
Distributed Incremental Strategy for Radio
Tomographic Imaging

Abhijit Mishra
Department of ECE

NIT, Rourkela
Odisha, India

517ec1012@nitrkl.ac.in

Upendra Kumar Sahoo
Department of ECE

NIT, Rourkela
Odisha, India

sahooupen@nitrkl.ac.in

Subrata Maiti
Department of ECE

NIT, Rourkela
Odisha, India

smaiti@nitrkl.ac.in

Abstract—Radio Tomographic Imaging (RTI) finds extensive
application in modern day problem. The RTI achieved this using
received signal strength (RSS) power and transmitted power by
sensor nodes. RTI being an ill-posed inverse problem, requires
regularization for proper estimation of spatial loss field(SLF)
and able to detect the object. Centralized solution of RTI
system requires large communication overheads. This motivates
to develop distributed algorithm for RTI. Two novel distributed
algorithms using incremental approach are developed in this
paper. The first approach is the direct extension of the centralized
approach to distributed incremental approach. Second algorithm
requires less communication overheads compared to the first
one by incorporating data censoring technique. The performance
metrics show that the performance of distributed Incremental
RTI is comparable to the centralized RTI system. Again the
impact of censoring is studied by increasing the censoring ratio ,
which results in a trade-off between detection performance and
computational complexity.

Index Terms—Radio tomography; tomographic imaging; Spatial
loss field; regularization methods; Distributed Incremental RTI;
Data Censoring..

I. INTRODUCTION

RTI is a technique of imaging a portion or section of interest
from a large area or environment with the help of radio
waves. The RTI in wireless networks has a great application
in detecting and imaging obstructions present in the pathway
between transceivers. RTI has applications in medical imaging
[1], surveillance, survivor localization after earthquakes and
through-the-wall imaging [2]. The advantages of RTI include
device-free passive localization. RTI relies on incoherent tech-
niques, hence it does not have the burden in estimating the
phase of the received signal. The most significant notion behind
RTI system is SLFs, that provide the amount of attenuation
observed by electromagnetic waves in radio frequency bands at
every spatial location [3]. This attenuation is experienced when
there is an obstruction in the line of sight(LOS) path between
transceiver nodes. The absorption obtained by the SLFs helps
in detecting the objects and their imaging.

The static object has negligible impact on the variance
of the power of the received signal. Thus, shadowing based
RTI (SRTI) is preferred over variance-based RTI (VRTI).The
shadowing loss in SRTI is same as the attenuation obtained by
the SLFs. In SRTI relies on the fact is that closely located
radio links possess similar shadowing. This is due to the

presence of obstructions which are common to closely placed
links [4]. Already many regularization methods are addressed
in different literature. Tikhonov regularization with low and
high smoothing [5] and with a normalized weight model is
developed in [6]. The work in [6] uses the application of
truncated singular value decomposition(TSVD) regularization
is used for inverse problem. From all the above literature, we
opt Tikhonov regularization for simplicity and hence used in
this paper. The sensor network lifetime is one important factor,
that should be given highest priority during the development
of the algorithm for wireless sensor network. Network life
time can be enhanced by facilitating the in-network processing
capability of the network. In-network processing based strate-
gies are broadly classified into;(i) incremental;(ii) diffusion
and (iii) consensus. Incremental approach is simple but it
requires an incremental path connecting each sensor nodes.
Since in this paper the sensor nodes are placed in a uniform
manner, so finding the incremental path is not troublesome.
Hence distributed incremental strategy is used for imaging
vector estimation in RTI. Moreover in order to find the global
incremental path a local decision based algorithm is proposed.

The first part of the paper contributes to two distributed
approaches, where in the first case imaging vector of each node
is shared with its neighborhood node.This method requires
large computations at each node due to matrix inversion
operation. This is handled in second approach by using a
data censoring technique. A proper selection of censoring ratio
leads to a trade-off between detection performance and energy
efficiency.

The paper is organized in the following way. Section II
describes the problem statement. The distributed strategy is
proposed in Section III. Section IV shows the experimental
results, followed by performance metrics analysis. Section V
concludes the paper.

