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Abstract. In this paper, we propose a hybrid Tabu Expectation Max-
imization (TEM) Algorithm for segmentation of Brain Magnetic Res-
onance (MR) images in both supervised and unsupervised framewrok.
Gaussian Hidden Markov Random Field (GHMRF) is used to model the
available degraded image. In supervised framework, the apriori image
MRF model parameters as well as the GHMRF model parameters are
assumed to be known. The class labels are estimated using the Maximum
a Posteriori (MAP) estimation criterion. In unsupervised framework,
the problem of model parameter estimation and label estimation is for-
mulated in Expectation Maximization (EM) framework. The labels are
estimated using the proposed Tabu Search algorithm while the model pa-
rameters are the maximum likelihood estimates. Our proposed algorithm
yields results with arbitrary initial paramater set and thus overcomes the
problem of proper choice of initial parameters. The results obtained are
comparable with the results obtained by using the algorithm proposed by
Zhang et.al. [15] , where the Iterated Conditional Mode (ICM) algorithm
is used for computing the MAP estimates.

1 Introduction

Image segmentation is one of the early vision problem and has a wide application
domain. The problem becomes more compounded while segmenting noisy scenes.
For the last two decades, stochastic models, specifically, Markov Random Field
(MRF) models have been used for image segmentation [1, 2]. MRF provides
an unifying tool to provide a link between local and global characteristics of
the image with the notion of neighbor structure. Geman and Geman[1] have
proposed line fields with MRF models with a view to preserve the edges in
noisy images. Often, the segmentation problem is formulated as pixel labelling
problem and the pixel labels are estimated using the principle of Maximum a
Posteriori Estimation (MAP) [1–3, 6]. Since computation of the MAP estimate
is also a difficult problem, by and large, Simulated Annealing (SA) algorithm
has been used to obtain the MAP estimates [3, 6]. The model based approaches
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for image segmentation can be viewed as either supervised or unsupervised. In
the supervised framework, the associated model parameters are assumed to be
known a priori [1–3, 6]. The problem is categorized as the unsupervised one
when both the model parameters as well as the class labels are assumed to be
unknown[2].

In the supervised framework, the associated model parameters are assumed
to be known a priori [3, 6]. The problem is usually formulated as a pixel labelling
problem using Bayesian approach. The MAP estimates of the pixel labels are
obtained using SA algorithm [3]. In unsupervised framework, Besag [2] has pro-
posed the coding scheme to estimate the model parameters while the image
labels are estimated using the Iterated Conditional Mode (ICM) algorithm. The
image labels and the model parameters are estimated in alternation. Eventually,
this recursive algorithm converges to the optimal set of parameters and hence
image segmentation. Deng et al. [4] has proposed an unsupervised scheme where
they have estimated the model parameter and the class labels recursively. Re-
cently, a tree-structured MRF based segmentation scheme is proposed in [5].
In [3], Nanda et.al. have proposed a Homotopy Continuation method for MRF
model parameter estimation while the image labels are obtained using SA al-
gorithm. The problem in unsupervised framework is a hard one because of the
fact that both the parameters and the image labels are assumed to be unknown.
In [2], even though ICM converges with in a few iterations, it has the inherent
local convergence property. Simulated Annealing was found to be a potential
alternative [3, 6] for quite sometime. The notion of Tabu Search can provide an
alternate tool for such problems.

Tabu Search proposed by Glover [7–9] can be viewed as a strategy to solve
combinatorial optimization problem and is an adaptive procedure which over-
comes the limitations of local optimality. The notions of Tabu Search could be
used to devise algorithms for image restoration [6] and segmentation [10]. In [6]
and [10] Tabu Search has been used to obtain the MAP estimate of the image
labels. In [6] a parallel Tabu Search algorithm is proposed to reduce the compu-
tational burden and the performance of the proposed Tabu Search algorithm is
compared with that of the SA algorithm.

