
HPSOSA: A Hybrid Approach in Resilient
Controller Placement in SDN

Khushboo Kanodia
Dept. of CSE
NIT Rourkela
Odisha, India

kkanodia2307@gmail.com

Sagarika Mohanty
Dept. of CSE
NIT Rourkela
Odisha, India

sagarikam 23@yahoo.com

Bibhudatta Sahoo
Dept. of CSE
NIT Rourkela
Odisha, India

bdsahu@nitrkl.ac.in

Kuldeep Kurroliya
Dept. of CSE
NIT Rourkela
Odisha, India

kuldeep.nitrkl2304@gmail.com

Abstract—Software-defined networking (SDN) is an emanate
model for network management and design. The significant
difference is the decoupling of the data plane from a control
plane, which yields flexibility, programmability to configure the
network and simplify the network management. SDN gives
network administrators the capability to maintain and configure
network services from a centralized location. The problem of
controller placement concern with the number of controllers
required and their placement in the network to preserve the
network configuration. The resilient controller placement deals
with the issue of either a node failure or link failure. In this
paper, we proposed a meta-heuristic hybrid particle swarm
optimization and simulated annealing(HPSOSA) approach for
resilient controller placement to minimize the average latency.
We evaluate our results on different network topologies present
in Topology Zoo. Evaluation results verify that our proposed
algorithm executes better than the other techniques.

Index Terms—Software-defined networking, Controller place-
ment, Network resilience, Particle Swarm Optimization, Simu-
lated Annealing, Latency

I. INTRODUCTION

In the last few years, Software-Defined Network(SDN) has
become the new network paradigm that provides a lot of
advantages to the network service providers in comparison to
the traditional network. The central concept of the Software-
Defined Network is the detachment of the control plane from
the data plane [1]. One controller in a system is beneficial
as it yields centralized management, and the controller does
all the routing judgment to establish the perspective of a
global network. Yet, this undoubtedly upsurges the latency of
switches that are afar from the controller.Also single failure
controller is a bottleneck. To avoid this bottleneck, multiple
controllers are required.They are physically distributed in the
network, but acts as a logically centralized system.
There are three layers in underlying SDN architecture: infras-

tructure layer, control layer, and application layer as shown
in Fig 1.The infrastructure layer consists of various switches
and routers, which forward the packet to the controller to
take the routing decisions through the southbound API or
control layer interface. The control layer is composed of
a definite number of controllers that control the network
elements in the infrastructure layer according to the need of
the application layer. The applications in the application layer
communicate to the controller through the northbound API,

Fig. 1. SDN Architecture

such as REST. The SDN applications include security, quality
of service(QoS), traffic engineering and monitoring etc. The
applications are in a programmable format which eliminates
the use of middleboxes such as firewall, load balancers because
it implements their functionality in software.
The main contributions of the paper are summarized as
follows: we proposed a meta-heuristic hybrid particle swarm
optimization and simulated annealing(HPSOSA) approach to
minimize the average latency in case of a controller node
failure while considering the capacity of the controller. To the
best of our knowledge, we apply this hybrid approach for the
first time.We compared the HPSOSA approach with Particle
Swarm Optimization(PSO) and Simulated Annealing(SA) and
found that HPSOSA performs better.Using a hybrid method
of PSO and SA, search efficiency increases, and it eliminates
the weakness of both the algorithm.HPSOSA takes advantage
of both PSO and SA as PSO has robust global search ability
while SA has robust local search.
The remaining part of the paper is arranged as follows. Section
II contains the related works of controller placement and
resilient controller placement. Section III discuss the system
model. Section IV contains de- tail description of the HPSOSA
algorithm. Section V describes the performance evaluation of

the algorithm. In the end, we conclude the paper in Section
VI

II. RELATED WORKS

In this part, we survey the existing works done on the
controller placement in SDN while giving the main focus on
the resilient controller placement.