II. PROBLEM FORMULATION

Consider a rectangular region comprising a square grid
of size 7 × 7. On the periphery, J=24 number of wireless
sensors are placed uniformly as shown in Fig.1. The entire
region is divided into M=900 voxels. The objective is to
find the position and size of an object present in the region.
This is achieved using the RSS values of transceivers. When
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communication between the nodes in a wireless network area
takes place then due to the presence of objects inside the
network few transmitted power is getting absorbed, scattered,
or reflected by the object. RTI system find an imaging vector
of dimension f ∈ <M that indicates the extent by which
transmitted radio power is getting attenuated due to presence of
objects within M voxels of the square grid. The total number of
unique two-way links is N= J2−J

2 ., for n = 1, 2...N . Consider
the following notations for a particular link.

1) Pjn: Gain of transmitter antenna of the jth senor node
for link n in dB.

2) Sn(t): shadowing loss due to objects for the nth link in
dB.

3) FLn(t):Fading loss for the nth link in dB.
4) Ln: Loss due to Antenna patterns of the nth node in dB.
5) en(t): Measurement noise at nth link.

Mathematically, the RSS power at node j due to link n is
expressed as

rjn(t) = Pjn − Ln − Sn(t)− FLn(t)− en(t) (1)

In the above expression Pjn,Lj and FLn(t) are known. Sn(j)
is the shadowing loss that has experienced by the link n.
The difference between the transmitted and received power
can be expressed in terms of the weighted sum of spatial
loss field values of all voxels in the region. Fading loss of a
link can be made zero by taking average of the different RSS
power at different time. The shadowing loss Sn(t) can also
be expressed as the line integral of absorption at every spatial
location multiplied with the weight that quantifies the amount
of absorption at that location. For M number of voxels present
in the network area, using discretization method the shadowing
loss for the nth link can be expressed as

Sn (t) = c×
M∑
m=1

wnmfm(t) (2)

where c is a constant assumed as unity by absorbing any
scaling factor of f , fm(t) is the attenuation value in voxel
m at time t, and wnm is the associated weight for a voxel m
for link n. For finding the wnm normalized elliptical weight
model is used.

A. Normalized Elliptical Weight Model

This is used for obtaining the weighting factor for each link
[4], [5] by the voxel. For a voxel, if it lies inside the ellipse
it is weighted, whereas pixels outside the 1st Fresnel zone are
weighted with value of zero. Also, the weight for each pixel
is normalized by length of link [5]. The weight model is

wnm =
1√
l

{
1 if lnm(tx) + lnm(rx) < l + δ

0 else
(3)

where the distance between transmitter and receiver foci is
denoted as l ,the distances from the center of voxel m to
the transmitter and receiver locations for link n are lnm (tx)
and lnm (rx), respectively. δ is an adjustable parameter repre-
senting the ellipse width. With the knowledge of transmitter,

Fig. 1: The ellipse fit shows that only the affected LOS signals
are considered for the weighting model.

receiver antenna power gain and total noise which is a com-
bination of shadow fading and measurement noise, we have
the ground truth information of shadowing measurements. This
noisy information along with one appropriate regularization
term is used for the development of the cost function of the
RTI. The following assumptions are considered to simplify the
problem:

1) The sensors are spread on the perimeter of grid uniformly
in a flat surface so that The z− coordinates are same.

2) The sensors know their positions and also the positions
of their neighboring sensor nodes. The sensors can know
their position using the sensor localization algorithm
already present in different literature.

The voxels which are not interacted by a link are treated
as zero weighted voxels. This is illustrated by Fig. 1 [7].
All transceivers form ellipse with each another and the non
weighted ellipses are not useful. The change in RSS ∆rn from
time t1 to t2 is considered to remove all the static losses over
time.

