GWO Based Task Allocation for Load Balancing
in Containerized Cloud

Dimple Patel
Dept. of Computer Science & Eng
National Institute of Technology
Rourkela, India
dimplepatel982 @ gmail.com

Abstract—On-demand provisioning of computing services such
as analytics, intelligence, networking, storage, and servers, etc.
over the internet is the main function of cloud computing.
Several servers are connected in a distributed manner over the
internet to execute tasks. Recently, container technology has
gained enormous popularity as it can improve overall applica-
tion performance by providing OS-level virtualization in cloud
computing systems. Based on the resources available on server, a
server can accommodate more than one container running on it.
The process of distributing the incoming requests or user tasks
among all available servers in such a way that all the servers
will have almost equal workload is called load balancing. In
this paper, we proposed a Grey Wolf Optimization(GWO) based
technique for load distribution in the containerized cloud and also
to reduce the makespan. We have compared our results with the
Genetic algorithm and Particle Swarm Optimization(PSO) based
algorithm. The experimental result indicate that the GWO based
technique is performing better in terms of load balancing and
also having reduced makespan.

Index Terms—Cloud Computing, Resource Allocation, Load
Balancing, Container, Task Scheduling, Grey Wolf Optimization

I. INTRODUCTION

One of the most talked topics in the field of internet
technology in the last decade is cloud computing. Executing
users’ tasks or providing different services to the user on-
demand remotely by a set of servers connected over is the main
concept of cloud computing. A pool of virtualized resources is
available in the server and are allocated to user application on-
demand. Users can use cloud resources by pay-as-you-go basis
i.e. they will only pay for the resources they are using. Due to
the increasing number of cloud users in the last few years and
limited numbers of available resources, improper distribution
of clients’ requests may cause some server to be overloaded
and some to be idle without doing any work resulting in
reduced resource utilization. The proper distribution of client
requests or user tasks among all the servers so that no server
will be overloaded or underloaded is called load balancing.

Over the year different algorithms have been proposed for
load distribution in the cloud system and a lot of research
is still going on to improve the existing approaches. Con-
tainerization technology is the recent development in cloud
computing which offers better performance than the classic
approach of virtualization. Container support software virtu-

Manoj Kumar Patra
Dept. of Computer Science & Eng
National Institute of Technology
Rourkela, India
manojpatra.in@gmail.com

Bibhudatta Sahoo
Dept. of Computer Science & Eng
National Institute of Technology
Rourkela, India
bibhudatta.sahoo @ gmail.com

alization such as OS-level virtualization whereas virtual ma-
chine supports hardware virtualization. The container is light
weighted than the virtual machine because it only requires the
libraries and binaries needed to run an application. The startup
time of a container is much faster(in sec) than that of a virtual
machine(in min). Being a light weighted approach container
performs better than virtual machine and resource utilization is
significantly better than a virtual machine. In a containerized
cloud server, the objective is to choose a container from a
set of available containers on which the task is going to be
executed by considering the load of all other containers. In
this paper, we have proposed a Grey Wolf Optimization(GWO)
based algorithm for load distribution in the containerized cloud
and also to reduce the makespan. The performance of GWO
algorithm is compared with the Genetic algorithm and Particle
Swarm Optimization(PSO) based algorithm.

The rest of the paper is organized as: Section-II gives the
related work has been done and motivated us for this work. In
section-III, the proposed system model is described. Section-
IV, describes the proposed GWO based algorithm for load
balancing and reducing makespan. The experimental analysis
and results are presented in section-V. Finally, conclusion is
given in section-VI with some future directions.

II. RELATED WORK

Hung et al. [1] proposed a modified max-min task schedul-
ing algorithm for load balancing that tries to improve the
completion time of the request. The algorithm first clusters
the task according to their size and then make a cluster
of the virtual machine according to their utilization. Then
the algorithm assigns the largest task to the least utilized
virtual machine. The result gives improved completion time of
requests. Mohanty et al. [2] proposed JAYA algorithm for load
balancing. This algorithm considers fewer control parameters
and gives an optimized result. PSO and Genetic algorithms
are used for comparison with JAYA and it is found that JAYA
algorithm performs better than PSO and GA by minimizing
response time.

