
Energy Efficient Genetic Algorithm for Container
Consolidation in Cloud System

Dimple Patel
Dept. of Computer Science & Eng

National Institute of Technology
Rourkela, India

dimplepatel982@gmail.com

Manoj Kumar Patra
Dept. of Computer Science & Eng

National Institute of Technology
Rourkela, India

manojpatra.in@gmail.com

Bibhudatta Sahoo
Dept. of Computer Science & Eng

National Institute of Technology
Rourkela, India

bibhudatta.sahoo@gmail.com

Abstract—A lot of work has been done and extensive research
is going on for reducing the energy consumption of large-
scale cloud data centers along with the maximization of host
level utilization. Because of on-demand service provisioning, the
number of users’ requests increases which leads to an increase
in the number of physical machines and data center size. This
results in increased energy consumption in the data center as
energy consumption is directly proportional to the number of the
active physical machine. The container is a lightweight approach
to operating system virtualization, offers an opportunity to
improve the efficiency in cloud data centers. Containerized cloud
gaining widespread popularity in recent years, so an efficient
container consolidation is an open research challenge. Container
consolidation is used to optimize energy consumption, as the
resource utilization by the containers is directly relates to energy
consumption. Container consolidation is an NP-Hard problem
which can be solved by heuristic and metaheuristic algorithm.
Therefore, in this paper, we implemented the heuristic and
metaheuristic algorithm for energy reduction in the cloud. We
implemented the next fit, best fit, best fit decreasing, first fit, first
fit decreasing and compare their result. The experimental result
shows that the best fit decreasing and first fit decreasing gave
the almost same result. Further, this result is compared with the
proposed Energy Efficient Genetic Algorithm(EEGA). We got the
best result with the proposed EEGA.

Index Terms—Cloud Computing, Energy Consumption, Con-
tainerized Cloud, Virtualization, Virtual Machine.

I. INTRODUCTION

Cloud computing is a utility-oriented delivery of computing
services on a pay-as-you-go basis. It uses remote servers
that are hosted on the internet for storing, managing, and
processing data that are delivered on-demand. Cloud comput-
ing is defined as configuring, manipulating and accessing the
software and hardware resources remotely. It offers online data
storage, platform independence, on-demand scalability, ease of
management, cost-effectiveness, high rate of reliability, con-
tinuous deployment, availability, etc. Such advantages of cloud
computing change the way of deployment of the application.
Companies require on-demand scalability for their enterprise
application which can be achieved through cloud computing
models.

Scaling of monolithic applications is difficult as it consists
of a lot of services into a single code. This is why most
of the companies are moving towards micro-service archi-
tecture. Application in micro-service architecture consists of

many decoupled services independent of each other. Each of
these services performs specific tasks independently of each
other. The benefits of microservices application are it allows
independent updating and redeployment of a small part of the
application. One of the technologies enabling microservices
architecture is containerization of application. Containerization
is OS-level virtualization. The difference between container
and Virtual Machine is as shown in Fig.1

The virtual machine is a software program that emulates
the functionality of physical hardware. Hypervisors are the
way to manage virtual machines. A hypervisor runs VMs
that have their OS. The hypervisor sits between hardware and
VM and is responsible for creating VM. Each VM has their
operating system and on top of VM, applications are run. The
container provides an isolated environment to an application.
The container requires an underlying OS that provides the
basic services to all the containerized applications. As each
container run on the same host OS, container overhead is low
as compared to virtual machines. Another advantages of the
container over virtual machines are its ability to start a new
container faster than starting new virtual machines, containers
are very lightweight as compared to virtual machines, also
resource management overhead is less than a virtual machine.
The architecture model proposed in [3] for smart city using
IoT can be containerized for better performance.