∆rn,j ≡ rn,j (t2)− rn,j (t1) (4)

which can be written as

∆rn,j = Sj (t2)− Sj (t1) + FLj (t2)− FLj (t1)

+en (t2)− en (t1)
(5)

where noise is the combination of measurement and fading
noise.

vn = FLn (t2)− FLn (t1) + en (t2)− en (t1) (6)

Define the RSS vector at node j as ∆rj =[
∆rj,1 ∆rj,2 · · · ∆rj,J

]T
where, each entry is

for one link (each link is associated with two sensor nodes).
Considering the vector ∆rj , the RSS for jth node can be
structured in the following form

∆rj = Wj∆f + vj , (7)

where the weighting matrix and the change in image vector
are given by Wj and ∆f = [∆f1,∆f2, ...,∆fM ]

T . Each row
of Wj is the weighting vector of each voxel to one link. Thus



the dimension of Wj is (J − 1) × M . The expression (8)
is the regression equation for jth node. Collecting ∆rj of all
node into a vector ∆r, we get the global regression formulation
which is given as

∆r = W∆f + v (8)

where ∆r = [∆r1,∆r2, ...,∆rJ ]
T , , v =

[
vT1 ,v

T
2 , ...,v

T
J

]T
,

W =
[
WT

1 WT
2 · · · WT

J

]T
In summary,∆r is the

observed difference RSS measurements vector for all links and
is of length N . v is the noise vector, and ∆f is the estimated
imaging vector indicating the attenuation occurred due to
object and is of length M . All the measurement variables are
in decibels (dB). For simplification f and r are used in place
of ∆F and ∆r , respectively. Thus the expression (8) can be
represented as

r = Wf + v (9)

RTI being an ill-posed inverse problem the objective function
is associated with a regularization term [7]–[9]. This takes the
form

greg(f) = g(f) + λh(f) (10)

where f is the imaging vector to be estimated. λ is the regular-
ization parameter g(f) is the data fidelity term and h(f) is the
regularization term and greg(f) is the new objective function.
This global problem leads to an increase in communication
overheads. The expression (9) is a linear regression problem
in which both input regression matrix W and desired vector
r are known. The objective is to estimate f . The Tikhonov
regularization is most commonly used regularization as stated
in [4], [5] and [7] for the case of smooth f . Thus, the global
cost function for RTI is

g(f) =
1

2
‖Wf − r‖22 + λ‖Df‖2 (11)

The relative importance of ‖Df‖2 compared to ‖Wf − r‖22 is
controlled by the regularization λ. D is the Tikhonov matrix.
The optimal solution of (11) can be calculated taking the
gradient of (11) and finding the value of f for which gradient
is zero, which is given as

fTIK = (WTW + λDTD)−1WT r (12)

The above solution is linear projection of the measurement
data r to the range space of w. Projection matrix is given as

PrTikhonov = (WTW + λDTD)−1WT (13)

The Tikhonov matrix D can be (i) identity matrix, (ii) 1st
and 2nd order derivative matrices or (iii) an error covariance
matrix. In this paper Tikhonov error covariance matrix is used.
As shadowing loss is a function of loss field f , it can model
SLF as a Gaussian distribution with certain covariance between
points which are ltx,rx distance apart from each another.

Rf (ltx,rx) =
σ2
p

k
exp(

−ltx,rx
k

) (14)

where k is the parameter signifies that how fast correlation
between pixels falls off with distance. Parameter σ2

p is the
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Fig. 2: Formation of the distributed incremental path. (a)
clockwise path (b) anticlockwise path.

covariance due to shadowing. The square root of the inverse
of covariance matrix Rf

−1/2 can be used for imaging vector
estimation.

III. DISTRIBUTED INCREMENTAL STRATEGY

This section deals with the development of distributed incre-
mental strategy for the RTI. Distributed strategy requires the
following condition on the global cost function (11)

g (f) =

J∑
i=1

gi (f) (15)

where gi(f) is the local cost function, which uses only the
information available at the sensor node i. Sensor node i has
the received signal information from the sensor node {j}J1
through the link (i, j). Thus the local cost function at each
sensor node can be given as

gi (f) =
1

2
‖Wifi − ri‖22 +

λ

J
‖Dfi‖22 (16)

The global cost can be written as

g (f) =
1

2

J∑
i=1

[
‖Wifi − ri‖22 +

λ

J
‖Dfi‖22

]
(17)