Abed et al. [3] proposed an Adaptive firefly algorithm based
on a round-robin algorithm. The proposed algorithm maximize
CPU utilization and minimize response time by distributing the
workload among different virtual machine by taking care of



the load and availability of each virtual machine. Farrag et al.
[4] proposed a Grey wolf optimization(GWO) and an Ant-lion
Optimization(ALO) for load balancing to reduce makespan.
The result is compared with Particle Swarm Optimization
(PSO) and Firefly Algorithm (FFA) and proves that GWO
and ALO perform better than PSO and FFA. Xavier et al.
[5] proposed a chaotic social spider algorithm for minimizing
makespan and balancing resource utilization. The algorithm
performance is evaluated in the cloudsim and the obtained
result is compared with Artificial Bee Colony, PSO, and GA.

Mrhari et al. [6] proposed a new evolutionary algorithm
SASPSOOLB based on modified particle swarm optimization
and game theory to balance the load in cloud computing.
The algorithm gives a better result in terms of makespan and
response time. The result is compared with the genetic algo-
rithm. In [7] Gao et al. explained the importance of load bal-
ancing in cloud computing. For quickly finding the candidate
node in load balancing, two strategies namely max-min rule
and forward-backward ant mechanism are used. Pheromone’s
initialization and update rules are defined based on the physical
resource in the cloud data center. The simulation result gives
dynamic load balancing with less searching time and better
network performance. Sharma et al. [8] implemented a bat
algorithm in MatLab for balancing load in the cloud and the
result is compared with fuzzy GSO and round-robin. The result
is compared iwith regars to the number of tasks and response
time. The proposed algorithm minimizes the response time.

Mao et. al [9] proposed max-min based algorithm for
scheduling task and also for balancing the load. The proposed
algorithm keeps a status table for the task to estimate real-time
virtual machine load and expected time to complete a task.
Based on this status table, the workload is allocated among
virtual machine and load balance is obtained. Khan et. al. [10]
implemented an ant colony algorithm for scheduling tasks to
balance the load. This paper considered different parameters
like performance, service level agreement violation, energy,
overhead. The algorithm improves performance by achieving
good response time, throughput, less energy consumption and
also load balance among nodes.

Fard et. al. [11] proposed multi-objective based approach for
scheduling workflow in a heterogeneous environment. They
consider four parameters namely economic cost, makespan,
reliability, and energy consumption for optimization and got a
better result when compared with bicriteria heuristic schedul-
ing and genetic algorithm. Zuo et. al. [12] proposed the
PBACO algorithm for a multiobjective method for scheduling
tasks based on a cost model of resources. The algorithm im-
proves four performance metrics namely makespan, deadline
violation rate, resource utilization, and cost. The result of the
algorithm is compared with FCFS and Min-MIn algorithm and
they got a better result with PBACO. Basu et. al. [13] proposed
the GAACO algorithm for scheduling IoT application tasks
that are dependent. They combine Ant colony optimization
algorithm and genetic algorithm for the selection of a com-
bination of the task. GAACO gave a better result in terms
of minimizing makespan when compared with conventional

genetic algorithm and ant colony optimization algorithm. A
dead-line sensitive task scheduling has been described by
Sampa Sahoo et al. in [19]

Lin et. al. [14] gives a multi-objective ACO_MCMS algo-
rithm for solving container-based microservice scheduling in
the cloud. The algorithm considers the utilization of storage
and computing resources of the physical machine, several
requests for microservice and physical machine failure rate.
The result obtained algorithm is compared with multiopt,
GA_MOCA and spread algorithm and got a better result. Jena
et. al. [15] proposed the TSPSO algorithm for optimizing
the processing time of task and energy consumption in the
data center. The result of the TSPSO algorithm outperforms
RSA and BRS in terms of makespan and energy reduction.
Adikari et. al. [16] implemented an accelerated particle swarm
optimization algorithm for container allocation in cloud. The
main objective of the algorithm is to minimize the completion
time of the task and energy consumption with the effective
utilization of resources. Abdi et. al. [17] implemented a
modified version of PSO algorithm for scheduling task in the
cloud. The algorithm minimizes the completion time of the
task. The result obtained using GWO is compared with PSO
and genetic algorithm.