Segmentation of Brain Magnetic Resonance Images (MRI) has attracted at-
tention of many researchers for the last decade [15, 11, 14]. Wells et al.[11] have
proposed an adaptive brain MR image segmentation scheme in EM framework.
EM algorithm proposed by Dempster [12] is a potential tool to handle incomplete
data problem. Gu et al. [13] have proposed a EM algorithm based segmentation
scheme while dealing with inhomogenous HMRF model. R. Guillemaud et.al.[14]
have proposed a modified scheme in stochastic framework to estimate the bias
field as well as pixel labels. Hidden Markov Model(HMM) have been extensively
used for speech recognition[16]. Zhang et.al. [15] has proposed Hidden Markov
Random Field (HMRF) model to model the observed degraded image in the con-
text of segmentation. They have employed GHMRF model and has suggested a
recursive scheme to estimate the GHMRF model parameters and the image la-
bels simultaneously. They have formulated the problem in EM framework where



ICM has been used to obtain the MAP estimates. The algorithm proposed by
Zhang et.al[15] greatly depends upon the choice of initial parameters.

In this article, we have addressed the problem of image segmentation in
both supervised and unsupervised framework. The a priori class is modeled as
a MRF model and the observed degraded image is modeled as HMRF model.
Specifically, the observed image is modeled as Gaussian Hidden Markov Random
Field (GHMRF). In supervised framework, the associated model parameters like
mean (µ) and standard deviation (σ) of the Gaussian model are assumed to be
known. The estimation of class labels are obtained by the Bayesian approach
and the principle of Maximum a Posteriori(MAP) estimation. A Hybrid Tabu
Search based algorithm is proposed to obtained the MAP estimates of the labels.
Synthetic images of different classes are generated using Gibb’s sampler[1]. The
proposed algorithm could be successfully tested for synthetic as well as real Brain
Magnetic Resonance Images (MRI).

In unsupervised framework, both the model parameters as well as the class
labels are assumed to be unknown. Since this type of problem can be viewed
as incomplete data problem, the problem is formulated in EM framework. In
Expectation step, the MAP estimate of the image is obtained using an arbitrary
parameter set. Earlier work by Zhang et.al.[15] have used ICM algorithm [2] to
obtain the MAP estimate. Since ICM is a locally convergent algorithm, the al-
gorithm needs a proper choice of initial parameters that are close to the optimal
set. Our proposed algorithm does not need to have a proper initial choice of pa-
rameters. The algorithm starts from an arbitrary set of parameters. The MAP
estimate of image labels is obtained using these arbitrary set and there after the
expected value of the log likelihood function is computed. In the maximization
step (M-step) of the EM algorithm, the GHMRF parameters like µ and σ are
estimated. The parameter estimation and image estimation is carried out recur-
sively until the parameters converge to the optimal set. The proposed Tabu-EM
algorithm could be successfully tested for synthetic as well as real brain MR
images. The results obtained by our proposed method were compared with that
of the results obtained using Zhang’s[15] approach and our results were visibly
close to that of results obtained by using the method proposed by Zhang et.
al.[15]. However, the potential feature of the proposed algorithm is that it starts
from an arbitrary set of parameters. Simulation results presented demonstrates
the efficacy of our proposed Tabu-EM algorithm.

2 Hidden Markov Random Field Model (HMRF)

Hidden Markov Models (HMM) have been applied to the problem of speech
recognition [16]. HMMs are defined as stochastic processes generated by a Markov
chain whose state sequence can not be observed directly, but only through a se-
quence of observations. Each observation is assumed to be a stochastic function
of sate sequence. A special case of a HMM is considered, where the underly-
ing stochastic process is a MRF instead of a Markov chain and therefore, not



restricted to one dimension. This special case is referred to as Hidden Markov
Random Field (HMRF) model [15].

Let the images are assumed to be defined on a discrete rectangular lattice
S=N×N. Let X denote the random field associated with the labels of the original
image. The label process X is assumed to be MRF with respect to a neighborhood
system η and is described by its local characteristics.

P (Xi,j = xi,j | Xk,l = xk,l, k, l ∈ S, (k, l) 6= (i.j))

= P (Xi,j = xi,j | Xk,l = xk,l, (k, l) ∈ η)

Since X is a MRF, or equivalently Gibbs distributed, the joint distribution can be
expressed as P (X = x | φ) = 1

Ź
e−U(x,φ), where Z =

∑

x e−U(x,φ) is the partition

function, φ denote the clique parameter vector, U(x,φ) is the energy function
and is of the form U(X, φ) =

∑

c(i,j)∈c Vc(x, φ) is the clique potential. Y is the
observed random field. For any potential realization x, the random variables Yi

are conditional independent

P (Y | X) =
∏

i∈S

P (yi | xi) (1)

The joint probability of (X,Y) can be expressed as

P (Y, X) = P (Y | X)P (X) = P (X)
∏

i∈S

P (yi | xi)