A. Controller Placement

Latency is the primary factor in placing the controller in
SDN, which is calculated using the shortest distance between
the switches and its assigned controller. [2], [3].Therefore,
most of the authors mainly focus on latency while placing
the controllers in SDN. In [3], the capacity of the controller
is fixed. Their focus is to place the optimal number of the
capacitated controller in a network to minimize the latency,
which satisfy the demands of the switches in a system.The
authors of [4] suggest various evolutionary algorithms to solve
a complex optimization problem such as the placement of con-
troller in SDN. Meta-heuristic technique solves the problem
in less time as compared to other methods. In [5] authors
reviewed various papers of controller placement problem and
found that numerous mathematical models and meta-heuristic
techniques were used to minimize the latency, cost in a
network.The authors of [6] recommended a Bargaining Game
theory approach to place the optimal number of controllers in
a network. It consider three objective functions to minimize
the latency between the switch to a controller, controller to
controller, load balancing between the controllers and perform
a trade-off between them.

B. Resilient Controller Placement

While placing the optimal number of controllers in a re-
silient network, it needs a trade off while considering more
than one performance metrics such as latency, cost etc. The
authors in [7] introduced the resilient Pareto-based Optimal
Controller-placement to place the controllers in a network
and evaluate their work on 140 topologies and claimed that
a minimum of twenty percent nodes should be controller to
achieve resilience in a network.The authors of [8] found that
the latency of the network highly increases in case of controller
failure. To avoid this, they have planned for failure and suggest
a mixed-integer linear program (MILP) to solve this prob-
lem.The authors of [9] suggest a greedy-placed algorithm to
solve a single link failure of a network in polynomial time.The
authors of [10] propose a multi-controller mapping approach in
which each switch is mapped to various controllers to achieve
resilience in case of a controller failure. Minimum fifty percent
resilience is maintained in this approach.
In paper [11], the authors proposed a mathematical model to
minimize the cost in case of a controller failure and solved it
using a GUROBI optimizer in MATLAB.The authors of [12]
propose a clique based approach to solve a resilient controller
placement in a wide area network by finding the maximal
cliques. It is limiting the search space by providing the fact

that if an optimal solution exists, it is a subset of either of the
maximal cliques. The authors of [13] found that the placement
of controllers in a network is NP-hard. Its time complexity
increases with the size of the network.To solve this kind of
problem meta-heuristic approaches are preferred. The authors
proposed a genetic algorithm to place an optimal number
of a controller in a network to increase its reliability.The
authors of [14] suggest a new framework, sorting moth flame
optimization that has taken into account the link utilization
and propagation latency while placing the controllers. It also
compared its model with another existing approach and found
that its proposed one perform better results.

III. PROBLEM STATEMENT AND FORMULATION

A. Problem Description

The controller failures in an SDN can evoke by natural
calamity or deliberate attacks. We have to place the optimal
number of the controller in a network such that it can handle
failures, without degrading its performance too much extend.
Connecting switches to more than one controller is one of the
methods to achieve resilience. In this, if one of the controllers
fails, then switches that are connected to it, can assign to
its backup controller. To achieve this, we have to maintain
a distinct replication protocol that requires inter-controller
synchronization and communication. In this paper, we consider
that the network can handle only one controller failure. While
assigning switches to the controller, we have considered the
load of the switches should be less than the capacity of the
controller.

B. Problem Formulation

The SDN network graph is represented as G(N,E), where
N represents the sets of nodes, including switches S and
controllers C. E represent the sets of edges. Here we assume
that all nodes are OpenFlow-enable, so that we can place
the controller in any of the nodes. Let Pb be the probable
position for deploying the controllers. All switches acquire a
load ldi on their designated controller. Individual controller j
is assigned with a capacity of Kj . The preeminent objective
of the paper is to deploy m controller in their optimal position
to minimize the average latency, so that it will not drastically
increase in case of controller failure [15]. In case of failure
of the primary controller, the switches will be assigned to its
nearest working controller. The objective is defined as follows:
minimize

πavglat = min
Q⊆Pb,|Q|=m

1

|S|
∑
i∈S

∑
j∈Pb

∑
k∈Pb

{d(si, cj)+d(cj , ck)}zijk

(1)
subject to: ∑

j∈Pb

tj = m (2)

∑
j∈Pb

∑
k∈Pb
k 6=i,j

d(si,cj)≤d(si,ck)

zijk = 1 ∀i ∈ S (3)

zijk ∈ {0, 1} ∀i ∈ S, j, k ∈ Pb (4)

∑
i∈S

∑
k∈Pb

ldizijk +
∑
i∈S

∑
k∈S

ldizikj ≤ Kjtj ∀j ∈ Pb (5)

In the above equation 1, d(si, cj) is the shortest distance
between switch si to controller cj in a network. zijk and tj
are the decision variables takes value 0 or 1. If controller j
is connected with switch i and controller j is connected to
backup controller k than zijk is equal to 1 else 0. Likewise
if controller is deployed at jth location than tj is equal to 1
else 0. Equation 2 states that the total of controllers should be
equal to m.The load of switches shouldn’t exceed the capacity
of controller as describe in equation 5.

