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Abstract. The primary motive of a malware is to compromise and exfiltrate
sensitive user data from a system generally designed to uphold the fundamental
principles of information security i.e., confidentiality, integrity and availability.
Android being the most widely used mobile operating system, is a lucrative
ground for malware designers in leveraging system flaws to gain unauthorized
user information access. In order to attenuate these issues, it is imperative
to design and build robust automated tools for effective android malware
prediction. In this paper we bring forward a novel method for android
malware detection using object-oriented software metrics and machine
learning techniques. 5,774 android apps are collected from Androzoo repository,
then it’s software metrics are extracted and aggregated using sixteen aggregation-
measures which forms the basis of our metrics-based dataset. A total of
three hundred and four different machine-learned models are built using
various data-sampling techniques, feature-selection methods and machine
learning algorithms. Finally, a machine learned model built using SVMSMOTE
data-sampling technique applying SPM (Significant Predictor Metrics) feature
selection methods over GDCG2H (Conjugate Gradient with Powell/Beale
Restarts and 2 Hidden Layers) machine learning algorithm, yields a better
malware predictor with AUC (area under ROC curve) value of 0.86.

Keywords: Android Malware Detection · Machine Learning · Object-Oriented
Metrics

1 Introduction

Android leads the mobile OS market with a share of 86.1% and is expected
to increase to 86.5% by 2021 according to International data corporation (IDC,
USA). Meanwhile, in 2019, Google reported that 42.1% of android devices run
unsupported versions of the OS. Internet Security Threat Report 2019 (ISTR),
published by Symantec shows that it blocked an average of 10,573 malicious
mobile apps per day. Malware are more prevalent in apps categorised under
Tools (39%), Lifestyle (15%), and Entertainment (7%). It also reported that one in
thirty-six mobile devices had high risk apps installed. Karstern Nohl et al. [11]
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show that security in android ecosystem is further compromised by handset
vendors , since they fail to provide timely updates published monthly by Google,
to their supported devices. This has created a problem known as Android OS
fragmentation for Google, where majority of the mobile devices are devoid of
any OS support, which potentially exposes majority of the end-users to malware
attacks. Android OS has built-in permission management system, that keeps
tab of apps using different permissions, unfortunately the intricacies of this
system is too cumbersome for majority of the end-users. Hence, for a malware
to gain unwanted access, the end-user just has to ignorantly grant the requested
permissions as a matter of habit, without understanding the consequences.

1.1 Objective & Research Questions

The principal objective of this study is to build automated tools towards an
effective android malware detection. Another aspect of this study is also to
assess the importance of Object-Oriented Software Metrics in evaluating android
application packages for malware discovery and mitigation of mobile security
risks. The following research questions (RQ) have been put forward in order to
identify, analyse and summarize the findings of the experiment proceedings:

• RQ1: Is there an interesting and significant distinction in the performances
manifested by the three data sampling techniques ?

• RQ2: Is there a major difference in performance manifested by the three feature
selection techniques ?

• RQ3: How do the nineteen classifiers fare in their discriminatory power as
adjudged by accuracy and AUC metrics ? Do these classifiers vary greatly
in their malware predictive performances ?