Incremental strategy requires a cyclic path connecting each
sensor nodes in the network [10]–[12]. For this a distributed
algorithm is developed in which local decision based on the
neighbor sensor nodes position is used to find the global
incremental path. First each sensor node needs to know the next
node in the incremental path. In order to find the incremental
path, a sensor uses the following approach. Assuming the
first sensor is initially at the origin, it searches a sensor in
the direction with order p1,p4,p2,p3 as shown in Fig 2 for
finding a neighboring sensor. A sensor does not consider
another sensor from which it has just received the data for
incremental path. The direction order in Fig. (2a) forms a
clockwise incremental path and Fig. (2a) forms anti- clockwise
incremental path. Initially the algorithm started from the first
sensor node and the imaging vector is calculated using the data
W1 and r1 using the estimation as given in (12). Thus the
imaging vector is f1 = (WT

1 W1 + λ
JD

TD)−1WT
1 r1. Then

the updated f1 is transmitted to the next node. Second node
uses several parameters such as f1, W2 and r2 to get the



f2. Indirectly f2 uses the information W1, W2, r1 and r2.
In the similar vein it can be stated that fi for any node i

requires information W1:i =
[
WT

1 WT
2 · · · WT

i

]T
and r1:i =

[
rT1 rT2 · · · rTi

]T
. The imaging vector at

(i− 1)th node can be written as

fi−1 = (WT
1:i−1W1:i−1 + λDTD)−1WT

1:i−1r1:i−1 (18)

The weight matrix W1:i =
[
WT

1:i−1 WT
i

]T
and the

received RSS r1:i =
[
rT1:i−1 rTi

]T
can be used to obtain

the fi as given below

fi =
([

WT
1:i−1 WT

i

] [
WT

1:i−1 WT
i

]T
+ λDTD

)−1
×
[
WT

1:i−1 WT
i

] [
rT1:i−1 rTi

]T
(19)

The above expression can be simplified to

fi =
(
WT

1:i−1W1,i−1 + λDTD + WT
i Wi

)−1
×
(
WT

1:i−1r1,i−1 + WT
i ri
) (20)

Take P−11:i−1 = WT
1:i−1W1,i−1+λDTD ,the above expression

can be written as

fi = (Pi−1
−1 + WT

i Wi)
−1(W1:i−1

T ri−1 + WT
i ri)

(a)
= (P1,i−1 −P1,i−1W

T
i (I + WiP1,i−1W

T
i )−1

WiP1,i−1)× (WT
1:i−1r1,i−1 + WT

i ri)

(b)
= fi−1 + P1,i−1W

T
i (I + WiP1,i−1W

T
i )−1

× [(I + WiP1,i−1W
T
i )ri −WiP1,i−1

(WT
1:i−1r1,i−1 + WT

i ri)]

(c)
= fi−1 + P1,i−1W

T
i (I + WiP1,i−1W

T
i )−1

(ri −Wifi−1)

(21)

In step (a), matrix inverse lemma (A + BCD)
−1

=
A−1 −A−1B

(
C−1 + DA−1B

)
DA−1 is used taking A =

P1,i−1, B = WT
i , C = I and D = Wi. In the

step (b) the fi−1 is used for P1:i−1W1:i−1r1:i−1 and
P1,i−1W

T
i

(
I + WiP1,i−1W

T
i

)−1
is taken common. In the

step (c) the expression is further simplified. Further consider
the term Ki as

Ki = Pi−1W
T
i

(
I + WiPi−1W

T
i

)−1
(22)

This term is called Kalman gain it helps in extracting the
information from the new data that is the error (ri −Wifi−1).
As we consider a total of 24 transceivers for each node
therefore there are 23 links from all the 23 different nodes
excluding the concerned node. The update expression for the
imaging vector is

fi = fi−1 + Ki (ri −Wifi−1) (23)

Matrix inverse lemma can be used to recursively update the
Pi from its previous estimate Pi−1as given below

P1,i = P1,i−1 −P1,i−1W
T
i (I + WiP1,i−1W

T
i )−1

WiP1,i−1

= (I−KiWi)P1,i−1

(24)

The distributed incremental strategy for RTI is outlined in
Algorithm 1 and the detected object using the algorithm with
it’s intermediate steps are shown in Fig. 3.