III. SYSTEM MODEL

The system model mainly consists of two main component
1.Task Manager and 2.Task Scheduler. The task manager
collects the task request from the user and submits it to the
task scheduler. The task scheduler will allocate these tasks to
a container using the proposed Grey Wolf Optimization algo-
rithm. It is assumed that the task comes with its requirements
and specification. Also, task is independent of each other. Let
T be the set of task {1, o, ..., t,, }. Each task is specified with
task id, task arrival time in second, task length in MI. So task
attributes are {T;q, AT, TL}. Let C be the set of container
{c1,¢2,...;cm }. Each container is specified with the amount
of RAM in GB and processing capacity in MIPS. So, attributes
of container considered are {M, P}, where M is memory size
and P is processing capacity. The execution time of task is
calculated as,

ET, = —/* (D

whre ET; is the execution time and T'L; is the task length
of task ¢ and P; is the processing capacity of container j
on which task ¢ is allocated. Completion time of the task is
calculated as summation of waiting time and execution time.

CT=WT+ ET ()
The makespan of all task is the total completion time taken

by all the task. We have to minimize this makespan M S.

n

MS=>"CT, 3)

i=1



Also, this paper consider load balance of each container by
calculating load variation(LV) using variance formula.

1 — E—
LV = = Z ETC; — ETC (4)
m <
=1
where ET'C; is the total execution time of i*" container and
ETC is the mean of total execution time of all container. So,
main objective is to minimize makespan and load variation.

IV. PROPOSED GWO BASED ALGORITHM FOR LOAD
BALANCING

The makespan of a task can be reduced efficiently by allo-
cating tasks to an appropriate container. This paper implements
Grey wolf optimization(GWO) algorithm for scheduling task
from the user in cloud computing. Grey Wolf Optimization
algorithm imitates the leadership like hierarchy and hunt-
ing mechanism of grey wolf which is a population-based
meta heuristic algorithm. They favor to live in a pack that
is categorized in four-level namely omega, delta, beta, and
alpha which belong to level-4, level-3, level-2, and level-1
respectively. Level-1 is the leader who can be male or female
and responsible for making a decision. The level-2 group
helps a group of Level-1 for making a decision and they are
adviser and discipliner for the pack. Level-3 consists of scouts
which are suppose to watch the boundaries, sentinels which
are suppose to protect the pack, elders which were alpha or
beta sometimes, hunters that help alpha for hunting, caretakers
for caring waek, ill and wounded wolves. Level-4 groups are
scapegoat in the pack which is last allowed wolves for eating.

Based on position of alpha wolf, beta wolf and delata
wolf, other wolf search for prey. The solution produces by
alpha is best, followed by beta solution and then delta. And
the remaining solutions are produced by omega. The omega
group update their position using the following mathematical
formula, . L .

D =1G.5,(i) - 50)| 5)
S(i+1) = 5,(i) — P.D (6)

where P and Q are coefficient vectors and ¢ denotes the current
iteration number, S denotes the position vector of grey wolf
and 5;7 indicates‘ the position vector of prey.

The vectors P and @ can be calculated as,

P=23dr —a (7)
Q=27 3
where 77 and 73 are random vector. The vector component @
is linearly decreased from 2 to O using,
2.4

=2— 9
¢ number of iteration ©)

where ¢ is the current iteration number.

The solution for GWO algorithm is represented as S =
{3,2,1,3,2} which means that task ¢; is allocated to c3
container, task to is allocated to co container, task t3 is
allocated to ¢ container, task ¢4 is allocated to c3 container

and task t5 is allocated to c; container. Then according to
this allocation, makespan and load variation is calculated. The
three solution which are giving minimum makespan and load
variation are taken as alpha, beta and delta. And the rest of
the solution are updated based on position of this three.

Algorithm 1 GWO Algorithm

Input: container_list, task_list, population_size, num-
ber_of _iteration

Output: task_allocation_solution P.

1: Initial solution of size equal to population_size for the
algorithm is generated randomly.

2: Calculate value of fitness for all solution using equation
3 and 4.

3: Sort the solution according to fitness values in ascending
order.

4: Define first three best solution as alpha (S_;), beta (S_'B)
and delta (Sj).

5: for i=0 to number_of _iteration do

: for each remaining solution apart from alpha, beta and

delta do

7: Initialize a, A and C as shown in equation 9, 7 and
8 respectively.

8: Update the current solution using equation 5 and
6.

9: end for

10: Update the value of a, C and A.

11: Calculate value of finess function for all the solution.

12: Update S,,, 5;}3 and S; according to fitness value.

13: end for_

14: return S,.

Algorithm 2 Fitness Function
Input: solution_list, population_size,
Output: fitness value.
Initialize LV=0, MS = 0.
for each solution in solution_list do
Calculate MS = Y"1 | CT;.
Calculate LV = % >, ETC; — ETC.
end for
return MS, LV.