2 Related Work

The malware detection methods can broadly be grouped into two categories
such as static analysis & dynamic analysis. Many authors have used static analysis
such as Zhuo Ma et al. [7] use API flows as features for malware detection.
They obtain API (Application Program Interface) information from a control
flow graph retrieved from an apk, they use this API information to build three
API datasets, capturing different aspects of API flows. Neeraj Chavan et al. [2]
use android permissions requests as their features in malware detection using
SVM & ANN. Shivi Garg et al. [4] use API and permissions requests as static
features & dynamic features such as battery temperature, network traffic etc.
Finally, they validate the effectiveness of their model using machine-learning
techniques such as SVM, RIDOR, PART, MLP and their ensembles. Yao-Saint
Yen et al. [13] use apk source code visualization technique. They compute TF-
IDF (Term frequency-inverse document frequency) of the decompiled source
code and transform that information into images, which is then fed as input to
CNN for malware analysis. Alejandro Martı́n et al. [8] have used markov chains
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and dynamic analysis for malware classification. They have deployed DroidBox
tool to gather run-time information and this information is transformed to first-
order Markov model. From this model, transition probabilities & state frequencies
are used as input data in deep learning algorithm, for malware classification.
Dina Saif et al. [12] use hybrid set of features retrieved from static-analysis,
dynamic-analysis and set of system-calls from both malware & benignware
android apps. This hybrid set of features are then used as input for malware
classification in Deep-Belief Networks. Ignacio Martı́n et al. [9] have collected
android apk malware information through the usage of 61 antivirus softwares.
They have then used this information to group android apks into malware
classes using graph-community algorithms & hierarchical clustering. Finally,
using these groups as their dataset, they have performed malware classification
using Logistic Regression & Random Forest Machine Learning Algorithms.

3 Research Methodology
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Fig. 1. Malware Detection Model

Table 1. List of Object-Oriented Software Metrics & Aggregation Measures

Efferent Coupling (Ce) Afferent Coupling (Ca)
Response for Class (RFC) Weighted Methods per Class (WMC)

Coupling Between Methods (CBM) Inheritance Coupling (IC)
Number of Children in Tree (NOC) Average Method Complexity(AMC)

Depth of Inheritance (DIT) Data Access Metric (DAM)
LCOM3 Lack of Cohesion in Methods (LCOM)

Number of Public Methods (NPM) Cohesion Among Methods of Class (CAM)
Measure of Functional Abstraction (MFA) Measure of Aggregation (MOA)

Coupling Between Objects (CBO) Lines of Code (LOC)

(a) Software Metrics

Hoover index Variance
Standard deviation Atkinson index

Maximum Minimum
Gini index Kurtosis

First quartile(Q1) Skewness
Third quartile(Q3) Median

Theil index Generalized entropy
Mean Shannon entropy

(b) Aggregation Measures
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3.1 Metrics Extraction and Aggregation Measures

As shown in Figure 1, initially 5,774 android apps are collected from Androzoo
[1]. These android packages, are decompiled into JAR (java archive format), for
Object-Oriented software metrics extraction using CKJM extended tool [6]. An
android app encapsulates multiple classes and each class is represented by a
tuple consisting of eighteen Object-Oriented Software Metrics as described in
Table 1(a). Therefore, an app is represented as (n × 18) intermediate matrix,
where n represents the total no of classes in an android app. Finally, sixteen
aggregation methods as shown in Table 1(b), is applied over this intermediate
matrix. Hence, for each aggregation method, an aggregated tuple of eighteen
metrics is obtained. Consequently, all the sixteen aggregated tuples are conjoined
serially to form a final tuple consisting of (16 × 18 = 288) metric values. As a
result, every android app is finally represented by a tuple with two hundred
and eighty-eight features, that forms a tuple of the final metrics-based dataset.

3.2 Data Sampling Techniques

Out of 5,774 android samples, there are 1,582 malwares. It is evident that, there
is a disparity in samples for benignware and malware. This class imbalance
in a biased dataset affects the overall real-world performance in predicting
classes. Therefore, in order to mitigate the class imbalance, three different data
sampling techniques are employed such as SMOTE [3] (Synthetic Minority Oversampling
Technique), BLSMOTE [5] (Borderline SMOTE) and SVMSMOTE [10] (Support
Vector Machine SMOTE). SMOTE uses existing minority classes and interpolates
them together to form new minority samples. BLSMOTE uses borderline minority
samples in order to generate new synthetic samples, whereas SVMSMOTE employs
SVM to detect minority samples which is then used to synthesize new minority
samples. Performance of datasets obtained using these data sampling techniques
is compared against that of the unsampled original dataset (OD).