Algorithm 1 Distributed incremental strategy for RTI

1: Initialization: P0 =
(
λDDT

)−1
, f0 = 0M . i=1,2...J

2: Receive Pi−1, fi−1 from the (i− 1)th node.
3: Calculate the error using (ri −Wifi−1)
4: Calculate the Kalman gain Ki using (22)
5: Calculate the fi using (23)
6: Calculate Pi using (24)
7: Transmit Pi and fi to (i+ 1)th node.

A. Energy Efficient Distributed Incremental Strategy
The distributed incremental strategy explained in Algorithm

1 require matrix inverse operation of order O(M) which
requires more computational cost. To avoid this a modified
incremental strategy is proposed. Here we reduce the number
of less informative links by applying data censoring technique,
by means of which we censor the less informative links
by comparing the absolute error at a particular link with a
threshold. The threshold is designed in such a way that it
is dependent on the censoring ratio. Therefore defining the
censoring ratio (C) as:

C =
Number of uncensored RSS values

Total number of RSS obtained using all links
A data-adaptive Censoring uses all censored data {wi, ri}ni=1

up to time n. It uses the most recent estimated SLF to find the
absolute error. Defining data-adaptive censoring for RTI [13]

(yn, cn) =

{
(rn, 0), if | rn−wnfn−1

σ | >= τ

(0, 1) otherwise
(25)

So fn−1 is feed back to the censoring module. The most
important part is, by having a moderate censoring ratio we
have almost similar detection performance like conventional
distributed incremental RTI along with the advantage of low
communication and computational complexity. Unlike the pre-
vious case the matrix inversion computational complexity
reduces because we have to consider only those points that
are non-censored or used for updating the imaging vector. So
the data points become C×N rather than N number of points
without censoring. C value lies between 0 to 1. The distributed
incremental strategy using data censoring technique for RTI
is outlined in Algorithm 2 and the detected object using the
algorithm with it’s intermediate steps are shown in Fig. 4.

Algorithm 2 Updating Imaging vector using adaptive data
censoring

1: Initialize f0=0; n=1,2...N |rn-wnfn−1|>=τσ
2: Obtain rn,wn , when cn=0.
3: Calculate the fn using (23)
4: No information received by estimator for cn=1.
5: Store the estimate fn=fn−1
6: Repeat algorithm 1 for all nodes.



For more practical scenario data censoring technique is used
that used to censor data if the error is bellow certain threshold.
This is more suitable for large scale networks.

IV. SIMULATION RESULTS AND DISCUSSION

This section provides a comparison of the images that are
obtained using proposed method in Section III. All the recon-
structed images are using the same RSS observed data r from
synthetically generated dataset which also includes the true
SLF. The normalized weight model having weight matrix W
is used. Finally the estimated SLF is compared with the true
SLF of synthetic dataset to obtain calculations for performance
metrics.

The model and calibration parameters are listed in Table I.
Here λ is chosen empirically. For more complex scenario we
can choose regularization parameter as explained in [14].

TABLE I: Model Parameters

Parameter Description Value
J Number of transceivers 24
∆p width of the pixel (in meters) 0.2
δ weighting ellipse width (in meters) 0.01
k pixel correlation constant 2.1
σ2
p pixel covariance due to shadowing 0.4
λ Regularization parameter 2.75

Considering the object is at position as shown in Fig.
1.The above results shows the output at different nodes at
different iterations. A clockwise movement from starting node
to end node is used as discussed in section II. The final
iteration gives the output at node number 24. Looking at
the outputs we can say that the imaging vector information
from node 1 to node 24 is gradually transferred by distributed
Incremental approach. As we observed that both the techniques
are providing almost same detection performance while in later
case the computational complexity at each node is reduced than
the former case. The motivation behind energy efficient data
censoring incremental approach is to remove data that are not
necessary. By suitably choosing censoring ratio we can achieve
performance similar to global RTI. The next result shows a
comparison between global and distributed Incremental based
RTI. The results are obtained for true object location same
as defined in 1 by applying Tikhonov regularization. First the
detection is done using Tikhonov identity matrix and in second
case reconstruction is done using Tikhonov error covariance
matrix. For simplicity we omit the intermediate stages output
for a distributed approach. Fig. 6 shows that there is a trade-off
between detection performance and communication overheads.
So using data censoring we must have a close look towards the
censoring ratio by using which we can acheive the detection
performance similar to conventional incremental approach.