AN T

V. EXPERIMENTAL ANALYSIS AND RESULTS

The system model considers heterogeneous servers. We
consider container processing capacity between 2500 to 4000
MIPS and container RAM size 2GB, 4GB and 8GB. The task
arrival time is taken from 0 to 1000 using Poisson distribution.
The number of tasks taken is 1000, 2000 and 3000 and the
number of containers taken is 10, 20, 30, 40 and 500. The task
size considered is between 5000 to 10000 MI. All parameter
considered for our model is shown in TABLE-I.

The number of iteration for grey wolf optimization algo-
rithm is decided by performing experiment on 10, 20, 30,
40, and 50 containers with 1000, 2000, and 3000 task and



Load Variation

Load Variation

Load Variation

20 £l 40
Number of Containers

Fig. 1. Load variation with 1000 task

10 4 . GO
. PSO
mm Genetic

B-

6_

44

2_

10 0 o 40 50
Number of Containers

Fig. 2. Load variation with 2000 task

10 20 ] 40 50
Number of Containers

Fig. 3. Load variation with 3000 task

BOO

600 4

400 4

Makespan(s)

200 A

. GO
. PSSO
mm Genetic

20 0 40
Number of Containers

Fig. 4. Makespan with 1000 task

Makespan(s)

. GO
. PSSO
mm Genetic

0 o 40 50
Number of Containers

Fig. 5. Makespan with 2000 task

. GO
. PSSO
B Genetic

20 ] a0 50
Number of Containers

Fig. 6. Makespan with 3000 task




considering 5000 iteration. We got constant value after 1000
iteration for both makespan and load variation. Therefore we
fix 1000 iteration for our proposed algorithm.

TABLE I
PARAMETER ASSUMED FOR GIVEN SYSTEM MODEL

Container Processing Capacity 2500 to 4000 MIPS

Container Memory Capacity 2GB, 4GB, 8GB

[0, 1000] using Poisson

Task Arrival Time distribution

Task Size 5000 to 10000 MI

Number of Task 1000, 2000, 3000

Number of Container 10, 20, 30, 40 and 50

We consider 100 population size for Grey Wolf Opti-
mization algorithm. Then the experiment is performed with
1000, 2000, 3000 task with 10, 20, 30, 40, 50 container
using Grey wolf optimization algorithm. The result of the
algorithm is compared with Genetic algorithm and particle
swarm optimization algorithm. We got better result with
grey wolf optimization algorithm. The calculated makespan
using Grey Wolf Optimization algorithm is less than that of
Genetic Algorithm and PSO in different number of container.
Similarly, the experimental result show that the load variation
is more using GWO when the number of container is less.
‘When the number of container increased, the load variation in
GWO reduced significantly and performs better than Genetic
Algorithm and PSO. The results are shown in Fig. 1, Fig.
2, Fig. 3, Fig. 4, Fig. 5 and Fig. 6. The result graph show
that load variation and makespan decreases as the number of
container increases.

VI. CONCLUSION AND FUTURE WORK

This paper mainly focus on distributing the workload
equally among all the containers and reducing the makespan.
Different approaches have been proposed by different re-
searchers for load balancing such as Genetic algorithm based,
PSO, ACO, Min-Max, etc. In this paper we have proposed a
Grey Wolf Optimization based algorithm for load balancing
and reducing the makespan. The performance of GWO based
approach is compared with GA and PSO based algorithm. The
makespan of GWO is less than GA and PSO. The number of
container were varied from 10 to 50. Initially the load variation
in GWO algorithm is more but when the number of container
increases, load variation decreases and GWO performs better
than GA and PSO.

The proposed algorithm can also be useful in some other
technology such as Internet of Things(IoT) and Fog Com-
puting. In future, we will try to apply this algorithm in
the architecture model proposed in [18] for smart city using
cognitive IoT to enhance the model.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

(19]

REFERENCES

Hung, Tran Cong, Le Ngoc Hieu, Phan Thanh Hy, and Nguyen Xuan
Phi. "MMSIA: Improved Max-Min Scheduling Algorithm for Load
Balancing on Cloud Computing.” In Proceedings of the 3rd International
Conference on Machine Learning and Soft Computing, pp. 60-64. 2019.
Mohanty, Subhadarshini, Prashanta Kumar Patra, Mitrabinda Ray, and
Subasish Mohapatra. ”An Approach for Load Balancing in Cloud Com-
puting Using JAYA Algorithm.” International Journal of Information
Technology and Web Engineering (IJITWE) 14, no. 1 (2019): 27-41.
Abed, Marwa M., and Manal F. Younis. "Developing Load Balancing for
IoT-Cloud Computing Based on Advanced Firefly and Weighted Round
Robin Algorithms.” Baghdad Science Journal 16, no. 1 (2019): 130-139.
Farrag, Aya A. Salah, Safia Abbas Mohamad, and M. El Sayed. ”Swarm
Intelligent Algorithms for solving load balancing in cloud computing.”
Egyptian Computer Science Journal 43, no. 1 (2019).