The numerous advantages of cloud computing encourage
platform providers to increase the capacity of their data centers
to meet the increasing demand of the customer. As a result
of this, energy consumption increases as to power such a
large infrastructure, cloud data center need more energy. It
is difficult to define unique service for energy consumption
in the data center due to its complexity. The author in [4]
has identified four scenarios within a system where energy
is not used efficiently- Network, Servers, Cloud Management
System and Appliances. Reason for energy wastage in data
centers are inefficiency in data center cooling systems [5] ,
network equipment [6], and server utilization [7]. Servers are
the main reason for energy consumption in the data center
[7]. Therefore we try to minimize energy consumption on the
server-side.

A single cloud data center may consist of thousands of
servers that are spread over 4500 square meters. A 500 square



Fig. 1: Virtual Machine Vs Container

meter data center can consume the power of 38 megawatt-
hours(MWh) per day, which is more than power consumption
in 3500 households in the EU. Energy consumption also
increases the total cost of ownership (TCO). This results
in a decreasing return on investment (ROI) of the cloud
infrastructure. Also, energy consumption leads to the emission
of carbon dioxide (CO2), which is estimated to be 2% of
global emission [8].

The rest of the paper is structured as follows. Section II
describes related work. In section III, System model is dis-
cussed. Section IV describes the proposed genetic algorithm.
Section V describes experimental analysis and result. Section
VI gives conclusion and future work.

II. RELATED WORK

Claus Pahl et al. [1] describes an introduction to virtu-
alization and need for the containerization. They discussed
that PaaS cloud service can use a container to manage and
orchestrate application. The paper describes containerization
technologies and how the application can be deployed on PaaS
platform. In paper [2], Ozmen Emre et al. compared the effects
of Linux application containerization on power consumption to
server virtualization and BareMetal environments. They used
five different benchmarking tests namely timed Linux kernel
compilation benchmark, aio-stress benchmark, RAM speed
benchmark, loopback TCP network performance benchmark
and apache benchmark on three different platforms Bare
Metal, KVM and Docker. The author concludes that in the
apache benchmark test, ram speed test, and timed Linux kernel
compilation test, docker container has better performance with
less energy consumption than KVM. However, in hard disk
and network tests, KVM was having less energy consumption
than a docker container. Baremetal had better results in all
benchmarks tests.

Piraghaj et al. [9] find an efficient virtual machine size and
host container on a virtual machine so that the wastage of
resources is minimized while executing the workload. The
main contribution is to find an approach for the efficient
allocation of resources that matches closely the actual resource
usage of deployed container. For this, they analyzed the cloud’s
trace log from Google cluster and clustered tasks based on
their usage pattern. Then this task is mapped to a container,

suitable virtual machine size for containers are calculated and
these containers are hosted on their associated virtual machine
types. The proposed method is compared against fixed VM
size and the result shows improvement in energy consumption.
The author hosted containers on VM but not directly on the
physical machine.

In paper [10], Piraghaj et al. improve the energy efficiency
of servers by proposing a framework that consolidates contain-
ers on virtual machines. The proposed framework decreases
the number of running servers through the container migration
algorithm. Three stages for container migrations are consid-
ered when to migrate containers, how many containers need
to be migrated and where to migrate. In the first stage, if
the host is found to be overloaded or under-loaded, then
container migration is initiated. For the second stage, ”MCor”
and ”MU” algorithms are considered. For the third stage,
three bin packing algorithms are applied. In paper [11], Dong
et al. proposed the most efficient server first (MESF) task
scheduling scheme to minimize energy consumption in the
data center. The proposed energy model name is VPC (Virtual
Power Consumption). Parameter considered are CPU along
with resource allocation. This is done on a virtual machine
and not on containers.

Guan et al. in [12], design an AODC framework for
minimizing application deployment cost and for supporting
automatic scaling when the workload of cloud application
changes. They minimize resource allocation and evaluated
models using the CPLEX optimization tool but not considered
real-world datasets. Dong et al. in [13], proposed a solution
for the containerized application scheduling based on integer
linear programming. They evaluated container image pulling
cost, host energy conservation and network transition cost from
the client to the container host.

