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Abstract 
 Threshold plays a vital role in classification of 
objects and background in a given scene and hence 
segmentation. Determination of optimal threshold is 
hard for images exhibiting overlapping histogram 
distributions. In this paper, we propose a novel 
strategy of determining the threshold from histogram 
distributions. A feature image is generated from the 
given image and the optimal threshold is determined 
using the histogram of the featured pixels. The 
featured pixels are generated by considering a fixed 
window around a pixel. The histogram distributions 
are discrete in nature and hence Genetic Algorithm 
(GA) and Parallel Genetic Algorithm (PGA) based 
clustering algorithms are proposed to determine the 
optimal thresholds for two and three class problems. 
The optimal thresholds, thus determined could 
segment the noisy image. The efficacy of the proposed 
scheme is compared with that of the Otsu’s approach. 
Results obtained by the proposed scheme was 
comparable to that Otsu’s and in some noisy cases 
our method could be better than the latter one. 
Satisfactory results could also be obtained even for 
histograms with overlapping class distributions. 

 
 
1. Introduction 
 

Selection of proper threshold is one of the key issues in 
segmentation of images. There has been persistent 
research effort to obtain proper threshold for images 
having two or more classes [1-4]. In spite of the several 
reported results, determination of optimal thresholds still 
remains a challenging task for noisy images and images 
corresponding to overlapping class distributions. In a 
generic sense, bi-level thresholding classify the image into 
two groups, one including those pixels with their gray 
values equal to and below a certain threshold, and the 
other including those with gray values below the 
threshold. Multi-thresholding divides the whole range of 
gray values into several sub ranges. Often, the shape of 

the histogram [5-9] has been used as one of the key 
parameters to devise thresholding techniques. 

Histograms for images having two classes, has a deep 
and sharp valley between the two peaks arising due to 
object and background respectively. For such histograms, 
the threshold could be chosen at the bottom of this valley 
[2]. Often, in case of real images it is hard to detect the 
valley precisely, because (i) valley could be flat and broad 
and (ii) the two peaks could be extremely unequal in 
height, often producing no traceable valley. Rosenfeld et 
al. [3] proposed the valley sharpening techniques which 
restricts the histogram to the pixels with large absolute 
values of derivatives, S. Watanable et al. [11] proposed 
the difference histogram method, which selects threshold 
at the gray level with the maximal amount of difference. 
These utilize information concerning neighbouring pixels 
or edges in the original picture to modify the histogram so 
as to make it useful for thresholding. Another class of 
methods deal directly with the gray level histogram by 
parametric techniques. The histogram is approximated in 
the least square sense by a sum of Gaussian distributions, 
and statistical decision procedures are applied [11]. 
However, such methods are tedious and computationally 
involved. 

In this paper, optimal threshold is determined using the 
histogram of the featured pixels as opposed to the original 
histogram. The feature value of a given pixel is 
determined by considering a window around the pixel and 
selecting the average value depending upon σ (standard 
deviation) of the window. Gaussian distribution is 
assumed over each window. The featured image is 
generated based on the featured value of the pixels. The 
shape of the histogram of the feature image is used to 
determine the optimal threshold. In this regard, we have 
proposed GA and PGA based crowding algorithm to 
maintain stable subpopulations and hence determine the 
peaks of the featured histogram. Thereafter, the valleys 
between the successive peaks are found out based on GA 
based search strategy. The valleys, thus determined, 
correspond to the optimal thresholds. The overlapping 
class distributions in the original histogram could be 



reduced partially thus facilitating the determination of the 
having two and three classes are presented to validate our 
approach.  
 
2. Problem statement 
 

The notion of thresholding has been applied to many 
computer vision problems including classification of 
object and background in a given scene. The segmentation 
of such an image acts as a precursor of object recognition 
etc. The histogram of such a scene exhibit bi-modality 
feature in the class distributions. Analogously, two objects 
and a background in an image corresponds to tri-modality 
feature of the histogram. Segmentation of such images 
greatly depends upon the precise determination of the 
optimal thresholds. In the past many threshold based 
image segmentation algorithms have been proposed [1-8]. 
The inherent bottleneck is the error occurring due to the 
overlapping of the class distributions of the histogram. In 
order to address the issue, in this work, the shape 
information of the histogram of the featured pixels is 
considered instead of the original histogram. The feature 
pixels are generated as follows. A window of a given size, 
say for example (3x3) is considered around the pixel and 
the distribution of pixels over the window is assumed to 
be Gaussian. Hence, the likelihood estimates of the first 
and second moment become   
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The first moment of the pixel is considered as the 

feature value if the following condition is satisfied. 
 