3.3 Feature Selection Techniques

As the feature space increases, so does the incurred cost and complexity of
building effective machine-learned models. It remains a challenge, to prune
irrelevant features without affecting the loss of important information, that
ultimately helps in achieving a trade-off between the number of selected features
and overall effectiveness of dataset. In this experiment we use three different
feature selection techniques other than AM (All Metrics) such as , SPM (Significant
Predictor Metrics), ULR (Univariate Logistic Regression) and PCA (Principal
Component Analysis). SPM is a set of source-code metrics that are significant
predictors of android malware. Initially, t-test is applied over each source-code
metric and the metrics with p-values less than 0.05 are considered, that has
great discriminatory potential. ULR chooses the best scoring metrics based on
various univariate statistical tests and PCA reduces the feature space using
Singular Value Decomposition of the data and projects it into a lower dimensional
space.
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3.4 Classification Techniques

In this experiment, nineteen different classification techniques have been used
to create various machine-learned models for malware prediction, such as LOGR
(Logistic Regression), DT (Decision Tree), GD(1H/2H/3H) (Gradient Descent
with 1/2/3 Hidden Layers), GDM-(1H/2H/3H) (Gradient Descent with Momentum
- 1/2/3 Hidden Layers), GDLR-(1H/2H/3H) (Variable Learning Rate Gradient
Descent - 1/2/3 Hidden Layers), GDSG-(1H/2H/3H) (Scaled Conjugate Gradient
- 1/2/3 Hidden Layers), GDCG-(1H/2H/3H) (Conjugate Gradient with Powell/Beale
Restarts - 1/2/3 Hidden Layers), BTE (Best Training Ensemble) and MVE (Majority
Voting Ensemble Methods). These techniques are used over various sampled-
datasets applying different feature selection techniques. The predictive performance
of these datasets are identified and evaluated in order to select a better yielding
classifier.

3.5 Performance Evaluation Metrics

The malware prediction potential of a machine-learned model is measured using
different standardized evaluation-metrics such as accuracy and error rate. In
this experiment, accuracy values and error rate may not reflect the true predictive
potential of a machine-learned model, since these evaluation-metrics fail to
encompass imbalance and disparity of classes, existing in a dataset. Such imbalanced
datasets tend to favour the effective prediction of majority class as compared
to the minority class. Therefore, AUC evaluation-metric (area under the ROC
curve) is selected as this metric is immune to changes in class distribution in a
given dataset. In order to prune any bias between the classes, a 10-fold cross-
validation technique is applied while building machine-learned models.

4 Experimental Results & Findings

Based on discussions in Section 3, we formulate and evaluate a null hypothesis
H0: ”Machine-learned models developed using various data-sampling techniques,
feature selection methods, classification algorithms and evaluated using AUC
evaluation-metric, for predicting android malware. Indicates no significant
performance difference when compared against machine-learned models built
using original dataset (OD)”.

4.1 Analyzing Data Sampling Techniques

In this experiment, three data-sampling techniques are examined as discussed
in Section 3.2. Box-plots for OD, SMOTE, BLSMOTE & SVMSMOTE based datasets,
depicting accuracy & AUC, along with its descriptive statistics are shown in
Figure 2 and Table 2(a), 2(b) respectively. It is observed from Table 2(b) that
SMOTE and SVMSMOTE yield a higher median AUC of 0.75. Now considering
these four principal metrics-based datasets, a total of 4C2 = 6 unique pairs
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are possible. Analyzing the p-value of these unique pairs at 0.05 significance
level, we can reject a null hypothesis if and only if the p-value is less than
0.05/6 = 0.00833. In Table 2(c), the p-values less than 0.00833 is denoted by the
symbol ” • ”. It can be inferred from Table 2(c) that, datasets based on SMOTE
and SVMSMOTE are similar between themselves and significantly different
from datasets based on OD and BLSMOTE. Table 2(b) shows that SMOTE and
SVMSMOTE based datasets yield better AUC median values as compared to
OD and BLSMOTE based datasets. Therefore SMOTE and SVMSMOTE based
datasets are expected to outperform the rest of the datasets.
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Fig. 2. Box-plots for data-sampling techniques