Hanafy et al. in [14], demonstrate the association between
container and host selection policy. Host selection policies
such as ACO, Least Full, Most Full, Most correlated, least
correlated, max variance and min variance are considered
and for container selection, they considered max-correlated,
max-variance, max-usage, and min-variance. They find a bet-
ter result with max-variance host selection and most usage
container selection policy. Chen Q. et al. in [15] proposed
a utilization based migration algorithm for mapping VM to
servers. The proposed algorithm is evaluated with real work-
load form CoMon. Tao Shi. et al. in [16] proposed Two-stage
multitype PSO algorithm for energy saving. They first wrap
the application into a container and allocated this container to
VM using First Fit algorithm. Then this VM is allocated to a
server using PSO algorithm.

III. SYSTEM MODEL

This section describes an architectural model, problem
statement and mathematical model for the proposed system.

A. Architectural Model

The proposed system mainly consists of 3 main compo-
nent. (i) Application, which consists of different independent



modules. Each of these modules is described by the amount
of CPU required which is measured in MIPS and amount of
memory required which is measured in MB. It is assumed that
these two specifications of the modules are specified by the
user. (ii) Container mapper, which maps each of these modules
into a container and, (iii) Servers, on which these containers
are running. These servers are specified with the amount of
CPU and memory they possess. Servers can be homogeneous
or heterogeneous.

Fig. 2: Architecture Model

Fig 2 shows the proposed architecture model. There are
multiple application each of which consists of multiple mod-
ules. These modules are sent to container mapper which is
responsible to map each of these modules into a container.
Then apply a container allocation algorithm that maps these
containers to a minimum number of servers so that energy
consumption can be minimized.

B. Problem Statement

For a given application, we have a container set C =
{c1, c2, c3, ...cm} where ci, i = {1, 2, ...,m} is a container
of a modules of the application. Let host machine set be
H = {h1, h2, h3, ..., hn}. Container runs on host machine
hk where k = {1, 2, 3, ..., n}. The objective is to find an
efficient container allocation algorithm such that the overall
energy consumption in data center can be minimized.

C. Mathematical Model

It is assumed that the application with its requirement and
dependencies are specified. Each of these applications consists
of an independent module and these modules are mapped to
container. So, for each application, we have a set of container
{c1, c2, . . . , cm}. The workload of server is represented as
(smax cpu capacity, smax memory capacity, smax power, sidle power),

where smax cpu capacity represents the servers maximum
processing capacity in MIPS, smax memory capacity

represents the server maximum memory in GB,
smax power is the maximum power consumption for a
give server and sidle power is the idle power consumption
for the server. Container workload is represented as
(ccpu utilization, cmemory utilization) where, ccpu utilization

represents the containers processing capacity in MIPS
and cmemory utilization represents the containers memory
requirement in MB. The correlation between server utilization
and the electric power consumption proposed in [17], i.e. for
a given server k,

Pk(u) = (Pk,max − Pk,idle) · uk + Pk,idle (1)

where, uk is utilization rate of server k.

Utilization rate of a server is calculated by utilization of
both CPU and Memory i.e.

uk = ukCPU
+ ukmemory (2)

where ukmemory rate for a given server k is given by,

ukmemory
=

ukmemory utilized

ukmax memory capacity

(3)

and ukCPU
rate for a given server k is given by,

ukCPU
=

ukcpu utilized

ukmax cpu capacity

(4)

The total power consumption of data center is given by,

P =

n∑
k=1

Pk(u) (5)

Let ximemory (k) and xicpu(k) denotes the memory and
cpu required by container i on kth server. Objective is to
minimize

∑n
k=1 Pk(u), Subjected to,

n∑
i=1

ximemory (k) <= memory capacity(k)

n∑
i=1

xicpu(k) <= cpu capacity(k)

IV. PROPOSED ALGORITHM

The genetic algorithm is a metaheuristic algorithm based on
Darwins’s theory of evolution. It is a randomized algorithm in
which random changes are applied to the current solution to
find the new solution. The basic workflow of the proposed
energy efficient genetic algorithm is as shown in Algorithm 1.