According to the local characteristics of MRF, the joint probability distribution
of pair (Xi, Yi) given the neighborhood configuration of Xηi

is

P (yi, xi | xηi
) = P (yi | xi)P (xi | xηi

) (2)

Thus, the marginal probability distribution of Yi dependent on θ and Xηi

P (yi | xηi
, θ) =

∑

l∈L

P (yi, l | xηi
, θ)

=
∑

l∈L

P (yi, l, θ)P (l | xηi
) (3)

where θ = {θl, l ∈ L}. (3) is the Hidden Markov Random Field model, L denotes
the number of labels.
With Gaussian distribution, (3) can be expressed as

p(yi | xηi
, θ) =

∑

l∈l

g(yi, θl)P (l | xηi
) (4)

(4) is refereed to as the Gaussian Hidden Markov Random Field (GHMRF)
model, where g(yi, θl) is the Gaussian probability density function.



3 Image Segmentation

We have addressed the problem of Brain MR image segmentation in both su-
pervised and unsupervised framework. Since in supervised framework the model
parameters are assumed to be known, it is required to estimate the pixel labels
using the associated model parameters. Let X be the random field associated
with the noise free class label and x be the realization of the same. X is modeled
as a MRF. Let Y denote the observed image random field and y be the realiza-
tion of it. Y is modeled as Gauss Hidden Markov Random Field (GHMRF). Let
θ be the associated model parameters.

3.1 Supervised Mode

In the pixel labeling problem, let x∗ denote the true but unknown labeling con-
figuration and x̂ denote the estimate for x∗. x∗ and x̂ are realization of random
field X, which is modeled as MRF. The observed image y is a realization of
GHMRF. The problem is to recover x∗ from the observed image y. The follow-
ing optimality criterion is considered.

x̂ =
arg max

x P (X | Y, θ) (5)

where the model parameters for each class θl = [µl, σl] are selected on an ad hoc
basis. Since X is unknown, the posteriori probability distribution P (X | Y, θ)
can not be evaluated. Hence, using Baye’s rule, (5) can be expressed as

x̂ =
arg max

x
P (Y | X, θ)P (X)

P (Y )
(6)

Since Y is known. The denominator of (6) is a constant. Thus, (6) can be written
as

x̂ =
arg max

x P (Y | X, θ)P (X) (7)

Since, X is a MRF, the prior probability distribution in (7) is given as P (X) =
1
Z′

e−U(X). It is also assumed that the pixel intensity yi follows a Gaussian dis-
tribution with parameters θi = {µl, θl}. Given the class label xi = l,

P (yi | xi) =
1

√

2πσ2
l

exp

(

− (yi − µl)
2

2σ2
l

)

(8)

Using the assumption of conditional independence

P (Y | X) =
∏

i∈S

P (yi | xi) =
∏

i∈S

[

1√
2π

(

− (yi − µxi
)2

2σ2
xi

− log(σxi
)

)]

(9)

(9) can be expressed as

P (Y | X) =
1

Z ′
exp(−U(Y | X))) (10)



U(Y | X) =
∑

i∈S

U(yi | xi) =
∑

i∈S

[

(yi − µxi
)2

2σ2
xi

+ log(σxi
)

]

and Z ′ = (2π)N/2. Using the above, (7) can be expressed as

x̂ =
arg max

x

[

1

Z ′
exp(−U(X))

1

Z ′
exp(−U(Y | X))

]

=
arg max

x exp [−{U(Y | X) + U(X)}] (11)

(11) is equivalent to minimizing the following

x̂ =
arg min

x [U(Y | X) + U(X)] (12)

The MAP estimate in (12) is obtained by employing the proposed Hybrid Tabu
search algorithm.

