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Abstract—Cloud computing provides information technology
based solutions to the end-users as a utility. Virtual machine or
the virtualization technology is the backbone of implementing
cloud computing technologies. However, such implementation
encounters the problem of tremendous energy consumption. One
of the foremost issues in implementing cloud computing is high
energy consumption. This can be reduced to some extent by
proper allocation and efficient utilization of resources. At present,
containerization is one of the broadly discussed techniques as an
alternative to traditional virtualization solutions. In this paper, we
propose a game-theoretic approach for resource allocation and a
containerized cloud architecture which drastically reduces energy
consumption than a virtual machine based cloud. We have used
Google cluster traces data set for our experiment in the cloud
with virtual machine and containerized cloud. Experimental
results show that the energy consumption is minimized in the
containerized cloud than a cloud with virtual machines.

Index Terms—Cloud Computing, Container, Virtual Machine,
Game Theory, Virtualization Technique, Resource Allocation

I. INTRODUCTION

Cloud computing provides different types of computing
resources using virtualization techniques over the internet. It
allows the users to access data on demand from a data center
or a centralized server. Data centers are one of the most
significant components in cloud computing which include
connectivity, cabling system, UPS, servers, network, etc. The
operations and maintenance of such components consume a
significant amount of energy in the cloud data center. Inap-
propriate use of resources makes servers idle and consumes
a huge amount of energy without doing any work. Proper
utilization of resources reduces the energy consumption in
cloud data centers. There are different ways we can optimize or
reduce energy consumption such as proper scheduling of jobs
keeping the server busy all the time, distributing the work to
all available servers equally called as load balancing, moving a
running application or virtual machine(VM) between different
servers called VM migration and proper use of resources.

The traditional virtualization technique in cloud computing
uses a virtual machine that provides hardware virtualization.
Virtual machines run on top of a physical machine using a
hypervisor and hypervisor run on a host machine. Even though
real-time energy consumption is reduced in the virtualization
cloud, the amount of energy consumed by the hypervisor
running on top of the host machine is quite high and has
not been understood so far [1]. On the other hand a container,

unlike a virtual machine that virtualizes the hardware, provides
software level virtualization such as OS-level virtualization by
abstracting the “user space”.

In this paper, we propose an architecture model for con-
tainerized cloud and a game-theoretic approach for resource
allocation to reduce the overall energy consumption. The pro-
posed game-theoretic approach is applied in both VM based
cloud and Containerized cloud. The experimental results show
that the containerized cloud consumes less energy than a VM
based cloud. Furthermore, we implemented a few algorithms in
containerized cloud and compared the result of our proposed
technique with the best one. To select the optimal number
of VM, Best Fit Descending algorithm has been used. The
performance of the proposed algorithm is better in terms of
energy consumption.

The rest of the paper is organized as follows: in Section-II,
an extensive review has been done as Motivation and Related
Work . Section-III describes the system model, which includes
a containerized framework, architecture model, description of
data set and game theoretic approach for resource allocation. In
Section-1V, the experimental results are presented and finally
in Section-V, with some observations of the work, a conclusion
is drawn.

II. MOTIVATION AND RELATED WORK

In this section, a comparative study of virtual machines and
containers, the difference in their architectural model and a
literature review are presented.

A. Virtual Machine Vs Container

The virtual machines and containers both do not require
physical hardware, resulting in better utilization of computing
resources, both in terms of cost-effectiveness and energy
consumption. The architectural difference between them is as
follows and diagrammatically described in Fig. 1.

The virtual machine architecture has a fairly ubiquitous
virtual hardware layer between the virtual machine and host
OS called hypervisor. The hypervisor is responsible for inter-
acting with all different types of NIC cards from all types
of hardware and storage devices in physical machine [2].
The server provides resources to the virtual machines which
include RAM, CPU, etc. The size of the virtual machine
need not be the same if a virtual machine is running a heavy
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Fig. 1. Virtual Machine Vs Container

application, the hypervisor will allocate more resources to that
VM than others. Every virtual machine has its CPU, storage,
virtualized network adapter and full-fledged guest operating
system making it heavily weighted.