Table 2. Box-plot descriptive statistics & p-value for data-sampling techniques

MIN MAX MEAN MEDIAN Q1 Q3

OD 26.95 79.81 74.17 75.39 73.27 76.6

SMOTE 49.05 81.56 68.91 68.96 66.05 75.8

BLSMOTE 49.82 83.59 67.68 67.48 62.31 74.13

SVMSMOTE 49.76 82.1 68.21 67.56 65.1 74.58

(a) Accuracy

MIN MAX MEAN MEDIAN Q1 Q3

OD 0.46 0.8 0.69 0.71 0.65 0.75

SMOTE 0.53 0.86 0.74 0.75 0.71 0.81

BLSMOTE 0.52 0.85 0.73 0.74 0.66 0.81

SVMSMOTE 0.57 0.86 0.74 0.75 0.69 0.81

(b) AUC

OD SMOTE BLSMOTE SVMSMOTE

OD • •

SMOTE

BLSMOTE

SVMSMOTE

(c) p-values

4.2 Analyzing Feature Selection Techniques

Box-plots for datasets using AM, SPM, ULR & PCA feature selection techniques,
depicting accuracy & AUC, along with its descriptive statistics are shown in
Figure 3 and Table 3(a), 3(b) respectively. It is observed from Table 3(b) that
AM, SPM and ULR based models yield a higher median AUC of 0.75. Now
considering these four feature selection techniques, a total of 4C2 = 6 unique
pairs are possible. Analyzing the p-value of these unique pairs at 0.05 significance
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level, we can reject a null hypothesis if and only if the p-value is less than
0.05/6 = 0.00833. In Table 3(c), the p-values less than 0.00833 is denoted by the
symbol ” • ”. It can be inferred from Table 3(c) that, datasets using AM, SPM
and ULR are similar amongst themselves and are significantly different from
datasets using PCA. Table 3(b) shows that datasets using AM, SPM and ULR
yield better AUC median values as compared to datasets using PCA. Therefore
datasets applying AM, SPM and ULR are expected to outperform the datasets
using PCA.
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Fig. 3. Box-plots for feature selection techniques

Table 3. Box-plot descriptive statistics & p-value for feature selection techniques

MIN MAX MEAN MEDIAN Q1 Q3

AM 49.05 83.05 71.08 74.05 66.92 76.6

SPM 26.95 83.59 71.45 74.01 67.18 76.87

ULR 49.28 81.38 70.72 73.06 67.03 75.74

PCA 50 77.98 65.71 66.05 59.73 72.66

(a) Accuracy

MIN MAX MEAN MEDIAN Q1 Q3

AM 0.55 0.86 0.75 0.75 0.71 0.81

SPM 0.51 0.86 0.75 0.75 0.73 0.81

ULR 0.51 0.85 0.74 0.75 0.72 0.81

PCA 0.46 0.78 0.66 0.66 0.6 0.72

(b) AUC

AM SPM ULR PCA

AM •

SPM •

ULR •

PCA

(c) p-values

4.3 Analyzing Machine Learning Algorithms

Box-plots for datasets using various machine learning algorithms as described
in Section 3.4, depicting accuracy & AUC, along with its descriptive statistics
are shown in Figure 4 and Table 4(a), 4(b) respectively. It is observed from Table
4(b) that GDCG2H yields a better median accuracy and AUC of 76.73% and 0.83
respectively. Now considering these nineteen machine learning techniques, a
total of 19C2 = 171 unique pairs are possible. Analyzing the p-value of these
unique pairs at 0.05 significance level, we can reject a null hypothesis if and
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only if the p-value is less than 0.05/171 = 0.00029. In Table 4(c), the p-values
less than 0.00029 is denoted by the symbol ” • ”. It can be inferred from Table
4(c) that, machine-learned models based on GDCG2H is significantly different
from other machine-learned models. Table 4(b) shows that machine-learned
models using GDCG2H yields better AUC median values as compared to other
machine-learning techniques. Therefore datasets applied over GDCG2H are
expected to outperform other classification techniques.
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Fig. 4. Box-plots for classifiers

