section VI.

II. RELATED WORK

In this section, we discuss the literature devoted to full
offloading in IoT-Fog interconnection networks. Primarily the
works independently address latency and deadline concerns
of hosted IoT services. Considering latency, Chitti et al. [11]
discussed a matching theory-based framework to minimize
the worst-case service latency incurred in executing offloaded
tasks at the FNs. Alternatively, Yousefour et al. [12] presented
an analytical model to reduce the service latency of offloaded

459

2021 IEEE International Conference on Web Services (ICWS)

978-1-6654-1681-8/21/$31.00 ©2021 IEEE
DOI 10.1109/ICWS53863.2021.00065

services in a densely connected IoT-Fog-Cloud environment.
Some other works that have focused on reducing the latency in
different offloading environments are discussed in [3] [4]. All
the above strategies focus on independently reducing latency
that may not adhere to the stringent deadline requirements of
real-time applications. As a remedy, some offloading strategies
to concurrently minimize latency as well as outages are
discussed in [1] [7] [10].

With the rapid growth of IoT services and varying degrees of
requirements, offloading techniques may often face unbalanced
assignments. This can have a deleterious impact on user
satisfaction, availability of resources, and utilization of FNs.
Hussein and Mousa [13] proposed an ant colony optimization
(ACO) and particle swarm optimization (PSO) based hybrid
technique to simultaneously achieve a balanced assignment
and reduced service latency in mobile edge environments.
Although the technique can achieve sub-optimality, it suffers
from lacuna of the optimization techniques as discussed in
Section I. It can be observed from the reviewed literature
that not a lot of research has gone into developing efficient
strategies to obtain a balanced assignment without compro-
mising the latency and deadline requirements of user services.
Therefore, in this work, we propose a one-to-many matching
framework based on a multi-stage deferred acceptance algo-
rithm (MSDA) to achieve all the above-mentioned objectives.
Next, we provide a detailed discussion on the system model
followed by the solution strategy.

III. SYSTEM MODEL AND ASSUMPTIONS

The overall architecture of an interconnected Fog network
is depicted in Fig. 1. It consists of ‘m’ IoT devices where
each device di generates a task ti and the set of all tasks
is captured by T = {t1, t2, t3, · · · , tm}. We assume that the
device di is resource-constrained and is incapable of executing
ti locally. Hence, ti is to be offloaded to one of the FNs
in F = {f1, f2, f3, · · · fn} for successful execution [1]. The
offloading assignment is taken care of by the service broker
(SB). The offloading request of a task ti is captured as a

S

E

R

V

I

C

E

B

R

O

K

E

R

Fog Network(FNs)

IoT Devices

VRU

Wireless Connection

...

FN
1

FN
3

FN
2

FN
4

FNn

Fig. 1. IoT-Fog System Architecture

quadruple < si, ci, di, τi >. Here, si and τi denote the input
and output size (bits), and ci and di correspond to the compu-
tational demand (cycles) and deadline (s). The computational
resources at a FN are logically partitioned into independent
executable entities called virtual resource units (V RUs) [1].

Let γj be the computation capabilities of the homogeneous
V RUs at FN fj , expressed in cycles/sec. However, V RUs
at different FNs are heterogeneous, i.e., γj 6= γj′ , j 6= j′

and j, j′ ∈ [1, n]. It is considered that a VRU can execute
one task at a time. The number of VRUs at fj , denoted as
qj , is called as its maximum quota. It reflects the maximum
number of tasks that can be executed in parallel. To obtain
a balanced assignment of tasks across the FNs a minimum
quota pj is imposed at each FN fj ∈ F . It indicates the
minimum number of V RUs of a FN that should be utilized
in any balanced assignment.

As discussed previously, IoT devices are resource-
constrained and are dependent on nearby FNs for the real-
time execution of tasks. The offloading procedure executes in
two phases, viz., (i.) communication phase and (ii.) execution
phase. The communication phase involves transmitting a task
to a FN and retrieving the processed results following suc-
cessful execution. The time consumed in this phase is termed
as communication delay. The execution phase focuses on the
successful execution of an offloaded task at a FN. The time
incurred in this phase is called as execution delay. Therefore,
the offloading delay of a task is an aggregate latency incurred
in the aforementioned phases.