3.2 Tabu Search

Many optimization problems in practice require large space and more computa-
tional time in nonlinear framework. Extensive effort has been directed towards
the design of good heuristics, in other words algorithm efficient with respect
to computing time and storage space. Tabu Search (TS) is a general heuristic
search procedure devised for finding a global minimum of a function which may
be linear or nonlinear. It was developed by Glover [8] in 1986. This procedure
has a flexible memory to keep the information about the past steps of the search
and uses it to create and exploit the new solutions in the search space. Initially
the Tabu Search algorithm starts from a random point or move Xini and the
next point obtained from the set of the feasible solutions by applying simple
modification to Xini. This modification is called a ‘move’ and the next point
x1 is the ‘new point’. In order to avoid the algorithm’s move to a new point in
the search space which has been visited earlier, a Tabu list is introduced. Every
successful move is stored in the Tabu list. The new move obtained will now be
compared with all the earlier moves stored in the Tabu list and if the new move
matches with any move in the Tabu list, it is discarded. The next point is again
introduced and if the new point does not matches, then it is considered as a
new point in the solution space. The use of Tabu list decreases the possibility
of cycling, because it prevents returning, after a certain number of iterations,
to a solution that has been visited recently. The Tabu list is updated with the
new set of solutions. The best valued solution is selected as the next solution
Xnext. The moves stored in the Tabu list are the ones that were carried out most
frequently and recently. This process also helps in overcoming the local minima
problem.



3.3 Tabu Search Based Hybrid Algorithm

We have proposed the Tabu Search algorithm which mostly makes the Tabu
array with recent moves of minimum energy but also moves with higher energy
has been accepted with a probability. This strategy is our aspiration condition.
The basic steps of the algorithm to obtain the MAP estimate is as follows.

Hybrid Tabu Algorithm

1. Initialize the initial temperature Tin.
2. The Initial Image of the algorithm is the degraded image.
3. A Tabu list, i.e. Tabu image set is created to store the recent moves, i.e. the

image estimates of the algorithm. The set is of fixed length.
4. From the current move of the image, the next Tabu image is generated.

i) Perturb xij(t) with a zero mean Gaussian distribution with a suitable
variance.
ii) Evaluate the energy Up(xij(t + 1)) and UP (xij (t)). If ∆f = (UP (xij (t +
1))−UP (xij(t))) < 0, assign the modified value as the new value. If ∆f > 0,
accept the xij(t+1) with a probability (if exp(−∆f/T (x) > random(0, 1)).
iii) Repeat step (ii) for all the pixels of the image.

5. Compute the power of the updated image x(t+1) as Px(t+1) and compare it
with the powers of the Tabu list named as Tabu energy, if Px(t+1) > PTabu,
accept x(t + 1) as Tabu image.

6. Aspiration condition: If Px(t + 1) > PTabu, accept x(t + 1) as Tabu image
with some probability.

7. Update the Tabu list.
8. Decrease the Temperature according to the logarithmic cooling schedule.
9. Repeat step 4-8 till the stopping criterion is met. In our simulation the

stopping criterion is: the parameters do not change for three consecutive
combined iterations.

3.4 Unsupervised Mode

In the unsupervised framework, we estimate the class labels and the model pa-
rameters alternately to obtain segmentation. The class labels are modeled as
MRF model while the observed degraded image is modeld as GHMRF model.
Since, the estimate of the optimal class labels is dependent on the estimate of
optmial set of parameters, this can be viewed as an incomplete data problem.
Hence, the MRF model parameters θ = {θl; l ∈ L} need to be estimated. Specifi-
cally for Gaussian MRF model for the observed image y, the mean and standard
deviation of each Gaussian class parameters θl = (µl, σl) need to be estimated.
In EM algorithm, the following criterion is adapted;

1. The missing part x̂ is estimated with the current θ estimate and then x̂ is
used to form the complete data set {x̂, y} .

2. θ is estimated by maximizing the expectation of complete data log likelihood
E[log P (X, Y | θ)].



In this case, in E step, the MAP estimates of the class labels are obtained to
form the complete data set. In the M step, the ML estimate of the parameter is
computed using the class labels computed in E step.
E-step
MAP estimate of X is obtained by using the following optimality criterion.

X̂(t) =
arg max

x P (X | Y, θ(t))

and there after the expected value is computed as follows.

E[log P (x, y | θ) | y, θ(t)]

M-step
ML estimate of parameters is obtained

θ̂(t+1) =
arg max

θ P (Y | θ, X(t))

The ”E” and ”M” steps are repeated till the parameters converge to the optimal
set and hence segmentation.

Tabu Expectation Maximization Algorithm (TEM) The Maximum Like-
lihood estimate of the GHMRF model parameters are obtained by maximizing
the likelihood function P (Y | θ, X(t)). In the similar approach of Zhang [15], the
update equation reduces to the following.