ijijij wijwwij xthenxif µσµ ˆˆˆ =≤−  
 

Where xij is the gray value corresponding to the (i,j)th 
pixel, 

ijwµ̂  and 
ijwσ̂ are the average value and standard 

deviation of the Gaussian distributed pixels over the 
window centered at (i,j)th pixel and Nw is the number of 
pixels in the window. Thus another image, consisting of 
featured pixels is generated. Figure 1 shows the histogram 
of a two class image. It is seen from the figure 1 that there 
are distinct overlapping of the class distributions. The 
histogram of the featured image generated using (1) is 
shown in figure 2 that exhibits clearly bimodality with 
minimum overlapping. Thus optimal thresholds can be 
determined using figure 2. 

Hence, we propose GA based clustering to determine 
the optimal threshold using this discrete histogram. Usual 
search algorithm might determine threshold as suboptimal 
solution because of the discrete nature of the histogram. 

Hence a GA and PGA based algorithms are proposed to 
determine niches (peaks) followed by determination of the 
valley. This valley corresponds to the optimal threshold. 

 

 
 
Fig. 1. Normalized histogram of the original 

image 
 

 
 

Fig. 2. The featured based normalized histogram 
of the image 

 
3. Segmentation using threshold operators 
 

As mentioned in Section 2, optimal threshold may be 
used to segment images. Optimal threshold is determined 
as follows. Given a histogram with multimodal features, 
the two peaks corresponding to two classes are determined 
using the proposed GA based crowding schemes. This 
algorithm determines the two peaks by maintaining stable 
sub population at the respective peaks of the multimodal 
histogram. Once the peaks are determined, the valley or 
the minima between these peaks are determined by GA. 
The two steps combinedly thus determines the valleys and 
hence the thresholds for segmentation. 
 
3.1. GA class model 
 

Usually GA are used for function optimization and 
hence determining the global optimal solution. In case of 
nonlinear multimodal function optimization, the problem 
of determining the global optimal solution as well as local 

(1) 

(2) 



optimal solution reduces to determining the niches in the 
multimodal functions. Thus the problem boils down to 
clustering the population elements around the given 
niches. Some effort has been directed in this direction for 
last couple of years where new strategies and algorithms 
are proposed [12]. 
 
3.2. Crowding method 
 

In the deterministic crowding, sampling occurs without 
replacement [12-13]. We will assume that an element in a 
given class is closer to an element of its own class than to 
elements of the other classes. A crossover operation 
between two elements of same class yield two elements of 
that class, and the crossover operation between two 
elements of different class will yield either: (i) one 
element from both the classes, (ii) one element from two 
hybrid classes. For example, for a four class problem, the 
crossover operation between two elements of class AA 
and BB may results in elements either belonging to the set 
of classes AA, BB, or AB, BA. Hence the class AB 
offspring will compete against the class AB parents, the 
class BA offspring will compete with class BA parents. 
Analogously for a two class problem, if two elements of 
class A randomly paired, the offspring will also be of class 
A, and the resulting tournament will advance two class A 
elements to the next generation. The random pairing of 
two class B elements will similarly result in no net change 
to the distribution in the next generation. If an element of 
class A gets paired with an element of class B, one 
offspring will be from class A, and the other from class B. 
The class A offspring will compete against class A parent, 
the class B offspring against the class B parent. The end 
results will be that one element of the both classes 
advances to the next generation no net change. 
 
3.2. GA for optimal threshold 
 

Once the stable subpopulation is maintained at the 
peaks of the multimodal function, the problem is to 
determine the valley between the two successive peaks. 
The two peaks correspond to two gray levels and in 
between these two gray values the minimum of the 
function is found out. The fitness function here is the 
discrete histogram itself 
 
Fitness function   f(g) = p(g)                                           (3) 
 
Where p(g) denotes the featured histogram distribution. 
We have employed basic GA to determine the minimum 
of the objective function which is the fitness function 
itself. 
 