A. Computation of Communication Delay
The communication delay comprises (i.) transmission delay

and (ii.) receiving delay. Transmissions are carried out over a
noisy wireless channel [1].
Transmission delay: It is the time required to transfer a task
ti from a device di to a designated FN fj for computation.
It is considered that each device di has an active uplink and
downlink channel to a FN fj with bandwidth Bi,j and Bj,i

respectively. Let pti be the transmission power of di, hi,j
represents the channel gain between di and fj , and no is the
noise power. Therefore, the maximum achievable uplink data
rate Ri,j between di and fj can be computed as per Eq. (1).

Ri,j = Bi,j ∗ log2(1 +
pti ∗ hi,j
n0

) (1)

Considering the uplink data rate Ri,j and input size si of task
ti, the transmission delay Dtrans

i,j from di to fj is calculated
as per Eq. (2).

Dtrans
i,j =

si
Ri,j

(2)

Receiving delay: It is the amount of time required to receive
the processed output at di, after successful execution of
ti at fj . Given the transmission power ptj of fj , and the
channel gain hj,i between fj and di, the maximum achievable
downlink data rate Rj,i between fj and di can be calculated
as per Eq. (3).

Rj,i = Bj,i ∗ log2(1 +
ptj ∗ hj,i
n0

) (3)

Taking into account the downlink data rate Rj,i and output size
τi of ti, the receiving delay Drcv

j,i from fj can be calculated
using Eq. (4).

Drcv
j,i =

τi
Rj,i

(4)

460

B. Computation of Execution Delay

The delay Dexe
i,j in executing an offloaded task ti at fj is

dependent on the computational demand ci of ti and compu-
tational capability γj of a V RU at fj . It can be calculated as
per Eq. (5).

Dexe
i,j =

ci
γj

(5)

C. Offloading Delay

The offloading delay also termed as completion delay,
denoted by Doff

i,j , is the aggregate of transmission, execution,
and receiving delays and can be expressed as Eq. (6).

Doff
i,j = Dtrans

i,j +Dexe
i,j +Drcv

j,i (6)

D. Problem Formulation

Let xi,j be a binary indicator variable that signifies if a task
ti is assigned to fj or not. This is captured as Eq. (7).

xi,j =

{
1 : if ti is matched to fj
0 : otherwise

(7)

We also define O to be the set of tasks suffering from outage
and can be computed as per Eq. (8).

O = {ti ∈ T | xi,j = 1 & Doff
i,j > di; j ∈ [1, n]} (8)

The overall objective of LETO is to minimize the total of-
floading delay and the number of outages and is expressed
in Eq. (9a). A task can be assigned to only one FN and is
reflected in Constraint 9b. Constraint 9c ensures that a FN
fj ∈ F should be assigned at least pj and at most qj tasks in
any mapping. Enforcing this enables the SP to distribute the
load across the FNs in the Fog network. If the total number
of tasks |T | >

∑n
j=1 qj or |T | <

∑n
j=1 pj , then there is no

possible way to perform an assignment without violating quota
[14]. Therefore, to obtain a feasible assignment, Constraint 9d
should never be violated. Finally, Constraint 9e indicates the
acceptable range of values the variables can take.

min

 m∑
i=1

n∑
j=1

xi,j ∗Doff
i,j

 and (|O|) (9a)

s.t.
n∑

j=1

xi,j = 1 (9b)

pj ≤
m∑
i=1

xi,j ≤ qj ; pj , qj > 0 (9c)

n∑
j=1

pj ≤ |T | ≤
n∑

j=1

qj (9d)

∀ i ∈ [1,m], ∀ j ∈ [1, n] (9e)

The overall problem expressed in Eq. (9a) is proven to beNP-
Hard [1]. Therefore, we propose a one-to-many matching-
based strategy called LETO to achieve a Pareto-optimal as-
signment in polynomial-time and is discussed subsequently.