µ
(t+1)
l =

∑

i∈S P (t)(l | yi)yi
∑

i∈S P (t)(l | yi)
(13)

(

σ
(t+1)
l

)2

=

∑

i∈S P (t)(l | yi)(yi − µl)
2

∑

i∈S P (t)(l | yi)
(14)

Tabu-HMRF-EM Algorithm

1. Initialize the class label to random values and take an arbitrary parameter
set.

2. Compute the likelihood distribution P (t)(yi | xi) and estimate the class
labels by MAP estimation.

x̂(t) =
arg max

x P (X | Y, θ)

or in the other words

x̂(t) =
arg min

x [U(Y | X) + U(X)]

this is obtained by the proposed Tabu Search algorithm.



3. Compute the posterior distribution

P (t)(l | yi) =
g(t)(yi | θl)P

(t)(l | xηi
)

P (yi)

4. Update the parameters

µ
(t+1)
l =

∑

i∈S P (t)(l | yi)yi
∑

i∈S P (t)(l | yi)

(

σ
(t+1)
l

)2

=

∑

i∈S P (t)(l | yi)(yi − µl)
2

∑

i∈S P (t)(l | yi)

5. Step 2-4 are repeated until a fixed number of iterations.

4 Results and Discussions

We have validated the proposed algorithm in both supervised as well as unsu-
pervised framework. Synthetic as well as real images are considered in both the
above mentioned frameworks. Synthetic images consisting of different classes
were generated using Gibb’s sampler and GHMRF model. Although we have
tested our algorithm for 3,4 and 5 classes for the sake of illustration,results for
3 class images are presented in this paper. Besides, results for two different real
Brain MR images are presented to demonstrate the efficacy of the proposed
schemes.

4.1 Supervised mode

In this mode we have presented results for a 3 class synthetic image and two
real images as shown in Fig.1, Fig.2, Fig.3 respectively. The degraded images are
obtained by adding white Gaussian noise to the original images. The observed
degraded image is modeled as GHMRF while the class label is modeled as MRF.
In supervised mode, the GHMRF parameters such as µ and σ for different classes
are selected on an adhoc basis. The clique potential function for apriori MRF
class model is given by

Vc(x) = −δ if |xi − xj | = 0
= δ if |xi − xj | 6= 0

Where xi and xj are the pixel values of the ith and jth pixel respectively.
The parameters used for the synthetic image of figure 1 are: Initial tempera-

ture Tin = 0.5 and Tabu length K = 10. The original 3 class image is shown in
Fig.1(a). The different noisy images are shown in Fig.1(b), (d), (f) and (h). Seg-
mented images are shown in Fig.1(c), (e), (g) and (i) respectively. Eventhough,
it is a 3 class image, initially five classes were assumed because of noisy condi-
tions. Hence, the parameters used for different noisy conditions are presented in



Table 1. As seen from Fig.1, proper segmentation could be achieved for noisy
images upto SNR 22dB and for images of SNR 20 and 15dB, a few misclassified
pixels are observed in Fig.1(g) and Fig.1(i). However, even in high noise condi-
tions broadly three classes could be obtained. Thus the algorithm converged to 3
classes. The real images considered are shown in Fig.2 and Fig.3. Fig.2(a) shows
the real brain MR image of size (74 × 100) and the noisy image of SNR 25dB
is shown in Fig.2(b). The corresponding segmented image is shown in Fig.2(c).
Because of noisy case , parameters for six classes as given in Table 2. are used to
segment the noisy image. As observed from Fig.2(c) there are four broad classes
in the segmented image and thus noisy image could be segmented. The parame-
ters Tinand Tabu length K are same as that of the synthetic case. The 2nd real
image considered is shown in Fig.3(a) and the noisy and segmented images are
shown in Fig.3(b) and 3(c) respectively. The parameters used in this case are:
Tin = 0.1 and Tabu length K=5. Because of noisy case, five initial classes are
assumed and hence the parameters used for these five classes are shown in Table
3. However, as observed from Fig.3(c), the algorithm could segment into three
broad classes and thus proper segmentation could be achieved.