On the other hand, a container provides OS-level virtualiza-
tion by abstracting the user space. It is not required to install
a separate operating system in every container. A large benefit
of a container is the ability to package a lot of library and
binary files in a container, an application needs from the host
operating system or server [3].

The advantage of using container over virtual machine can
also be used in areas like Internet of Things, Fog Computing
and smart city applications. A model of architecture proposed
in [4] can be improved by using container at the server end
and hence performance can be improved.

B. Related Work

Recent research on energy consumption in cloud computing
has used several different techniques such as virtual machine,
virtual machine consolidation and migration, dynamic voltage
and frequency scaling(DVFS), etc.

In [5], authors have proposed a joint optimization technique
for delay and energy consumption in the cloud to thing
continuum. The technique takes delay and a weighted sum
of energy consumption as an objective function. They have
proposed an algorithm which is adopted by fog node, to
optimize power transmission and frequency of processing. G.
Prasad Babu and A K. Tiwari in [6], proposed a scheduling al-
gorithm using a prediction model for energy efficiency in cloud
computing systems. The proposed algorithm is having two
main components: an iterative fractal model-based prediction
model and an improved heuristic algorithm based scheduler.
The scheduling algorithm reduces energy consumption while
producing the same QoS. OHSA Ahvar, Anne-C’ecile Orgerie
and Adrien Lebre in [7], proposed a model to estimate energy
consumption in different infrastructures like cloud, fog, and
edge. The model considers all types of energy consumption
including energy consumed by network and cooling systems.

In [8], Hua Peng, Wu-Shao Wen, Ming-Lang Tseng, and
Ling-Ling Li proposed a scheduling scheme to optimize the
energy consumption of mobile devices in the cloud. They
have considered a sequence of task execution, position of
task execution and operating frequency and voltage of mobile
node and used whale optimization algorithm based on dynamic
voltage and frequency scaling technique to optimize energy
consumption. In [9], Elhadj Benkhelifa, Thomas Welsh, Loai
Tawalbeh, Yaser Jararweh, and Anas Basalamah proposed a
system model for profiling the usage of energy per application
in a mobile cloud, so that the predictive model will predict
the future consumption and decide whether it is economically
viable or not.

Zhou Zhou et al. [10], presented an adaptive energy-aware
algorithm to reduce power consumption in a cloud data center
with minimal Service Level Agreement (SLA) violation. Their
approach considers the types of the application running on
a virtual machine and memory resources during deployment
of a virtual machine. Huda Ibrahim, Raafat O, Aburukba
and Khaled El-Fakih in [11], proposed an Integer Linear
Programming (ILP) model and a dynamic task scheduling al-
gorithm to reduce consumption of energy in cloud data centers.
Furthermore, they proposed an Adaptive Genetic Algorithm
(GA) to illustrate the dynamic nature of the cloud environment.
Awada Uchechukwu, Keqiu Li and Yanming Shen in [12],
investigated the patterns of energy consumption and proposed
a methodology to minimize the energy consumption in cloud
data centers.

Hancong Duan, Chao Chen, Geyong Min and Yu Wu in
[13], presented PreAntPolicy energy-aware scheduling tech-
nique that uses a prediction model. The model is based on
ant colony algorithm and fractal mathematics. The job of the
prediction model is to find out whether to trigger the execution
of the scheduler by load trend prediction in a heterogeneous
cloud computing system. Nidhi Jain Kansal and Inderveer
Chana in [14], presented an energy-aware technique for virtual
machine migration in the cloud computing environment based
on Firefly algorithm. The technique describes how to migrate
a virtual machine that is heavily loaded while maintaining the
same energy efficiency and performance.