IV. SOLUTION APPROACH

Matching theory is an elegant and efficient technique to
perform assignments between distinct sets of agents by con-
sidering their individual preferences [15]. Preferences reflect
the level of satisfaction of each agent in the matching and are
autonomously generated.

A. Task Offloading as a Matching Game

Formally, the offloading game can be expressed through the
following Definitions

Definition 1. Let T and F be the set of tasks and FNs.
A matching game defined over (T , F) has two preference
relations �ti and �fj that allows each agent ti ∈ T to specify
preference over all agents fj ∈ F , and vice-versa.

Definition 2. The offloading game is defined by a one-to-many
matching function µ : T ∪ F → 2T ∪ F such that

µ(ti) ⊆ F and |µ(ti)| = 1 (10a)
µ(fj) ⊆ T and |µ(fj)| ≤ qj (10b)
fj ∈ µ(ti)⇔ ti ∈ µ(fj) (10c)

Condition (10a) states that each task is assigned to exactly
one FN. A FN fj can host a maximum of qj tasks which is
reflected by Condition (10b). A task ti is mapped to a FN fj
iff fj is assigned task ti. This is expressed in Condition (10c).

Definition 3. The matching µ is said to be blocked by a task
and FN pair (ti, fj) if it satisfies the following.

ti /∈ µ(fj) (11a)
fj �ti µ(ti) and ti �fj ti′ , ti′ ∈ µ (fj) (11b)

Condition (11a) reflects that the task ti is not mapped to fj .
Condition (11b) states that ti prefers fj over its current assign-
ment µ(ti) and fj prefers ti over ti′ such that ti′ ∈ µ (fj).
In such case ti and fj have incentive to deviate from their
current assignments and form a blocking pair.

Definition 4. The matching µ is said to be stable if there exists
no blocking pair.

The deferred acceptance algorithm (DAA) has been suc-
cessfully used to obtain a stable assignment in different
scenarios [1] [11]. However, the DAA fails to achieve a stable
assignment when imposed with minimum quota [14]. Hence,
we solve the load balanced offloading game using a modified
version of DAA called multi-stage deferred acceptance algo-
rithm (MSDA).

B. LETO: A Load-Balanced Task Offloading Strategy

LETO works in two phases, i.e., (i.) preference generation
and (ii.) stable assignment using MSDA. Before discussing
the details of each phase, we define important terms such as
feasibility, Pareto-optimality, and fairness.

461

Definition 5. The matching µ is said to be feasible iff it
satisfies all the conditions of Definition 2 and the following
additional condition.

pj ≤ |µ(fj)| ≤ qj (12)

Condition (12) enforces feasibility by ensuring that each FN fj
is mapped to at least pj and at most qj tasks in any matching.

Definition 6. A matching µ is said to be Pareto-optimal if
there does not exist another feasible matching µ′ such that
µ′(ti) �ti µ(ti), ∀ ti ∈ T and ∃ ti ∈ T satisfying µ′(ti) �ti

µ(ti).

Definition 7. A matching µ is said to be PL-blocked by a pair
of agents (ti, fj) iff it satisfies the conditions of Definition 3
and the following condition

ti �PL ti′ ; i 6= i′ (13)

The standard definition of blocking pair in Definition 3
produces too many blocking pairs when DAA is imposed with
minimum quota [9] [14]. Since establishing a fair assignment
is of primary importance, some of these potential blocking
pairs must be invalidated. Therefore, a new notion of PL-
fairness invalidating such pairs is introduced [14].

Definition 8. The matching function µ is said to be PL-fair
iff it is feasible and is not PL-blocked by any pair of agents.