 

3.4. GA based algorithm 
 

Our proposed algorithm consists of determining the all 
the peaks of the histogram distribution and in the sequel to 
find out the minima in between each pair of peaks. The 
salient steps of the algorithm are: 
(i)  Initialize randomly a population space of size Np (each 
element corresponds to a gray value between 0 and 255) 
and their classes are determined. 
(ii)  Choose two parents randomly for crossover and 
mutation operation with crossover probability Pc and 
mutation probability Pm. Compute the fitness of parents 
and off-springs. The fitness function is the normalized 
featured histogram function p(g).  
(iii) The offspring generated complete with the parents 
based on the concept of tournament selection strategy. 
 (iv) After selection the selected elements are put in their 
respective classes. 
 (v)  Step (ii), (iii) and (iv) are repeated for all elements in 
the population. 
 (vi) Steps (v) is repeated till the convergence is met i.e. 
the elements of respective classes are equally fit. 
(vii) The peaks will be determined from the converged 
classes of step (vi) 
(viii) Initialize randomly a population space of size Nv 
between the two peaks (i.e. between the two 
corresponding gray values). 
(ix) Choose two parents randomly for crossover and 
mutation operation with crossover probability Pc and 
mutation probability Pm. Compute the fitness of parents 
and off-springs. The fitness function is the featured 
normalized histogram function p(g). 
(x) The fittest two elements between the parents and 
offspring are selected for the next generation in the 
selection strategy. 
(xi)Step (ix), (x) are repeated for all elements in the 
population. 
(xii) Step (xi) is repeated till the convergence is met. 
(xiii) The converged value is the gray value corresponding 
to the valley between the two peaks. The image is then 
segmented using this value as threshold. 
 
3.5.  PGA for optimal threshold 
 

The Objective of designing parallel GA is two fold: (i) 
reducing the computational burden and (ii) improving the 
quality of the solutions. The design of PGA involves 
choice of multiple populations where the size of the 
population must be decided judiciously. These populations 
may remain isolated or they may communicate 
exchanging individuals. This process of dividing the entire 
population into sub-populations and then providing the 
mechanism of interaction between them is known as 
coarse grained parallelism. The process of 



communications between individual demes is known as 
migration. The coarse grained PGA is broadly based on 
the island model and stepping stone model. In an island 
model the population is partitioned in to small 
subpopulations by geographic isolation and individuals 
can migrate to any other subpopulation. In this parallel 
scheme, the population is divided into demes and the 
demes evolve for convergence. After some generations 
migration is carried out to achieve convergence. We have 
adopted the following Interconnection Island model for 
the PGA algorithm. We have adopted the good-bad based 
migration policy. In our problem we considered four 
demes D1, D2, D3 and D4 and the interaction network 
model is shown in fig 3. Tournament selection mechanism 
is applied to all demes. We have employed a new 
crossover operator known as Generalized Crossover (GC) 
operator [9]. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Interconnection of demes 
 
3.6 PGA based algorithm 
 

The steps of the parallelized crowding scheme are the 
following. 
1. Initialize randomly a population space of size Np (each 
element corresponds to a gray value between 0 and 255) 
and their classes are determined. 
2. Divide the population space into fixed number of sub-
populations and determine the class of individuals in each 
sub-population. 
3. i. In the given sub-population, choose two elements at 
random for Generalized Crossover (GC) and Mutation 
operation with crossover probability Pc and mutation 
probability Pm. 
   ii. Evaluate fitness of each parents and offspring. The 
fitness function is the featured normalized histogram 
function p(g). 
  iii. The tournament selection mechanism is a binary 
tournament selection among the two parents and 
offsprings, the set which contains the individual having 
highest fitness among the four elements is selected to the 
set of parents for the next generation. 

  iv. Repeat steps i, ii & iii for all the elements in the sub 
population. 
  v. Repeat steps i, ii, iii & iv for a fixed number of 
generations 
4. Step 3 is repeated for each sub-population. 
5. Migration is allowed from each deme to every other 
deme. The individuals are migrated based on the selected 
migration policy. Numbers of elements to migrate are 
determined from the selected rate of migration. The 
elements migrate with migration probability Pmig.  
6. Repeat steps 3, 4 & 5 till convergence is achieved. The 
algorithm stops when the average fitness of the total 
population is above pre-selected threshold. 
7. The peaks will be determined from the converged 
classes of step 6. 
8. Initialize randomly a population space of size Nv 
between the two peaks (i.e. between the two 
corresponding gray values). 
9. Use GA (step 3 is repeated till the convergence is 
achieved) to find the valley between the two peaks. (PGA 
can be used for determining the valley points between the 
peaks). 
10. Use the valley points gray value to segment the image. 
 