4.4 Analyzing Machine-Learned Models

Upon examining Sections 4.1, 4.2 and 4.3, a total of three hundred and four
different machine-learned model’s discriminating power are compared using
it’s accuracy and AUC values. Primarily, a better classifier is characterised by
an AUC value closer to 1.0. Consequently, it is expected that a dataset based on
either SMOTE or SVMSMOTE applying any of the feature selection techniques
like AM, SPM or ULR over GDCG2H classification technique, will yield a better
machine-learned model. This expectation is observed and confirmed from Table
5(a) and 5(b), where SVMSMOTE based dataset applying SPM feature selection
technique over GDCG2H machine-learning algorithm yields a better accuracy
and AUC value of 76.73% and 0.83 respectively. The corresponding ROC curve
is illustrated in Figure 5, marked as 2HL.

5 Comparison of Results

RQ1: Is there an interesting and significant distinction in the performances
manifested by the three data sampling techniques ? Considering the null
hypothesis H0 and analyzing Section 4.1, it is evident that out of 6 unique pairs,
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Table 4. Box-plot descriptive statistics & p-value for classifiers

MIN MAX MEAN MEDIAN Q1 Q3

LOGR 65.45 79.81 74.95 75.83 73.89 78.15

DT 74.78 83.59 79.49 80.66 76.69 81.59

GD1H 57.97 76 67.8 66.96 66.66 71.18

GD2H 57.94 76.52 67.6 67.6 66.08 70.95

GD3H 57.73 75.39 67.68 67.09 64.92 70.83

GDM1H 49.82 77.38 59.97 57 50 68.99

GDM2H 26.95 71.06 54.81 54 50 60.63

GDM3H 49.05 73.74 58.73 55.64 50.43 67.32

GDLR1H 62.33 78.16 72.7 74.13 71.75 74.96

GDLR2H 62.29 76.95 72.47 73.48 70.6 75.25

GDLR3H 63.9 77.64 72.1 73.41 71.09 74.1

GDSG1H 55.79 74.78 66.15 66.3 64.87 70.09

GDSG2H 56.84 75.39 67.27 66.44 65.51 70.64

GDSG3H 54.99 76.43 67.54 67.41 64.68 71.4

GDCG1H 64.18 78.77 74.39 76.21 73.71 77.12

GDCG2H 66.83 78.61 74.78 76.73 73.76 77.24

GDCG3H 65.99 77.86 74.15 75.61 73.06 76.84

BTE 64.74 77.73 73.01 73.25 72.23 75.3

MVE 74.78 83.59 79.49 80.66 76.69 81.59

(a) Accuracy

MIN MAX MEAN MEDIAN Q1 Q3

LOGR 0.57 0.78 0.72 0.74 0.68 0.76

DT 0.67 0.84 0.78 0.81 0.74 0.82

GD1H 0.59 0.76 0.71 0.74 0.68 0.75

GD2H 0.61 0.77 0.72 0.74 0.69 0.75

GD3H 0.62 0.75 0.71 0.73 0.69 0.74

GDM1H 0.52 0.8 0.63 0.61 0.56 0.7

GDM2H 0.51 0.79 0.61 0.61 0.57 0.64

GDM3H 0.46 0.67 0.6 0.61 0.59 0.63

GDLR1H 0.68 0.83 0.78 0.79 0.74 0.82

GDLR2H 0.67 0.84 0.78 0.79 0.74 0.81

GDLR3H 0.69 0.82 0.77 0.78 0.74 0.81

GDSG1H 0.58 0.75 0.69 0.71 0.64 0.73

GDSG2H 0.58 0.75 0.7 0.73 0.7 0.74

GDSG3H 0.58 0.75 0.7 0.72 0.68 0.74

GDCG1H 0.68 0.86 0.8 0.81 0.76 0.84

GDCG2H 0.72 0.86 0.8 0.83 0.76 0.85

GDCG3H 0.71 0.85 0.8 0.81 0.76 0.84

BTE 0.51 0.76 0.68 0.72 0.63 0.73

MVE 0.67 0.84 0.78 0.81 0.74 0.82

(b) AUC

LOGR DT GD1H GD2H GD3H GDM1H GDM2H GDM3H GDLR1H GDLR2H GDLR3H GDSG1H GDSG2H GDSG3H GDCG1H GDCG2H GDCG3H BTE MVE

LOGR • • • • • • • • • •

DT • • • • • • • • • •

GD1H • • • • • • • • •

GD2H • • • • • • • • • •

GD3H • • • • • • • • •

GDM1H • • • • • • •

GDM2H • • • • • • • • • •

GDM3H • • • • • • • • • • •

GDLR1H • • • •

GDLR2H • • • •

GDLR3H • • • •

GDSG1H • • • •

GDSG2H • • • •

GDSG3H • • • •

GDCG1H •

GDCG2H •

GDCG3H •

BTE •

MVE

(c) p-values

only two pairs reject the null hypothesis and is marked by the symbol ” • ”
in Table 3c. In case, a null hypothesis is rejected, it implies that the distinction
identified between samples isn’t by chance and the observation is statistically
significant. The machine-learned models based on SMOTE and SVMSMOTE
yields better AUC as compared to OD and BLSMOTE. Therefore, SMOTE and
SVMSMOTE based models are interesting and manifests significant increase in
malware prediction performance as compared against OD and BLSMOTE.

RQ2: Is there a major difference in performance manifested by the three
feature selection techniques ? Considering the null hypothesis H0 and analyzing
Section 4.2, it is evident that out of 6 unique pairs, only three pairs reject the
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Table 5. Classifier accuracy & AUC against different datasets applying various feature
selection techniques