1) Preference Generation: The preference profiles of all
agents are complete, strict, and transitive.
Preference Profiles of Tasks: Each task ti sets preference list
P (ti) that ranks all fj ∈ F considering the offloading delay
computed as per Eq. (6). Therefore,

fj �ti fj′ ⇐⇒ Doff
i,j < Doff

i,j′ ; j 6= j′

Preference Profiles of FNs: Each FN fj prepares a preference
profile P (fj) for all tasks in T based on their deadlines.
Therefore,

ti �fj ti′ ⇐⇒ di < di′ ; i 6= i′

Precedence List: The precedence list provides a ranking of all
the tasks in T . To achieve pareto optimality the ordering of
tasks in the PL follows the preference profile of the FNs, i.e.,
tasks in the PL are sorted as per their deadlines [9]. Therefore,

ti �PL ti′ ⇐⇒ di < di′ ; i 6= i′

2) Working of MSDA: The overall working of MSDA is
shown in Algorithm 1. The algorithm takes as input the pref-
erences of each agent in T and F , maximum and minimum
quotas of each fj ∈ F denoted by qj and pj , and a PL
containing the ordering of all the tasks. The algorithm outputs
a pareto-optimal assignment µ that maps each task ti ∈ T
to exactly one FN and each FN fj ∈ F to at least pj tasks.
Initially, all the tasks are free, i.e., free[i] = True and R0

Algorithm 1: Multistage Deferred Acceptance Algo-
rithm (MSDA)

Input: PL, P (ti), P (fj), pj , qj , ∀ti ∈ T , ∀fj ∈ F
Result: µ : T ∪ F → 2T ∪ F

1 Initialize: free[i] = True, ∀i ∈ [1,m], µ = φ
R0 = PL, k = 1, pkj = pj , qkj = qj , ∀j ∈ [1, n]

2 while PL 6= Φ do
3 rk =

∑n
j=1 p

k
j

4 Rk = {tm−rk+1, tm−rk+2, ..., tm}, Here Rk is the set
of rk tasks with lower preference according to PL

5 if Rk−1 \ Rk 6= φ then
6 T = Rk−1 \ Rk

7 skj = qkj , j ∈ [1, n]

8 else
9 T = Rk

10 skj = pkj , ∀j ∈ [1, n]

11 µk = CDAA (T, F , {skj }j∈[1,n])
12 µ = µ ∪ µk

13 for each fj ∈ F do
14 qk+1

j = qkj − |µk(fj)|
15 pk+1

j = max{0, pkj − |µk(fj)|}
16 PL = PL \ µk(fj)

17 k = k + 1

Algorithm 2: Classical Deferred Acceptance Algo-
rithm (CDAA)

Input: P (ti), ∀ti ∈ T, skj , P (fj), ∀j ∈ [1, n]
Result: µk

1 Initialize µk = φ
2 while ∃ ti | free[i] and P (ti) 6= φ do
3 fj′ = highest ranked FN in P (ti) to which ti has not yet

proposed.
4 Send proposal to fj′
5 if skj′ > 0 then
6 µk = µk ∪ {(ti, fj′)}
7 free[i] = False

8 else
9 Reject ti

10 return µk

is initialized to PL. The maximum and minimum quota of
fj in kth stage of MSDA, respectively denoted as qkj and pkj ,
are initialized to qj and pj . The algorithm then reserves Rk

as the set of least preferred rk tasks from PL (Steps 3-4).
After reservation, depending on the remaining tasks in Rk−1

\ Rk two cases may arise: (i.) if remaining task set is non-
empty then CDAA (Algorithm 2) is called on Rk−1 \ Rk

with maximum quotas, (ii.) if it is empty, CDAA is invoked
on Rk with minimum quotas (Steps 5-11). The former case
allows the unreserved tasks to propose and possibly assigned
to their preferred FNs. The latter case ensures that each FN
satisfies its minimum quota constraint. Algorithm 2 provides
an assignment to the proposing tasks at stage k of MSDA. It
enters into the proposal phase that allows all free tasks ti ∈ T,
in order of PL, with a non-empty preference list P (ti) to send

462

out proposals to their most preferred FN fj′ (Steps 3-4). On
receiving a proposal form ti, two scenarios may arise at FN
fj′ : (i.) it has sufficient quota to match ti and fj′ or (ii.) it does
not have sufficient quota and ti is rejected (Steps 5-9). Once
CDAA returns the matching µk to MSDA, the minimum and
maximum quotas are updated. The newly matched tasks are
added to µ and removed from the PL (Steps 12-16, Algorithm
1). The algorithm terminates when all tasks are assigned, i.e.,
PL = φ.