IV. ALGORITHMS DESCRIPTION

A. Particle Swarm Optimization

Particle Swarm Optimization is referring to a group of birds
moving in the sky in search of food. They try to upgrade
their position based on other associates and follow the better
ones. This way, they optimize their search space. In PSO, we
randomly generate initial solutions or particles.We upgrade the
velocity and position of the particles at every iteration, based
on the local and global best of the particles. Local best is the
current best position among the particles, and the global best
is the best position obtained so far. Each particle represents
the solution space of the n-dimension.The mathematical study
illustrated below [13]
Let m particles are there, and each particle has n dimen-
sion. Let the current position of the particle is Ai =
[ai1, ai2, ai3, ...ain], where i ∈ 1, 2, ...m. The current velocity
is Bi = [bi1, bi2,bin]. The best position of the particle
Pi is pi1, pi2,, pin. The Pgb is best global position.At the
time t+1, it updates the position (A)t+1

in and velocity (B)t+1
in

of the particle is defined as:

Bt+1
in = wBt

in + c1r1(Pin− (A)tin)+ c2r2(Pgb− (A)tin) (6)

and

At+1
in = (A)tin +Bt+1

in (7)

Where w represents initial weight, r1 and r2 denote the
random sequence [r1, r2 ∈ 0, 1]. The constants c1 and c2
adjust the cognitive part and social part, respectively.The
representation of the particle according to our problem is
shown in Fig 2. Here we consider a network of 10 nodes
and assume number of controllers(n) placed in a network is
4 (n = 4).Let population size = 3.

Fig. 2. Representation of Initial Population of Particles

At every iteration, we update the velocity and position of
the particles using Equation 6 and 7 and calculate the global
best Pgb and local best Pin.

Fig. 3. Representation of Updated Position of Particles

B. Simulated Annealing

Simulated Annealing is a probabilistic method for the op-
timization problem. It is inspired by the metropolis algorithm
that slowly lowers the temperature to cool down the material.
The distinctive characteristic of this algorithm is to avoid being
caught in local optimum. It accepts the worst solution with
some probability. As the temperature decreases, the likelihood
of taking the worst solution decreases. We have to be very
cautious while selecting the starting and ending temperature,
not too high or low. We take the initial temperature Tsto be 1
and ending Te be 0.001. Initially, we choose a random solution
and calculate its fitness value.At every iteration, we generate
the neighborhood state of the random solution and calculate its
fitness. The algorithm store the best value obtained until now.
The later solution is accepted as the present solution with the
probability, P (S′, δ, T emp). Where δ is the change in fitness
value, i.e., the asymmetry between objectives of current and
new solutions, and r is a random number lies between 0 and
1.

P (S′, δ, T emp) = e(− δ

Temp
) = e(−v

′ − v
Temp

) ≥ r (8)

C. Hybrid PSO & SA

In spite of having many advantages and fast convergence,
particle swarm optimization sometimes trapped in local op-
tima. We use a simulated annealing approach to avoid being
trapped in local optima. Using a hybrid method of PSO and
SA, search efficiency increases, and it eliminates the weakness

of both the algorithm. Computational cost increases if we
apply SA at each iteration, therefore we use SA to PSO at
every kth iteration if we don’t see any change in the global
solution. SA has robust local search ability, while PSO has
robust global search ability. By combining both, we take
advantage of both the algorithm.

Algorithm 1 HPSOSA algorithm
Input : stMat,imax,nCont
Output : optCost(gBest), final pos of controllers (final-

Pos)
1: c1,c2,w,nPop,k
2: cpt← 0
3: pBest←∞
4: for i← 1 to nPop do
5: Ppos← RandomPosition(nCont, nNode)
6: pV el← 0
7: pCost = Fitness(stMat(S,E), Ppos)
8: if pCost<pBest then
9: pBest← pCost