LOGR DT GD1H GD2H GD3H GDM1H GDM2H GDM3H GDLR1H GDLR2H GDLR3H GDSG1H GDSG2H GDSG3H GDCG1H GDCG2H GDCG3H BTE MVE

OD

AM 79.46 76.6 74.78 76.52 75.15 64.56 63.38 72.36 78.16 75.11 75.8 72.1 75.39 75.56 77.21 75.72 77.73 77.64 76.6

SPM 79.81 76.6 76 75.13 75.04 77.38 26.95 73.74 76 76.95 75.82 74.09 73.31 76.43 76.95 76.86 76.6 77.21 76.6

ULR 79.12 76.6 73.92 74.7 75.39 64.64 68.63 71.69 77.3 75.91 77.64 74.78 75.39 75.48 78.77 78.34 76.17 77.73 76.6

PCA 74.26 74.78 72.96 72.7 72.44 72.44 69.56 72.62 73.4 75.39 73.31 72.42 72.51 72.7 73.98 72.77 74.61 73.22 74.78

SMOTE

AM 76.79 81.56 66.77 67.88 68.24 73.15 49.91 49.05 75 74.28 74.15 67.1 68.78 67.4 78.16 76.85 77.86 76.01 81.56

SPM 76.25 80.73 69.39 67.24 66.23 67.84 50 62.95 74.7 76.88 73.03 68.08 66.61 67.6 76.61 76.91 77.48 73.27 80.73

ULR 75.34 80.72 69.15 69.19 69.21 70.15 50.21 49.28 72.67 75.1 72.43 64.84 65.81 67 75.58 77.49 75.06 73.21 80.72

PCA 67.9 77.15 59.9 57.94 61.58 52.15 53.88 50 66.83 66.41 64.38 56.21 58.65 60.68 65.87 66.83 68.68 68.5 77.15

BLSMOTE

AM 76.55 83.05 66.75 68.26 63.6 58.81 50 52.33 74.22 71.18 74.05 64.9 66.35 70.09 77.03 74.76 72.67 73.69 83.05

SPM 75.4 83.59 66.57 66.17 67.12 50 50.36 56.98 74.34 72.9 73.93 67.84 65.75 67.94 77.31 77.33 76.79 73.87 83.59

ULR 73.51 80.61 69.15 67.78 66.89 49.82 54.93 54.3 70.82 73.33 73.87 65.87 65.27 66.75 75.89 74.94 73.45 72.08 80.61

PCA 65.45 76.78 57.97 58 62.15 53.37 56.12 59.82 62.33 62.29 63.9 55.79 56.84 54.99 64.18 67.18 65.99 64.74 76.78

SVMSMOTE

AM 78.46 81.61 66.77 67.42 67.06 49.97 50 50.87 74.05 73.63 71.42 65.51 65.99 64.62 73.45 77.15 76.31 74.58 81.61

SPM 77.84 82.1 66.85 67 66.65 50 71.06 61.28 74.91 73.27 73.51 66.73 66.53 67.42 76.52 78.61 76.88 72.85 82.1

ULR 74.58 81.38 67.06 65.99 68.44 50 54.12 49.76 72.91 70.01 70.76 65.45 68.62 64.74 75.06 76.61 73.93 72.37 81.38

PCA 68.44 77.98 60.84 59.64 57.73 55.19 57.88 52.74 65.51 66.81 65.57 56.66 64.5 61.22 67.7 68.18 66.11 67.24 77.98

(a) Accuracy

LOGR DT GD1H GD2H GD3H GDM1H GDM2H GDM3H GDLR1H GDLR2H GDLR3H GDSG1H GDSG2H GDSG3H GDCG1H GDCG2H GDCG3H BTE MVE

OD

AM 0.68 0.72 0.72 0.73 0.72 0.57 0.55 0.67 0.77 0.75 0.76 0.65 0.7 0.7 0.78 0.78 0.79 0.61 0.72

SPM 0.68 0.71 0.73 0.75 0.74 0.74 0.51 0.65 0.76 0.78 0.76 0.71 0.74 0.73 0.8 0.78 0.79 0.59 0.71