V. PERFORMANCE EVALUATION

We have performed simulations using the iFogSim simulator
[16]. The environmental setup and analysis of the simulation
results are discussed elaborately in this Section.

A. Environmental Setup

The FNs and IoT devices are statically deployed. The dis-
tance between IoT device and FN is uniformly distributed
as U[50, 500] m and channel bandwidth between them is 20
MHz [7]. There are 4 FNs, and the computational capability of
each is expressed in the form of VRUs which are generated
following a uniform distribution U[150, 350] that represents
its maximum quota. The minimum quota at each FN is set

randomly in the interval [0,
⌊ |T |
|F|

⌋
] [9]. The computational rate

(cycles/s) is chosen in the range U[6, 10] GHz [1]. The number
of IoT devices varies in the range of 250−1000 at an interval
of 250 per observation. The task specific parameters such as
input size, output size, computational demand, and deadline
are generated uniformly in the range U[300, 600] Kb, U[10, 20]
Kb, U[210, 480] million cycles, and U[7, 25] s, respectively [1].
Considering PCS-1900 GSM band, the free space path loss in
dB between an IoT device di and a FN fj is calculated as
pldi,fj = 38.02 + 20log(dist(di, fj)), where dist(di, fj) is
the distance between di and fj [1]. The channel gain is then
calculated as hi,j = 10−(pldi,fj)/10. The transmission power
of an IoT device and noise power of channel is set to 0.5 W
and 10−10 W respectively [1] [7].

B. The Baseline Algorithms

To compare the performance of LETO, we assess its perfor-
mance against the following baseline algorithms: (i.) Highest
Data Rate (HDR) [10], where IoT device greedily offloads
the tasks to a FNs with minimum transmission delay and
(ii.) Highest Computing Device (HCD) [10] where tasks are
assigned to available FNs with highest computational speed.

C. Simulation Results

Fig. 2 depicts the total offloading delay for executing
[250, 500, 750, 1000] tasks. As expected the total offloading
delay increases with an increasing number of tasks. For 250
tasks LETO has a slightly higher offloading delay compared
to HCD. This is because HCD greedily allocates tasks to the
available FNs with the best computing capabilities, whereas
LETO focuses on a balanced assignment across FNs by
satisfying their minimum quota, thereby resulting in some

250 500 750 1000
0

2000

4000

6000

8000

10000

12000

Number of Tasks

T
o
ta

l
O

ff
lo

a
d
in

g
 D

e
la

y
 (

s
)

HCD
LETO
HDR

Fig. 2. Offloading Delay (s) Vs. Num-
ber of Tasks.

250 500 750 1000
0

50

100

150

200

Number of Tasks

O
u
ta

g
e
s

HCD
LETO
HDR

Fig. 3. Outages Vs. Number of Tasks.

tasks getting assigned to computationally less efficient FNs.
For a larger test case a small quanta of tasks are forced
to choose some less preferred FNs, with increasing number
of tasks in MSDA. In other words, a majority of tasks are
assigned to the best possible FNs. Hence, LETO has a slightly
higher offloading delay compared to HCD. The HDR strategy
performs poorly compared to HCD and LETO as it greedily
selects the nearest FN without considering the computing
capabilities of the selected FN.
Fig. 3 displays the total number of outages for different strate-
gies considering different evaluation scenarios. The number
of outages increases with an increasing number of tasks as
the individual offloading delay per task increases. Once the
maximum quota of the better performing FNs are exhausted,
the unassigned tasks are forced onto computationally less
efficient FNs, thereby elevating their offloading delays. The
comparative behavior of HCD and LETO concerning outages
is similar to the offloading delay comparison discussed previ-
ously. HDR, on the other hand, does not consider deadline as a
parameter for assignment thereby leading to a higher number
of outages.
Fig. 4 shows the utilization of different FNs for executing
250 tasks. It can be observed from the figure that due to the
enforcement of minimum quota at each FN, LETO is able
to achieve a more balanced assignment compared to HCD
and HDR. HCD faces the issue of clustering at f4 as it is
the most efficient FN considering its computing capabilities.
On the other hand, in HDR the assignment is dependent on
the distance to the FNs. Hence, we observe a distributed
assignment across FNs. Therefore, HDR suffers from a higher
offloading delay and consequently more outages compared to
LETO. Figs 5 and 6 highlight the utilization of different FNs
for 500 and 750 tasks respectively. The resource utilization of
FNs increase with increasing number of tasks for all strategies.
In contrast to Fig. 4, owing to higher number of tasks and
limited V RUs at f4, the additional tasks are allotted to the
next computationally best FNs, i.e., f3 followed by f2, in
HCD. Similar to Fig. 4 the allocation in HDR is distributed.
Finally, the resource utilization for 1000 tasks is depicted in
Fig. 7. It can observed that LETO and HCD have similar
utilization levels as maximum quota of best performing FNs in
the order, i.e., f4, f3, and f2 are filled up whereas the quota of
the worst FN f1 only meets its minimum quota requirement.
The maximum number of tasks in the experiment is equal to