4. Results and discussions 
 

Images of both two and three classes are considered in 
our simulation. The corresponding histograms exhibit 
bimodal and tri-modal features. Fig 4(a) shows an indoor 
image of size (256x256), and the corresponding histogram 
is shown in Fig 4(b). It is clear from Fig. 4(b) that 
histogram distribution possesses bimodality. The featured 
image is generated as follows. A window of size (3x3) is 
considered around each pixel xij and the first moment 

ijwµ̂  

and the variance 
ijwσ̂  is computed assuming Gaussian 

distribution over the window. If  
ijij wwijx σµ ˆˆ ≤−  then the 

pixel is replaced
ijwµ̂ , otherwise the pixel value remains 

unchanged. The histogram of the featured image is shown 
in Fig. 4 (c). Close observation indicate that there are 
changes in the histogram. GA and PGA based clustering 
algorithm are employed to detect the peak and valleys. 
The “X” symbol indicate the cluster of population in the 
peaks. The parameters used for GA are:  
Generation=1000, Probability of Crossover Pc=0.8, 
Probability of Mutation Pm=0.001, population size Np= 
400 and Nv=100. The parameters used for PGA are:  
Generation=1000, Migration period is after 10 generation, 
Number of demes is 4, Probability of Crossover Pc=0.8, 
Probability of Mutation Pm=0.001, population size Np = 
400 and Nv=100, Probability of migration Pmig=0.8, 
Migration rate is (Rmig) = 4%. 
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Fig. 4 (a) 
 

 
 

Fig. 4 (b) 
 

 
 

Fig. 4 (c) 
 

 
 

Fig. 4 (d) 

 
 

Fig. 4 (e) 
 

 
 

Fig. 4 (f) 
 

 
 

Fig. 4 (g) 
 

Fig. 4 (a) Original image of size 256x256, (b) 
Normalized histogram of the image 4(a), (c) 
Featured histogram of the image 4(a) with 
detected peaks and valley (Peaks are at 71 and 
189, valley at 114), (d) Average fitness vs 
generations of class A for both PGA and GA, (e)   
Average fitness vs generations of class B for 
both PGA and GA, (f) Segmented image using the 
proposed method (threshold T=114), (j) 
Segmented image using Otsu’s method ( T=123). 
 



 

 
 

Fig. 5 (a) 
 

 
 

Fig. 5 (b) 
 

 
 

Fig. 5 (c) 
 

 
 

Fig. 5 (d)                      Fig. 5 (e) 
 
 
 

 

 
 

Fig. 5 (f) 
 

 
 

Fig. 5 (g) 
 

 
 

Fig. 5 (h)                          Fig. 5 (i) 
 
 
Fig. 5:  (a) Original image of size 256x256, (b) 
Normalized histogram, (c) Noisy version of 
original image having SNR 16 dB, (d) Normalize 
histogram of image Fig. 5(c), (e) Featured 
histogram of the image Fig. 5(c) and detected 
peaks and valley (peaks at 66 and 172 and valley 
at 116), (f) Average fitness vs generations of 
class A for both PGA and GA, (h)   Average 
fitness vs generations of class B for both PGA 
and GA, (i) Segmented image using the proposed 
method(T=116), (j) segmented image using 
Otsu’s method (T=126). 
 
 



 
 

Fig. 6 (a) 
 

 
 

Fig. 6 (b) 
 

 
 

Fig. 6 (c) 
 

 
 

Fig. 6 (d) 

 
 

Fig. 6 (e) 
 

 
 

Fig. 6 (f) 
 

 
 

Fig. 6 (g) 
 
 
Fig. 6:  (a) Original image of size 1600x1200, (b) 
Normalized histogram of the original image, (c) 
Featured histogram of the image Fig. 6(a) and 
detected peaks and valleys (peaks are at 64, 102 
and 201 and valleys are at 87 and 181), (d) 
Average fitness vs generations of class A for 
both PGA and GA, (e)   Average fitness vs 
Generations of class B for both PGA and GA, (f)   
Average fitness vs Generations of class C for 
both PGA and GA, (g) Segmented image using 
the proposed method (T1=87 and T2=181) 