A. Performance metrics of Distributed RTI

For image quality in [15], the following measures are
adopted.

1) The mean square error (MSE) of an image which quanti-
fies the intuitive dissimilarity between the reconstructed

Image reconstruction using tikhonov covariance matrix for iteration1

1 2 3 4 5 6 7

Distance X(meters)

1

2

3

4

5

6

7

D
is

ta
n

c
e

 Y
(m

e
te

rs
)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

Image reconstruction using tikhonov covariance matrix for iteration5

1 2 3 4 5 6 7

Distance X(meters)

1

2

3

4

5

6

7

D
is

ta
n

c
e

 Y
(m

e
te

rs
)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)
Image reconstruction using tikhonov covariance matrix for iteration17
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Image reconstruction using tikhonov covariance matrix for iteration24
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Fig. 3: Image formation by distributed incremental approach:
(a) initialization (b),(c) intermediate and (d) final output.
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Image reconstruction using tikhonov covariance matrix for iteration24
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Fig. 4: Image reconstruction using censoring ratio of 0.2:
(a)initialization (b),(c) intermediate and (d) final output.

image fc and the actual image fa, which is calculated by
σj = 10 log10(‖fa−fc‖

2

M ).
2) SSIM (Structured Similarity Index Method) This term is

associated with the level of spatially closed pixels.
3) FSIM (Features Similarity Index Matrix) Feature Simi-

larity Index Method maps the features and measures the
similarities between the two images.

4) Pixel Attenuation Ratio(PAR)

PAR in % =
Number of attenuated pixels

Total number of pixels in object



Image reconstruction using tikhonov identity matrix

1 2 3 4 5 6 7

Distance X(meters)

1

2

3

4

5

6

7

D
is

ta
n

c
e

 Y
(m

e
te

rs
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

Image reconstruction using tikhonov error covariance matrix
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Image reconstruction using tikhonov identity matrix
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Image reconstruction using tikhonov covariance matrix for iteration24
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Fig. 5: Image reconstruction for centralized (a-b) and decen-
tralized cases (c-d) for identity and error covariance matrix
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Image reconstruction using tikhonov covariance matrix for iteration24
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Image reconstruction using tikhonov covariance matrix for iteration24
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Fig. 6: Reconstructed output using data censoring with censor-
ing ratios (a) C = 0.2 , (b) C = 0.4 ,(c) C = 0.5 (d) C = 0.7

TABLE II: Image Quality

Parameter Global RTI Distributed Incremental RTI
RMSE[dB] -1.60 -1.50
PAR in % 25.78 26.11
SSIM 0.8441 0.7831
FSIM 0.9586 .9452

V. CONCLUSION

Tikhonov provides good localization accuracy but the imaging
quality is affected by noise. From the experimental results

global RTI has slightly better reconstruction than distributed
Incremental RTI which is obvious because all the information
is sent to fusion center at a time. All the above results we ob-
served with the advantage of distributed incremental RTI over
global RTI in terms of communication overheads. A modified
efficient distributed incremental RTI using data censoring is
used which further reduces the computation and communica-
tion complexity by appropriate selection of censoring ratio.
It is concluded that for low to moderate values of censoring
ratio our RTI detection is having almost similar performance
like global RTI. So this adaptive censoring based Incremental
approach can be suitable for large scale RTI systems. This work
can be easily extended to sparsity based distributed incremental
technique and can be further compared with Sparse Bayesian
Learning under multipath fading scenario as discussed in [16].
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