463

f1 f2 f3 f4
0

20

40

60

80

100

Fog nodes

R
e

s
o

u
rc

e
 U

ti
liz

a
ti
o

n
 (

%
)

HCD
LETO
HDR

Fig. 4. Resource Utilization (%) Vs.
FNs (For 250 tasks).

f1 f2 f3 f4
0

20

40

60

80

100

Fog nodes

R
e

s
o

u
rc

e
 U

ti
liz

a
ti
o

n
 (

%
)

HCD
LETO
HDR

Fig. 5. Resource Utilization (%) Vs.
FNs (For 500 tasks)

f1 f2 f3 f4
0

20

40

60

80

100

Fog nodes

R
e

s
o

u
rc

e
 U

ti
liz

a
ti
o

n
 (

%
)

HCD
LETO
HDR

Fig. 6. Resource Utilization (%) Vs.
FNs (For 750 tasks)

f1 f2 f3 f4
0

20

40

60

80

100

Fog nodes

R
e

s
o

u
rc

e
 U

ti
liz

a
ti
o

n
 (

%
)

HCD
LETO
HDR

Fig. 7. Resource Utilization (%) Vs.
FNs (For 1000 tasks)

the total number of V RUs across the FNs, in which case all
the V RUs are utilized irrespective of any strategy. This can
be observed from Figure 7.

250 500 750 1000
58

60

62

64

66

68

70

72

Number of Tasks

T
a

s
k
 S

a
ti
s
fi
c
a

ti
o

n
 F

a
c
to

r
(%

)

LETO

Fig. 8. Task Satisfaction Factor (s) Vs. Number of Tasks.

Fig. 8 illustrates the average satisfaction factor of each task
in the matching. It can be observed that the satisfaction level
of each task decreases with increasing number of tasks. The
reason for this is two fold: (i.) tasks are forced onto less
preferred FNs for meeting minimum quota, (ii.) once the best
performing FNs are allotted their designated maximum quota,
the tasks that appear later in the PL are mapped to their less
preferred FNs. With increase in number of tasks and limited
V RUs at best FNs, high percentage of tasks are pushed to be
mapped to less preferred FNs which leads to unsatisfactory
assignments. This leads to a sharp decline in task satisfaction
factor for larger test cases.
Thus the obtained simulation results confirm that LETO can
achieve a more balanced assignment compared to the baseline
algorithms.

VI. CONCLUSION

In this paper, we proposed a model called LETO to achieve
an efficient and balanced assignment of tasks to FNs in a
densely connected IoT-Fog network. The offloading problem
is formulated as a one-to-many matching game with minimum
and maximum quotas and solve it using a multi-stage deferred
acceptance algorithm (MSDA). To validate the efficiency of
LETO, we compare its performance with two different base-
line algorithms. Thorough simulation analysis confirms that
LETO is able to achieve a more balanced assignment across
baselines considering all test cases. As a consequence of a
balanced assignment, LETO suffers from a marginal increase
in offloading delay and number of outages compared to HCD
for smaller test cases.