ULR 0.69 0.71 0.74 0.73 0.74 0.57 0.66 0.51 0.77 0.77 0.77 0.71 0.74 0.72 0.8 0.8 0.77 0.62 0.71

PCA 0.57 0.67 0.59 0.64 0.65 0.52 0.58 0.46 0.7 0.73 0.71 0.63 0.61 0.65 0.72 0.73 0.71 0.51 0.67

SMOTE

AM 0.77 0.82 0.74 0.74 0.75 0.8 0.66 0.63 0.82 0.81 0.82 0.73 0.75 0.72 0.86 0.85 0.85 0.76 0.82

SPM 0.76 0.81 0.75 0.77 0.75 0.76 0.61 0.66 0.82 0.84 0.79 0.73 0.73 0.74 0.85 0.85 0.84 0.73 0.81

ULR 0.75 0.81 0.76 0.76 0.75 0.77 0.63 0.64 0.82 0.83 0.79 0.71 0.73 0.74 0.84 0.85 0.84 0.73 0.81

PCA 0.68 0.77 0.63 0.61 0.64 0.53 0.59 0.59 0.72 0.71 0.69 0.6 0.61 0.63 0.73 0.72 0.74 0.68 0.77

BLSMOTE

AM 0.77 0.83 0.73 0.75 0.72 0.64 0.65 0.6 0.83 0.79 0.82 0.7 0.74 0.75 0.85 0.83 0.81 0.74 0.83

SPM 0.75 0.84 0.73 0.74 0.73 0.52 0.63 0.61 0.81 0.81 0.82 0.75 0.72 0.74 0.85 0.85 0.85 0.74 0.84

ULR 0.74 0.81 0.75 0.75 0.73 0.62 0.55 0.62 0.77 0.81 0.81 0.72 0.71 0.73 0.83 0.83 0.82 0.72 0.81

PCA 0.65 0.77 0.6 0.62 0.66 0.56 0.58 0.61 0.68 0.67 0.69 0.58 0.58 0.58 0.68 0.72 0.73 0.65 0.77

SVMSMOTE

AM 0.78 0.82 0.74 0.75 0.73 0.66 0.63 0.61 0.81 0.81 0.79 0.7 0.71 0.7 0.8 0.84 0.84 0.75 0.82

SPM 0.78 0.82 0.75 0.75 0.74 0.62 0.79 0.62 0.82 0.81 0.81 0.74 0.74 0.74 0.84 0.86 0.84 0.73 0.82

ULR 0.75 0.81 0.75 0.75 0.75 0.6 0.57 0.57 0.81 0.78 0.78 0.7 0.75 0.72 0.84 0.84 0.81 0.72 0.81

PCA 0.68 0.78 0.64 0.61 0.62 0.57 0.6 0.58 0.72 0.73 0.72 0.6 0.69 0.66 0.74 0.74 0.73 0.67 0.78

(b) AUC

null hypothesis and is marked by the symbol ” • ” in Table 4c. In case, a null
hypothesis is rejected, it implies that the distinction identified between samples
isn’t by chance and the observation is statistically significant. The machine-
learned models based on AM, SPM and ULR are similar and yields better AUC
as compared to PCA. Therefore, AM, SPM and ULR based models are interesting
and manifests significant increase in malware prediction performance as compared
against PCA.

RQ3: How do the nineteen classifiers fare in their discriminatory power
as adjudged by accuracy and AUC metrics ? Do these classifiers vary greatly
in their malware predictive performances ? Considering the null hypothesis
H0 and analyzing Section 4.3, it is evident that out of 171 unique pairs, only
one hundred and four pairs reject the null hypothesis and is marked by the
symbol ” • ” in Table 5c. In case, a null hypothesis is rejected, it implies that the