A. Encoding Candidate Solution
Length of chromosome is taken equal to the number of

container taken in which each gene represent a positive integer
between 1 to number of servers. The chromosome represen-
tation scheme is as shown in diagram 3.

Figure 3 shows an example of representation of chro-
mosome in which 10 containers are considered. Container
number C1, C2, C3, C4, C5, C6, C7, C8, C9, C10 are placed
on servers S1, S2, S3, S1, S2, S2, S1, S3, S3, S2 respectively.



Fig. 3: Chromosome Representation

Algorithm 1 EEGA: Energy Efficient Genetic Algorithm
1: Determine the number of chromosomes and generation.
2: Initialize each chromosome with random value.
3: Process step 4-7 until the number of generation met.
4: Calculate the fitness value for each chromosome in the

population.
5: Select two individual from the chromosome according to

the selection method.
6: Perform crossover on the selected two individual to gen-

erate new child.
7: Perform mutation on newly generated child.
8: Return the best solution.

B. Initial Population

An initial population of the chromosome is generated ran-
domly. While generating random value, we also take care that
the container is not mapped to a server that is overloaded or
may go for overload.

Algorithm 2 Initial Population Generation
Input: chromosome length(c length), population

Size(p size), number of servers(no of servers),number
of container (no of containers) ,container CPU utilization
list(c cpu utilization),container memory utilization
list (c memory utilization),server cpu utilization
list (s cpu utilization),server memory utilization list
(s memory utilization) , maximum server CPU utilization
(max server cpu utilization), maximum server memory
utilization (max server memory, utilization).

Output: initial population P .
1: for i = 1 to p size do
2: for j = 1 to c length do
3: rnd = random.randint(0,no of servers)
4: while s cpu utilization)[rnd] +

c CPU utilization[j] >=
max server CPU utilization and
s memory utilization)[rnd] +
c memory utilization[j] >=
max server memory utilization do

5: rnd = random.randint(0, no of servers)
6: end while
7: p(i, j) = rnd
8: end for
9: end for

10: return P

C. Fitness Function

Fitness function finds the energy consumption of each
server.

Algorithm 3 Fitness Function Algorithm
Input: server list server list.
Output: total energy consumption (E).

1: Initialize energy consumption(E) = 0
2: for each server Si in server list,calculate the energy

consumption do
3: E =

n∑
i=1

(Pi,max − Pi,idle).u+ Pi,idle

4: end for
5: return E

D. Selection Method

The elitism method is used for selection. When creating
a new population, there may be chances of losing the best
chromosome. Therefore this method first copies the best
chromosome to the new population. First, we sort all the
chromosomes according to their fitness value. Then, we select
the first 20% of the total population for the new population
and for the rest of 80%, we randomly selected two individuals
and perform crossover.

E. Crossover Method

The proposed Energy Efficient Genetic Algorithm(EEGA)
performs a uniform crossover in which random number is
generated if the generated random number is less then 0.5
then select a gene from parent1 otherwise select a gene from
parent2. While selecting the gene number, guarantee that the
assigned container will not exceed the total workload on the
server.

F. Mutation

Randomly select a gene from a newly generated child and
change the value of a gene by taking care that the change
value of gene will not exceed server utilization.

Algorithm 4 Mutation Method
Input: a newly generated child child.
Output: a mutated child child.

1: Generate a random container id (rnd1).
2: Generate a random server id (rnd2) between

(0, no of servers).
3: if the generated container id does not exceed capacity of

generaed server id then
4: child[rnd1] = rnd2.
5: else
6: Generate random server id until the container id ex-

ceed the server id capacity.
7: end if
8: return child.



V. EXPERIMENTAL ANALYSIS AND RESULT

The experiment was performed by considering heteroge-
neous servers where server maximum processing capacity
considered from 2000 to 8000 MIPS and memory capacity
taken is 4GB, 8GB, 12GB, and 32GB. The number of servers
considered is equal to the number of containers. The number of
container taken are 10, 20, 30, 40, 50. Container processing
capacity is taken between 500 to 3000 MIPS and memory
capacity is between 400 to 1000 MB. The maximum power
consumption for server considered between 80 to 100W and
idle power between 10 to 20 W. This system model description
is as shown in the table I.