REFERENCES

[1] C. Swain, M. N. Sahoo, A. Satpathy, K. Muhammad, S. Bakshi, J. J.
P. C. Rodrigues, and V. H. C. de Albuquerque, “Meto: Matching theory
based efficient task offloading in iot-fog interconnection networks,”
IEEE Internet of Things Journal, pp. 1–1, 2020.

[2] Y. Gu, Z. Chang, M. Pan, L. Song, and Z. Han, “Joint radio and com-
putational resource allocation in iot fog computing,” IEEE Transactions
on Vehicular Technology, vol. 67, no. 8, pp. 7475–7484, 2018.

[3] S. A. Zakaryia, S. A. Ahmed, and M. K. Hussein, “Evolutionary
offloading in an edge environment,” Egyptian Informatics Journal, 2020.

[4] P. Sun, H. Zhang, H. Ji, and L. Xi, “Small cells clustering and resource
allocation in dense network with mobile edge computing,” in 2019 IEEE
Wireless Communications and Networking Conference (WCNC), 2019,
pp. 1–6.

[5] P. L. Nguyen, R. H. Hwang, P. M. Khiem, K. Nguyen, and Y. D.
Lin, “Modeling and minimizing latency in three-tier v2x networks,” in
GLOBECOM 2020 - 2020 IEEE Global Communications Conference,
2020, pp. 1–6.

[6] V. B. C. Souza, W. Ramı́rez, X. Masip-Bruin, E. Marı́n-Tordera, G. Ren,
and G. Tashakor, “Handling service allocation in combined fog-cloud
scenarios,” in 2016 IEEE international conference on communications
(ICC). IEEE, 2016, pp. 1–5.

[7] C. Swain, M. N. Sahoo, and A. Satpathy, “Spato: A student project
allocation based task offloading in iot-fog systems,” arXiv preprint
arXiv:2105.10715, 2021.

[8] J. Zhang, H. Guo, J. Liu, and Y. Zhang, “Task offloading in vehicular
edge computing networks: A load-balancing solution,” IEEE Transac-
tions on Vehicular Technology, vol. 69, no. 2, pp. 2092–2104, 2020.

[9] O. Semiari, W. Saad, and M. Bennis, “Downlink cell association and
load balancing for joint millimeter wave-microwave cellular networks,”
in 2016 IEEE Global Communications Conference (GLOBECOM),
2016, pp. 1–6.

[10] M. Adhikari, M. Mukherjee, and S. N. Srirama, “Dpto: A deadline and
priority-aware task offloading in fog computing framework leveraging
multilevel feedback queueing,” IEEE Internet of Things Journal, vol. 7,
no. 7, pp. 5773–5782, 2020.

[11] F. Chiti, R. Fantacci, and B. Picano, “A matching theory framework for
tasks offloading in fog computing for iot systems,” IEEE Internet of
Things Journal, vol. 5, no. 6, pp. 5089–5096, 2018.

[12] A. Yousefpour, G. Ishigaki, R. Gour, and J. P. Jue, “On reducing iot
service delay via fog offloading,” IEEE Internet of Things Journal,
vol. 5, no. 2, pp. 998–1010, 2018.

[13] M. K. Hussein and M. H. Mousa, “Efficient task offloading for iot-
based applications in fog computing using ant colony optimization,”
IEEE Access, vol. 8, pp. 37 191–37 201, 2020.

[14] D. Fragiadakis, A. Iwasaki, P. Troyan, S. Ueda, and M. Yokoo,
“Strategyproof matching with minimum quotas,” vol. 4, no. 1, 2016.
[Online]. Available: https://doi.org/10.1145/2841226

[15] A. Satpathy, M. N. Sahoo, L. Behera, C. Swain, and A. Mishra,
“Vmatch: A matching theory based vdc reconfiguration strategy,”
in 2020 IEEE 13th International Conference on Cloud Computing
(CLOUD), 2020, pp. 133–140.

[16] H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh, and R. Buyya, “ifogsim: A
toolkit for modeling and simulation of resource management techniques
in the internet of things, edge and fog computing environments,”
Software: Practice and Experience, vol. 47, no. 9, pp. 1275–1296, 2017.

464