Table 1. Parameters for Synthetic 3-class Image of size (128x128) corresponding to
Fig.1 in supervised mode

Class → 1 2 3 4 5

µ25dB 0.027 0.991 1.995 2.0 1.0
σ25dB 0.104 0.109 0.981 0.4 0.02

µ22dB 0.027 0.991 1.995 2.0 1.0
σ22dB 0.104 0.103 0.98 0.4 0.02

µ20dB 0.027 0.991 1.995 2.0 1.0
σ20dB 0.104 0.109 0.98 0.4 0.02

µ15dB 0.051 0.991 1.996 2.419 1.0
σ15dB 0.207 0.19 0.5 0.7 0.12

δ 1

Table 2. Parameters for Brain MR Image of size (74x100) having SNR=25dB corre-
sponding to Fig.2 in supervised mode

Class 1 2 3 4 5 6

µ 0.052 2.6248 1.5974 3.265 2.0 1.0
σ 0.079 4.86 0.562 0.408 0.257 0.2

δ 0.28



(a)Original
Image

(b)Noisy Image
(SNR=25dB)

(d)Noisy Image
(SNR=22dB)

(f)Noisy Image
(SNR=20dB)

(h)Noisy Image
(SNR=15dB)

(c)Segmented
Image
(SNR=25dB)

(e)Segmented
Image
(SNR=22dB)

(g)Segmented
Image
(SNR=20dB)

(i)Segmented
Image
(SNR=15dB)

Fig.1: Segmented images for different noisy synthetic three class images of size
(128x128) in supervised mode.

(a)Original Image (b)Noisy Image (c)Segmented Image

Fig.2: Supervised Image Segmentation of Real Brain MR Image of Size (74x100) having
SNR=25dB.



(a)Original Image (b)Noisy Image (c)Segmented Image

Fig.3: Supervised Image Segmentation of Real Brain MR Image of Size (189x205)
having SNR=25dB.

Table 3. Parameters for Brain MR Image of size (189x205) having SNR=25dB in
supervised mode

Class 1 2 3 4 5

µ 0.1 0.5 1.5 1.5 2.0
σ 0.5 0.5 0.5 1.5 1.5

δ 0.1

4.2 Unsupervised mode

The synthetic 3 class image considered for our simulation is shown in Fig.4(a).
The corresponding noisy image of SNR 20dB is shown in Fig.4(b). We have
assumed 5 initial classes and hence the initial set of parameters are presented
in Table 4. The algorithm converged to the optimal set as given in Table 4.
The segmented result obtained using these parameters is shown in Fig.4(c).
The algorithm starts from an arbitrary set. It is evident from Table 4 that the
algorithm starts from µ = 0.3 and σ = 0.1 for the first class and converges to
µ = 0.031 and σ = 0.046 after around 18 combined iterations. The parameters
used in TEM algorithm are Tin = 0.1 and Tabu length K=5. Our result is also
compared with that of the algorithm proposed by Zhang et. al.[15] where ICM
algorithm is used. The result obtained by Zhang’s[15] approach is presented in
Fig.4(d). By comparing Fig.4(c) and Fig.4(d), it is clear that the segmented
image of Fig.4(c) is visually same as that of Fig.4(d). It is to be noted that
the result shown in Fig.4(c) is obtained from an arbitrary initial parameter
set where as the result presented in Fig.4(d) is obtained from a proper choice
of initial parameter set. Zhang et. al.[15] has outlined the histogram method
to obtain a initial parameter set. In order to validate the proposed algorithm
the algorithm was run with different initial parameters sets. For the first class,
the different starting conditions of µ and σ with the convergence conditions are
shown in Fig.5(a) and Fig.5(b). It is observed from Fig.5(a) and Fig.5(b) that the
parameters µ converged to a value of 0.031 despite starting from different initial
values. Similar phenomenon is also observed for σ as demonstrated in Fig.5(b).
This demonstrates that the algorithm does not require to have a proper choice



of initial parameters. The algorithm was also tested for real Brain MR images as
shown in Fig.6 and Fig.8. Fig.6(a) shows the original image of size (189×205) and
the corresponding noisy image of SNR 25dB is shown in Fig.6(b). The parameters
used in the algorithm are Tin = 0.1 and Tabu length K=5. The noisy image was
input to the algorithm and five different classes were assumed initially. The
initial values of µ and σ for five different classes are given in Table 5. However,
the algorithm converged to four different classes as seen from Fig.6(c). It is also
observed from Fig.6(c) that proper segmentation could be achieved even starting
from different initial conditions. The results obtained using Zhang’s approach is
shown in Fig.6(d). Results obtained by our proposed algorithm is very much
comparable with Zhang’s approach. The convergence of µ and σ for different
initial conditions are shown in Fig.7(a) and (b). It is observed that even though
the algorithm started from different initial conditions, the parameters µ and σ
converged to a optimal set.