Feifei Chen, John Grundy, Yun Yang, Jean-Guy Schneider
and Qiang He in [15], have proposed a model for energy
consumption in the cloud computing system and conducted
extensive experiments to make the model operational. They
have used three different types of tasks: communication inten-
sive, data-intensive and computation-intensive tasks. Weiwei
Lin et al. in [16], provides the measurement system for energy
consumption in a heterogeneous cloud server environment. A
Distributed Energy Meter system has been proposed that can
estimate the energy consumption in a heterogeneous cloud
environment and also support many CPU power, consumption
model. Congfeng Jiang et al. in [17], have used different
workloads, explored the power and energy characteristics of
several hypervisors to emulate realistic multi-tenant cloud
environments.



III. SYSTEM MODEL

This section describes the data set in III-A, describes the
architecture of the proposed system model in III-B, and a
game-theoretic approach for resource allocation in III-C and
an energy model in III-D.

A. Description of Dataset

We have used Google Cluster Trace dataset [18] for our
experiment, which is publicly available by Google. It contains
information about the cell of about 29 days. Each cell consists
of a cluster of several machines. Each job in the dataset
composed of several tasks where each task may be associated
with many processes in a single machine. If we consider the
Google Cluster Trace dataset as a relational model, it consists
of six relations: Machine Events Relation, Machine attribute’s
Relation, Jobs Events Relation, Task Events Relation, Task
Constraints Relation, and Task Resource Usage Relation. A
relation is a set of tuples, or rows in a table, with each tuple
sharing a set of attributes or columns. Following is a brief
description of each of the relation:

o Machine Events Relation:
This relation describes each machine in a cell. The
attributes of machine events are Timestamp, which stores
the time at which the system was started. MachinelD,
represent the identity of a machine. Three event types:
ADD(0) make a machine available to a cluster, RE-
MOVE(1) remove a machine from a cluster, and UP-
DATE(2) make a machine available to the cluster, had
its available resources changed. The chipset version of
the machine and microarchitecture is represented by
PlatformlId. Capacity represents the size of the RAM.

o Machine Attributes Relation:
It describes the properties of a machine such as a clock
speed, version of kernel and presence of any external TP
address. It contains several attributes such as Timestamp,
MachinelD, Attribute name, Attribute value and Attribute
deleted which is a boolean value represent whether an
attribute was deleted or not.

« Jobs Events Relation:
This relation consists of total eight attributes, Timestamp,
Missing info, JobID represents the unique ID of a job,
Event type which represents the state at which the job
is in, User name, the sensitivity of latency for a job is
represented by Scheduling class, Job name, and Logical
job name.

o Task Events Relation:
This relation consists of total 13 attributes, Timestamp,
Missing info, JobID, Task Index represent the index of a
task within a job, Event type, User name, Scheduling
class, Priority of a task used in scheduling, Resource
request for CPU core, Resource request for RAM, Re-
source request for local disk space, and Different-machine
constraint which is a boolean value and if this represents
true, task must be scheduled to execute in different
machine.
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o Task Constraints Relation:
Task constraint relation provides information about the
restriction of a machine in which it can run. This may
contain zero or more task constraints. Attributes of this re-
lation are Timestamp, JobID, TaskIndex, Attribute name,
Attribute value and Comparision operator which can be
<,>,=,and ! = .

o Task Resource Usage Relation:
This contains the information about the usage of re-
sources in every 5 minutes. It consists of a total of 20
attributes, few of them are CPU usage, memory usage,
assigned memory, maximum memory usage, disk I/O
time, CPU rate, cycle per instruction, sampling rate and
aggregation type, remaining are already described above.

B. Architecture Model

The proposed architecture model has three main compo-
nents, that are Job created by users, Container Mapper and
Cloud Server. Jobs are created by users and each job is
having several independent tasks. The attributes of a job are
arrival time(AT), size in terms of Million Instruction(MI), and
completion time(CT). The details of the data set are described
in section III-C. Jobs are submitted to container mapper based
on their completion time. The job with earlier completion time
gets scheduled first.