TABLE I: Parameters Considered for the System Model

Server Type Homogeneous/ Heterogeneous
Servers maximum processing ca-
pacity

Between 2000 to 8000 MIPS

Servers maximum memory capac-
ity

4GB, 8GB, 16GB, 32GB

Containers Processing Capacity Between 500 to 3000 MIPS
Containers Memory Capacity Between 400 to 1000 MB
Maximum Power Between 80 to 100 W
Idle Power Between 10 to 20 W

Fig. 4: 10 Container with 400 Iteration

Fig. 5: 20 Container with 400 Iteration

The Stopping condition for the proposed genetic algorithm
is decided by experimenting with the 2000 iteration on 10,
20, 30, 40, 50 container as shown in Fig. [4], Fig.[5], Fig.[6],
Fig.[7] and Fig.[8]. The experimental result shows that almost

after 200 iterations, energy consumption is constant. Therefore
we decide stopping condition to 200 iterations.

Fig. 6: 30 Container with 400 Iteration

Fig. 7: 40 Container with 400 Iteration

Fig. 8: 50 Container with 400 Iteration

Similarly, we decided population size by considering popu-
lation size from 10 to 2000 and 10, 20, 30, 40, 50 containers.
We got energy consumption constant after 1000 population
size. So 1000 population size is fixed for the proposed genetic
algorithm. For the selection method, we use the elitism method
in which some percent of the chromosome are directly selected
for the next generation. For deciding the percentage value,
we perform experiment with 10%, 15%, 20%, 25% and 30%
chromosome and we got less energy consumption with 20%.
The result of the experiment is as shown in Fig. 9.



So, the parameter considered for genetic algorithm are
listed in table II. Now, first, we experiment with some simple

TABLE II: Parameter of Genetic Algorithm

Population size 1000
Number of generation 200
Chromosome size Equal to number of container
Selection method Elitism (20%)
Crossover method Uniform crossover
Mutation randomly changing one gene

Fitness function E =
n∑

i=1
(Pi,max − Pi,idle).u+ Pi,idle

heuristic algorithms like best fit, best fit decreasing, next fit,
first fit and first fit decreasing. The number of the container
taken were 10, 20, 30, 40 and 50. The result is compared
and found that the performance of first fit decreasing and best
fit decreasing is almost similar. Then, the result of EEGA,
the proposed genetic algorithm is compared with best fit
decreasing and found that the EEGA performs better than best
fit decreasing(BFD) algorithm. The result is shown in Fig.10.

Fig. 9: Selection Method

Fig. 10: Energy Consumption of EEGA Vs BFD

VI. CONCLUSION

In this paper, an energy-efficient genetic algorithm has been
proposed to minimize energy consumption in the cloud data
center. Multiple containers are running in a single server
present in the data center. Several heuristic algorithms such
as next fit, best fit, best fit decreasing, first fit, and first

fit decreasing are implemented for minimization of energy
consumption and it is found that the energy consumption in
best fit decreasing and first fit decreasing is almost same and
less than other algorithms. The result of the proposed energy
efficient genetic algorithm(EEGA) and best fit decreasing are
compared. The consumption of energy in EEGA is found to
be lesser than best fit decreasing.

REFERENCES

[1] Pahl, Claus. ”Containerization and the paas cloud.” IEEE Cloud Com-
puting 2, no. 3 (2015): 24-31.

[2] DEMİRKOL, ÖZMEN EMRE, and AŞKIN DEMİRKOL. ”Energy
efficiency with an application container.” Turkish Journal of Electrical
Engineering & Computer Sciences 26, no. 2 (2018): 1129-1139.

[3] Patra, Manoj Kumar. ”An architecture model for smart city using
Cognitive Internet of Things (CIoT).” In 2017 Second International
Conference on Electrical, Computer and Communication Technologies
(ICECCT), pp. 1-6. IEEE, 2017.