(a) Original Image
(b) Noisy Image
(SNR=20dB)

(c) Segmented
Image (Using
TEM algo.)

(d) Segmented
Image (Using
Zhang’s algo.)

Fig.4: Unsupervised Image Segmentation of 3 class Synthetic Image of Size (128x128)

Table 4. Parameters for 3 class Synthetic Image of size (128x128) having SNR=20dB
corresponding to Fig.4 in unsupervised mode.

Class 1 2 3 4 5

µ 0.3 0.2 0.8 0.8 0.2
Initial σ 0.1 0.2 0.1 0.4 0.2

µ 0.031 0.012 0.992 1.99 0.0
Final σ 0.046 0.0012 0.104 0.099 0.0001

δ 1.2

The algorithm was also tested for another real Brain MR image as shown in
Fig.8(a). We have validated our result with four different noisy images of SNR
25,22,20 and 18dB, but for the sake of illustration, we present the case of a
noisy image of SNR 22dB as shown in Fig.8. The segmented results shown in
Fig.8(c),(d),(e) and (f) correspond to 4 different initial parameter sets. The initial
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(a) Original Image
(b) Noisy Image
(SNR=25dB)

(c) Segmented
Image (Using
TEM algo.)

(d) Segmented
Image (Using
Zhang’s algo.)

Fig.6: Unsupervised Image Segmentation of brain MRI image of size (189x205)

and final parameter sets for these four different conditions are given in Table 6.
The convergence of the µ and σ starting from four different initial conditions are
shown in Fig.9(a) and (b) respectively. It is observed from Fig.9(a) that although
µ starts from four diffrent values, it converges to a optimal set. The parameter
σ could be selected with wide differernce for a given class (first class) and, as
clearly seen, all the four converges to almost values that are very close to each
other. This demonstrates the fact that the proposed algorithm does not depend
upon the proper choice of parameters. It is clear from the results presented
in Fig.8 that proper segmentation could be achieved for four different starting
conditions. However, in our formulation, we assume to have a priori knowledge
of the parameter ”δ”. Thus, proper segmentation could be achieved for synthetic
as well as real images.

5 Conclusion

In this paper we have proposed supervised and unsupervised image segmentation
schemes. The problem is formulated as a pixel labelling problem. In both the
cases, the class labels are modeled as MRF and the observed image as GHMRF



Table 5. Parameters for Real Brain MR Image of size (189x205) having SNR=25dB
for different classes corresponding to Fig.5 for different initial conditions.

Class → 1 2 3 4 5

µi1 0.5 4. 3. 2. 2.
σi1 0.5 0.5 0.5 2. 2.

µf1 0.054 3.68 3.11 1.46 1.38
σf1 0.024 0.07 0.4 0.19 0.074

µi2 0.45 4.3 3.2 1.9 2.1
σi2 0.45 0.4 0.45 1.9 2.1

µf2 0.05 3.63 2.61 1.45 1.37
σf2 0.02 0.09 0.47 0.17 0.07

µi3 0.51 3.8 3.1 1.8 2.2
σi3 0.52 0.42 0.43 2.2 1.8

µf3 0.053 3.68 3.21 1.47 1.45
σf3 0.023 0.067 0.34 0.2 0.07

δ 0.5

model. The model parameters were selected on an ad hoc basis in supervised
framework. In supervised scheme, the MAP estimates are obtained using the
proposed hybrid Tabu algorithm. The scheme could yeild successful results for
real as well as synthetic images. Our unsupervised scheme is based on EM frame-
work. The proposed TEM unsupervised scheme has the attribute to converge to
the optimal set of parameters starting from an arbitrary set. Thus, this does not
require to have proper choice of initial parameters. This does not ofcourse imply
the parameters can be selected at random. Neverthless, the parameters can be
selected from an arbitrary set. The algorithm could be successfully tested for
synthetic as well as real images. Our results were compared with the results ob-
tained using Zhang’s approach and it was observed that our results are visually
close to Zhang’s method. It is to be noted that our algorithm starts from an ar-
bitrary set while Zhang’s approach needs proper choice of initial parameters. In
both the schemes, the a priori model parameter δ is selected on an ad hoc basis.
Hence, the proposed algorithm which has a globally convergent attribute may
be preferred to the algorithm that requires a proper choice of initial parameters.
Currently attempts are made to estimate the model parameter δ together with
other parameters.
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