Then, the container mapper is responsible for mapping tasks
into respective containers. Once tasks acquire the container, the
process of placing containers into the virtual machine starts.
Container placement is an NP-hard combinatorial problem that
provides a certain placement of a non-overlapping container
on a server in such a way that it minimizes the number of the
server. Heuristic and meta-heuristic algorithms are used for
such a problem. This algorithm gives a near-optimal solution
to the problems. Different heuristic algorithms are,




« First Fit: This approach tries to place the task in the very
first container of any server that can accommodate the
task.

o First Fit Descending: This will arrange the tasks in
descending order and then works same as First fit.

o Next Fit: This approach first tries to fit the task in the
current server, if unsuccessful, it assigns a new container
in a different server for the task to be mapped.

o Best Fit: This technique tries to fit the current task in the
server which will have the minimum remaining capacity,
if the task is placed in that server.

o Best Fit Descending: This will arrange the tasks in
descending order and then works same as Best fit.

We have implemented all five techniques for efficiently
placing a container on a cloud server to minimize the number
of servers and hence reducing the energy consumption. While
experimenting, we varied the number of tasks from 400 to
1200, applied the algorithm, and compared them. Then, we
took the average of results for deciding the best algorithm
for our problem. Our experimental results show that Best Fit
Descending is performing better than other algorithms.

C. Game Theoretic Approach for Resource Allocation

This section, a game-theoretic approach to mapping tasks
with virtual machines and containers has been presented.
A game requires participation of a set of players P =
{p1,p2,p3, ...} who make strategic decision during play, a set
of strategies S = {s1, so, s3, ...} for all players, and a payoff
that represent the gain or loss of a player. Different attributes
of our two-player game model are described below.

o Strategy: In VM based cloud, each VM is considered as
a strategy of the game. A set of VM, V' = {vy, va,v3, ...}
is responsible for executing users task. Each VM has
its speed of executing user task sp;,j = {1,2,3,...}.
Similarly in the containerized cloud, each server act as
a strategy. A set of Server, S = {Si,52,Ss,...} is
responsible for providing execution environment for user
task in a container.

o Player: Each task is considered as player of the game. A
task has three attributes, arrival time(at;), task size(ts;),
and deadline(d;), i = {1,2,3, ...}, where i represent i
task.

o Payoff: Payoff quantifies the gain or loss of a player
based on outcome of the game.

o Payoff Matrix: Payoff matrix, PMp, is a tabular col-
lection of data in which each row represents the strategy
of player-1, also called as a pure strategy of player-1
and each column represents the strategy of player-2, also
called as a pure strategy of player-2. Each entry in the
payoff matrix is having two values, the first one represents
the payoff of player-1 and the second one represents the
payoff of player-2.

To apply game theory on the payoff matrix, first, the payoff

matrix is converted into a normalized payoff matrix P = (pmn)
by subtracting the payoff of player-2 from player-1. A positive

value in the normalized payoff matrix indicates, gain to player-
1 and loss to player-2. Similarly, a negative value in the
normalized payoff matrix indicates, gain to player-2 and loss to
player-1. Player-1 follows the maximin principle to maximize
the minimum guaranteed gain. This principle evaluates the
worst possible outcome for each option and selects the best
among all. Similarly, player-2 follows the minimax principle
to minimize the maximum loss. It evaluates the best possible
outcome for each option and selects the worst among all.
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Now, consider the game with normalized payoff matrix P =
(pyj) from player-1’s point of view, player-1 will follow the
minimax principle so, it will find the maximum values of each
row

Mazimize pj over j =1,2,..,n

and then select the minimum one as p; to minimize the

maximum loss.
pl = min max pj
i=1,..., mj=1,..., n

Now, from player-2’s point of view, player-2 will follow the
maximin principle so, it will find the minimum values of each
column

Minimize py over i =1,2,..,m

and then select the maximum one as p, to maximize the
minimum gain.

p2 = max _min pj

j=1,...,ni=1,....m
The minimum value for player-1 = p; and maximax value
for player-2 = py. The corresponding row and column giving
pl and p2 are the selected strategy for player-1 and player-2
respectively.