[4] Mastelic, Toni, and Ivona Brandic. ”Recent trends in energy-efficient
cloud computing.” IEEE Cloud Computing 2, no. 1 (2015): 40-47.

[5] Greenberg, Steve, Evan Mills, Bill Tschudi, Peter Rumsey, and Bruce
Myatt. ”Best practices for data centers: Lessons learned from bench-
marking 22 data centers.” Proceedings of the ACEEE Summer Study
on Energy Efficiency in Buildings in Asilomar, CA. ACEEE, August 3
(2006): 76-87.

[6] Heller, Brandon, Srinivasan Seetharaman, Priya Mahadevan, Yiannis
Yiakoumis, Puneet Sharma, Sujata Banerjee, and Nick McKeown.
”Elastictree: Saving energy in data center networks.” In Nsdi, vol. 10,
pp. 249-264. 2010.

[7] Greenberg, Albert, James Hamilton, David A. Maltz, and Parveen Patel.
”The cost of a cloud: research problems in data center networks.” ACM
SIGCOMM computer communication review 39, no. 1 (2008): 68-73.

[8] Buyya, Rajkumar, Anton Beloglazov, and Jemal Abawajy. ”Energy-
efficient management of data center resources for cloud computing:
a vision, architectural elements, and open challenges.” arXiv preprint
arXiv:1006.0308 (2010).

[9] Piraghaj, Sareh Fotuhi, Amir Vahid Dastjerdi, Rodrigo N. Calheiros, and
Rajkumar Buyya. ”Efficient virtual machine sizing for hosting containers
as a service (services 2015).” In 2015 IEEE World Congress on Services,
pp. 31-38. IEEE, 2015.

[10] Piraghaj, Sareh Fotuhi, Amir Vahid Dastjerdi, Rodrigo N. Calheiros, and
Rajkumar Buyya. ”A framework and algorithm for energy efficient con-
tainer consolidation in cloud data centers.” In 2015 IEEE International
Conference on Data Science and Data Intensive Systems, pp. 368-375.
IEEE, 2015.

[11] Dong, Ziqian, Wenjie Zhuang, and Roberto Rojas-Cessa. ”Energy-
aware scheduling schemes for cloud data centers on google trace
data.” In 2014 IEEE Online Conference on Green Communications
(OnlineGreencomm), pp. 1-6. IEEE, 2014.

[12] Guan, Xinjie, Xili Wan, Baek-Young Choi, Sejun Song, and Jiafeng Zhu.
”Application oriented dynamic resource allocation for data centers using
docker containers.” IEEE Communications Letters 21, no. 3 (2016): 504-
507.

[13] Zhang, Dong, Bing-Heng Yan, Zhen Feng, Chi Zhang, and Yu-Xin
Wang. ”Container oriented job scheduling using linear programming
model.” In 2017 3rd International Conference on Information Manage-
ment (ICIM), pp. 174-180. IEEE, 2017.

[14] Hanafy, Walid A., Amr E. Mohamed, and Sameh A. Salem. ”Novel
selection policies for container-based cloud deployment models.” In
2017 13th International Computer Engineering Conference (ICENCO),
pp. 237-242. IEEE, 2017.

[15] Dasgupta, Gargi Sharma, Amit Verma, Akshat Neogi, Anindya Kothari,
Ravi. (2011). Workload Management for Power Efficiency in Virtualized
Data Centers. Commun. ACM. 54. 131-141. 10.1145/1965724.1965752.

[16] Shi, Tao, Hui Ma, and Gang Chen. ”Energy-aware container consolida-
tion based on PSO in cloud data centers.” In 2018 IEEE Congress on
Evolutionary Computation (CEC), pp. 1-8. IEEE, 2018.

[17] Feller, Eugen, Louis Rilling, and Christine Morin. ”Energy-aware ant
colony based workload placement in clouds.” In Proceedings of the 2011
IEEE/ACM 12th International Conference on Grid Computing, pp. 26-
33. IEEE Computer Society, 2011.