 



The peaks are detected at gray values of 71 and 189. 
The valley is found to be at a gray value of 114 and hence 
the threshold. The rate of convergence is shown in Fig 
4(d) and Fig 4(e) for Class A and Class B respectively. 
Since this is a two class problem Class A and Class B 
refers to the object and background respectively. It is 
observed from both these figures that GA converges at 
around 1000 generations where as PGA takes 100 
generations. Thus, PGA is found to be almost 10 times 
faster that of GA. The optimal threshold value of 114 is 
used for segmentation and the segmented result is shown 
in Fig 4(f). It can be seen from Fig (f) that except a few 
misclassifications, the object and background have been 
segmented. Fig 4(g) shows the result obtained by Otsu’s 
approach. Comparing Fig 4(f) and Fig 4(g) it is observed 
that the results are comparable. Although, here the result 
is comparable, the efficacy of our method is quite evident 
in case of noisy images as shown in Fig 5.  

Fig 5(a) shows the original image and the 
corresponding histogram is shown in Fig 5(b). There is 
bimodality feature observed with the histogram. The noisy 
image of SNR 16 dB is generated and is shown in Fig 
5(c).  We define SNR as  
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The histogram of the noisy image is shown in Fig. 5(d). 
Overlapping of the class distributions are observed in Fig 
5(d) which is reduced in case of the histogram of the 
featured pixels as shown in Fig 5(e). GA and PGA are 
employed to detect the peaks and valley. The detected 
peaks are at 66 and 172 and the valley at 116 respectively. 
As observed in previous example, PGA is faster than that 
of GA. This phenomenon is shown in Fig 5(f) and 5(g). 
The optimal threshold value is used for segmentation and 
the segmented result is shown in Fig 5(h). Fig 5(i) shows 
the result obtained by Otsu’s approach. Even though the 
result obtained by our approach is visually comparable to 
that of Otsu’s approach, the misclassification error of our 
approach is 0.67% where as 0.77% is the error in case of 
Otsu’s approach. Since, the error is very close to each 
other the results are also comparable. We define the 
misclassification error as  
 
ME=(Nmc/Nt )×100                                                       (5) 
 
Where Nmc is the total number of misclassified pixels and 
Nt is the total number of pixels in the image.  

We have also considered an image having three classes 
of size (1600x1200) as shown in Fig 6(a).The 
corresponding histogram is shown in Fig 6 (b) which 
shows three clear modes. The histogram of the featured 

pixels is shown in Fig 6(c), where there is clear tri-
modality. GA and PGA are employed to detect the peaks 
and valleys. The valleys are found to be at 87 and 181 
gray values. The parameter of GA and PGA are same as 
those used for the two class problems. In this case also, 
PGA is found to converge faster than that of GA. This 
effect is shown in Fig 6 (d), (e) and (f). The optimal 
thresholds are used to segment the images and the 
segmented image is shown in Fig 6(g). This is clear that 
proper segmentation could be achieved except a few 
misclassified points .Thus two and three class images 
could be segmented using the proposed scheme. 
 
5. Conclusions 
 

In this work, a new approach is proposed to determine 
the optimal thresholds for two and three class image 
segmentation. The shape information of the histogram 
corresponding to the featured pixels is used to compute 
the optimal threshold. The first moment over a window 
around a pixel is considered as the feature value of the 
pixel. Gaussian distribution is assumed over each window 
and the consideration of the featured value depends upon 
the standard deviation of the window. This notion helps to 
reshape the histogram i.e. the shape of the featured 
histogram is more useful. The peaks are determined from 
the normalized histogram using the GA and PGA based 
crowding. Because of the discrete nature of the histogram 
the peaks are detected by GA and PGA based concepts. 
Subsequently the valley corresponding to the optimal 
threshold determined. The proposed scheme yielded 
satisfactory results for two and three class problems. 
Results obtained by the proposed scheme are quite 
comparable to that of Otsu’s approach. The performance 
of the proposed scheme is found to be better in case of 
noisy images. The noisy case for a two class has been 
presented, but it also worked for other classes. Parallel 
genetic algorithm converged faster and takes very less 
time and hence will be suitable for real time application. 
Current work focuses on devising adaptive threshold 
scheme for classification of objects and background.  
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