10: Lpos← Ppos
11: end if
12: end for
13: gBest← pBest
14: constgBest← gBest
15: finalPos← Lpos
16: pBest←∞
17: for ite← 1 to imax do
18: for i← 1to nPop do
19: pV el← Calculate velocity using Equation 6
20: Ppos← Calculate position using Equation 7
21: pCost← Fitness(stMat(S,E)), Ppos)
22: if pCost<pBest then
23: pBest← pCost
24: Lpos← Ppos
25: if pBest<gBest then
26: gBest← pBest
27: finalPos← Ppos
28: end if
29: end if
30: end for
31: if gBest<constgBest then
32: constgBest← gBest
33: cpt← 0
34: else
35: cpt← cpt+ 1
36: end if
37: if cpt=k then
38: cpt← 0
39: gBest, finalPos = SA(stMat(S,E)), finalPos)
40: end if
41: end for
42: return gBest,finalPos

Algorithm 2 Fitness
Input : stMat(S,E),pCtr(Position of controllers)
Output : avglatency(minimum average case latency)

1: n(number of nodes), m(number of controllers)
2: for i← 1 to n do
3: for j ← 1 to m do
4: lat[i]← Calculate the value using Equation 1
5: end for
6: end for
7: avglatency ← min(lat)
8: return avglatency

Algorithm 3 SA
Input : stMat,Ts,Te,maxite,α, Ppos
Output : sstar(final pos of controller),vstar(best value)

1: Temp← Ts, vstar ←∞ ite← 1
2: s← Ppos
3: v ← Fitness(stMat, s)
4: while Temp ≥ Te do
5: if v < vstar then
6: sstar ← s
7: vstar ← v
8: end if
9: s′ ← GenerateRandomNeighbour(s)

10: v′ ← Fitness(stMat, s′)
11: ∆← v′ − v
12: r ← Randomnumber lieswithin 0 and 1
13: if P (s′, δ, T emp) ≥ r then
14: s← sstar
15: v ← vstar
16: end if
17: ite← ite+ 1
18: if ite≥maxite then
19: Temp← Temp× α
20: ite← 1
21: end if
22: end while
23: return sstar, vstar

V. RESULT AND ANALYSIS

For execution, the program is written in PYTHON and
runs it on a system having an i5 processor with 8 GB
RAM. We took the real network topologies for our experiment
from Internet Topology Zoo [16]. It is the repertory of real
networks, where the information is stored in graphical for-
mat.We calculate the distance between two nodes using haver-
sine formula.We consider three networks for our experiment
Surfnet(50 nodes), Forthnet(60 nodes), TataNId(143 nodes).
We fix the controller capacity to 7.8∗106 packets/second [15].
And the demand for each switch is set to 100-kilo req/s.
Therefore one controller can serve 78 switches at a time.
Assuming that one controller fails at a time, a minimum of two

Fig. 4. Impact of average latency on the no of controllers for Surfnet, Forthnet and TataNId network

Fig. 5. Controller Locations using HPSOSA for Surfnet, Forthnet and TataNId network

controllers are required for Surfnet and Forthnet network as
one controller act as a backup in resilient controller placement.
But for TataNId, more than two controllers are needed. We
conduct the experiment several times to set the initial param-
eters of the HPSOSA algorithm. The values are tabulated in
Table I.

TABLE I
PARAMETRS USED IN HPSOSA ALGORITHM

Parameters Description Value
c1 constant 1.7
c2 constant 2
w initial weight 0.75

nPop No of particles 50
imax No of iteration 100
k No of iteration 20
Ts initial temperature 1
Te ending temperature 0.001

maxite No of iteration 200
α cooling factor 0.9

A. Analysis of the performance of the algorithms
The main goal is to minimize the average latency in case

of controller failure. The objective is if a controller fails due

to any reason, the latency will not drastically increase.So
planning is required for this. From Fig 4, we have seen
that the average latency decreases with increasing number
of controllers. But after a certain number of controllers, the
change is not very significant. We take the controller range
from 2 to 9. We evaluated our HPSOSA algorithm on three
topologies Surfnet, Forthnet, and TataNId. From the results it
is found that HPSOSA performs better than PSO and SA.

B. Optimal location of the controllers

Fig 5. shows the optimal location of the controllers for
the three networks. The blue circles represent the switch
positions, and the red circles represent the controller positions.
After doing experimental analysis, we observed that 3 to
5 controllers are enough for Surfnet and Forthnet. And for
TataNId, 6 to 9 controllers. If we add more controllers than
either very few switches are assigned to it or the controller
will remain idle.