Xavier, VM Arul, and S. Annadurai. “Chaotic social spider algorithm
for load balance aware task scheduling in cloud computing.” Cluster
Computing 22, no. 1 (2019): 287-297.

Mrhari, Amine, and Youssef Hadi. ”A Load Balancing Algorithm in
Cloud Computing Based on Modified Particle Swarm Optimization and
Game Theory.” In 2019 4th World Conference on Complex Systems
(WCCS), pp. 1-6. IEEE, 2019.

Gao, Ren, and Juebo Wu. "Dynamic load balancing strategy for cloud
computing with ant colony optimization.” Future Internet 7, no. 4 (2015):
465-483.

Sharma, Shabnam, Ashish Kr Luhach, and S. A. Sinha. ”An optimal
load balancing technique for cloud computing environment using bat
algorithm.” Indian J Sci Technol 9, no. 28 (2016): 1-4.

Mao, Yingchi, Xi Chen, and Xiaofang Li. "Max—min task scheduling
algorithm for load balance in cloud computing.” In Proceedings of Inter-
national Conference on Computer Science and Information Technology,
pp. 457-465. Springer, New Delhi, 2014.

Khan, Shagufta, and Niresh Sharma. “Effective scheduling algorithm
for load balancing (SALB) using ant colony optimization in cloud
computing.” International Journal of Advanced Research in Computer
Science and Software Engineering 4, no. 2 (2014).

Fard, Hamid Mohammadi, Radu Prodan, Juan Jose Durillo Barrionuevo,
and Thomas Fahringer. A multi-objective approach for workflow
scheduling in heterogeneous environments.” In 2012 12th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (ccgrid
2012), pp. 300-309. IEEE, 2012.

Zuo, Liyun, Lei Shu, Shoubin Dong, Chunsheng Zhu, and Takahiro
Hara. ”A multi-objective optimization scheduling method based on the
ant colony algorithm in cloud computing.” Ieee Access 3 (2015): 2687-
2699.

Basu, Sayantani, Marimuthu Karuppiah, K. Selvakumar, Kuan-Ching
Li, SK Hafizul Islam, Mohammad Mehedi Hassan, and Md Zakirul
Alam Bhuiyan. ”An intelligent/cognitive model of task scheduling for
IoT applications in cloud computing environment.” Future Generation
Computer Systems 88 (2018): 254-261.

Lin, Miao, Jianqing Xi, Weihua Bai, and Jiayin Wu. ”Ant Colony Algo-
rithm for Multi-Objective Optimization of Container-Based Microservice
Scheduling in Cloud.” IEEE Access 7 (2019): 83088-83100.

Jena, R. K. ”"Multi objective task scheduling in cloud environment using
nested PSO framework.” Procedia Computer Science 57 (2015): 1219-
1227.

Adhikari, Mainak, and Satish Narayana Srirama. “Multi-objective ac-
celerated particle swarm optimization with a container-based scheduling
for Internet-of-Things in cloud environment.” Journal of Network and
Computer Applications 137 (2019): 35-61.

Abdi, Solmaz, Seyyed Ahmad Motamedi, and Saeed Sharifian. "Task
scheduling using modified PSO algorithm in cloud computing environ-
ment.” In International conference on machine learning, electrical and
mechanical engineering, pp. 8-9. 2014.

Patra, Manoj Kumar. ”An architecture model for smart city using
Cognitive Internet of Things (CIoT).” In 2017 Second International
Conference on Electrical, Computer and Communication Technologies
(ICECCT), pp. 1-6. IEEE, 2017.

Sahoo, Sampa, Bibhudatta Sahoo, and Ashok Kumar Turuk. A learning
automata-based scheduling for deadline sensitive task in the cloud.”
IEEE Transactions on Services Computing (2019).