distinction identified between samples isn’t by chance and the observation is
statistically significant. Therefore, the machine learning techniques are significantly
different amongst themselves and GDCG2H algorithm yields a better AUC of
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Fig. 5. SVMSMOTE-SPM-GDCG2H classification model’s ROC curve

0.86. Hence, machine-learned models based on GDCD2H are interesting and
manifests significant increase in malware prediction performance.

6 Threats to Validity

In this work, one possible threat to internal validity identified is that, the machine-
learned models built with android apps from a certain point in time may be
effective for malwares released within a fixed time-frame (e.g. six months or
so). And the model may loose it’s effectiveness against new strain of malwares
released beyond this time-frame. The information regarding this new strain
of malwares must trickle down from antivirus companies through Google’s
VirusTotal service and finally to Androzoo repository. Until, this new information
isn’t available with Androzoo, it’s difficult to build yet another effective machine-
learned malware predictor model.

7 Conclusion

Initially android samples are collected over androzoo, which is then decompiled
and software-metrics is extracted using CKJM extended tool. For every android
app, sixteen different aggregation measures are applied over the extracted eighteen
software metrics, which becomes the metrics-based dataset to be used for malware
prediction.In order to mitigate benignware and malware sample imbalance in
the dataset, three data-sampling techniques are used such as SMOTE, BLSMOTE
and SVMSMOTE. In order to reduce the feature space, three feature-selection
methods are employed such as SPM, ULR and PCA. Finally, nineteen different
classification algorithms are used to build various machine-learned models. A
total of three-hundred and four machine-learned models are evaluated using
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their AUC values. Consequently, machine-learned model built using SVMSMOTE
data-sampling applying SPM feature-selection methods over GDCG2H classification
algorithm, yields a better AUC of 0.86, which exceeds the malware prediction
potential against other models.
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