VI. CONCLUSION

In this paper, we proposed a hybrid approach of both particle
swarm optimization and simulated annealing(HPSOSA) for
the resilient placement of the controller in the SDN. The main

goal is to minimize the average latency of the network in
case of controller failure. For evaluation, we took the various
network from the Internet Topology Zoo and found that our
proposed algorithm performs better than PSO and SA. Our
proposed HPSOSA algorithm takes advantage of both PSO
and SA methods to find the optimal location of controllers
while minimizing the latency. For future work, we plan to
consider multiple controller failures at a time and will also
consider other performance metric such as load balancing.

REFERENCES

[1] N. Feamster, J. Rexford, and E. Zegura, “The road to sdn: an intel-
lectual history of programmable networks,” ACM SIGCOMM Computer
Communication Review, vol. 44, no. 2, pp. 87–98, 2014.

[2] B. Heller, R. Sherwood, and N. McKeown, “The controller placement
problem,” in Proceedings of the first workshop on Hot topics in software
defined networks. ACM, 2012, pp. 7–12.

[3] Y. Hu, W. Wang, X. Gong, X. Que, and S. Cheng, “On reliability-
optimized controller placement for software-defined networks,” China
Communications, vol. 11, no. 2, pp. 38–54, 2014.

[4] V. C. M. L. LIAO Lingxia and L. ChinFeng, “Evolutionary algorithms in
software defined networks: Techniques, applications, and issues,” 2017.

[5] B. P. R. Killi and S. V. Rao, “Controller placement in software defined
networks: A comprehensive survey,” Computer Networks, vol. 163, p.
106883, 2019.

[6] A. Ksentini, M. Bagaa, T. Taleb, and I. Balasingham, “On using
bargaining game for optimal placement of sdn controllers,” in 2016 IEEE
International Conference on Communications (ICC). IEEE, 2016, pp.
1–6.

[7] D. Hock, M. Hartmann, S. Gebert, M. Jarschel, T. Zinner, and P. Tran-
Gia, “Pareto-optimal resilient controller placement in sdn-based core
networks,” in Proceedings of the 2013 25th International Teletraffic
Congress (ITC). IEEE, 2013, pp. 1–9.

[8] B. P. R. Killi and S. V. Rao, “Controller placement with planning
for failures in software defined networks,” in 2016 IEEE International
Conference on Advanced Networks and Telecommunications Systems
(ANTS). IEEE, 2016, pp. 1–6.

[9] S. Guo, S. Yang, Q. Li, and Y. Jiang, “Towards controller placement
for robust software-defined networks,” in 2015 IEEE 34th International
Performance Computing and Communications Conference (IPCCC).
IEEE, 2015, pp. 1–8.

[10] B. P. R. Killi and S. V. Rao, “Towards improving resilience of con-
troller placement with minimum backup capacity in software defined
networks,” Computer Networks, vol. 149, pp. 102–114, 2019.

[11] M. Tanha, D. Sajjadi, and J. Pan, “Enduring node failures through
resilient controller placement for software defined networks,” in 2016
IEEE Global Communications Conference (GLOBECOM). IEEE, 2016,
pp. 1–7.

[12] M. Tanha, D. Sajjadi, R. Ruby, and J. Pan, “Capacity-aware and delay-
guaranteed resilient controller placement for software-defined wans,”
IEEE Transactions on Network and Service Management, vol. 15, no. 3,
pp. 991–1005, 2018.

[13] J.-M. Sanner, Y. Hadjadj-Aoul, M. Ouzzif, and G. Rubino, “An evolu-
tionary controllers’ placement algorithm for reliable sdn networks,” in
2017 13th International Conference on Network and Service Manage-
ment (CNSM). IEEE, 2017, pp. 1–6.

[14] A. Jalili, M. Keshtgari, and R. Akbari, “A new framework for reliable
control placement in software-defined networks based on multi-criteria
clustering approach,” Soft Computing, pp. 1–20.

[15] B. P. R. Killi and S. V. Rao, “Capacitated next controller placement in
software defined networks,” IEEE Transactions on Network and Service
Management, vol. 14, no. 3, pp. 514–527, 2017.

[16] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan,
“The internet topology zoo,” IEEE Journal on Selected Areas in Com-
munications, vol. 29, no. 9, pp. 1765–1775, 2011.