D. Energy Consumption Model

Assumptions: The job with its requirement and dependen-
cies are specified. Each of these jobs is divided into atomic
task and this task is mapped to container. So, for each job, we
have a set of container {c1,ca,...cp}.

Let 2;(k) denotes the workload of container i on k" host
and there are n number of containers on k" node, then

Workload(k) = (k) (1)
i=1

Total workload on k*" host must be less than or equal to

the capacity of the k" host i.e.

Z z;(k) <= Capacity(k) (2)
i=1



Let c¢;; represents the ith container for job j where i =

1,2,3,...,n and r;; is the amount of resources required by
container 7 of job j then,

Zrz‘j < R; 3)
i=1

Where R, is the total required resources for job j.

We consider the power utilization of the CPU for estimation
of power consumption as this is the main component that
presents the largest variance in power consumption in regards
to its utilization rate [19]. The correlation between server
utilization and the electric power consumption proposed in
[20], i.e.

Py(u) = (Prymaz — Pridie) - v+ Pridie “4)
where, u is utilization rate represented by,

_ Z?:l z;i(k)

= == 5
“ Capacity(k) )
The total power consumption is given by,
P= Z Py (u) (6)
k=1
the objective is to
minimize Z Py (u) @)
k=1
subjected to following three constraints
Workload(k) = (k) (8)
i=1
Z x;(k) <= Capacity(k) 9)
i=1
> riy <R (10)

IV. EXPERIMENTAL RESULTS

We have performed our experimentation with virtual ma-
chine based cloud and containerized cloud using the two-
player game described in III-C. In virtual machine based cloud,
completion time is considered as a payoff and in containerized
cloud load factor as a payoff, the player will always choose the
server with a lesser load factor. Both the evaluation process is
described below.

« Virtual Machine Based Cloud: The key component of this
approach is a virtual machine, speed of the virtual ma-
chine, task size, arrival time of the task, and deadline or
completion time of the task. Tasks are sorted in increasing
order of their completion time. In our two-player game
model, to create a payoff matrix, two tasks are taken up at
a time and calculate their payoff for different VM based
on the speed of VM. Then a normalized payoff matrix is
created and the game model was applied.
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¢ Containerized Cloud: To apply the proposed game model
in the containerized cloud, first, the tasks are sorted in
descending order of their deadline. First 20% of the tasks
are assigned to all the servers sequentially in the FCFS
basis and remaining tasks are assigned to different servers
by applying the proposed game model.

First, we apply the best fit descending algorithm to fix
the number of servers. Then, we apply the proposed game-
theoretic model by taking the same number of servers. The
game model was also applied by taking the same number of
virtual machines in VM based cloud. We compared the result
of the proposed game-theoretic model with VM based cloud
and containerized cloud with the best fit descending algorithm.
The experimental results show that the containerized cloud
consumes less energy than VM based cloud and our proposed
game-theoretic model performs better than first fit descending.

The experimental results in Fig-3, show that the container-
ized cloud consumes less energy than a virtual machine based
cloud and our proposed game-theoretic model in containerized
cloud performs better than best fit descending in the container-
ized cloud.

V. CONCLUSION

This paper presents a game-theoretic mechanism for re-
source allocation in a containerized cloud to reduce energy
consumption. We analyze the total energy consumption of
VM based cloud and a containerized cloud and found that
a containerized cloud always consumes less energy. Several
algorithms has been implemented in the containerized cloud
such as First Fit, First Fit Descending, Next Fit, Best Fit, and
Best Fit Descending. It is found that the Best Fit Descending
is performing better than all others. The Best Fit Descending
is used to fix the number of servers in the containerized cloud
and VM in a virtual machine based cloud. We observed that,
in VM based cloud with a fixed number of virtual machine,
energy consumption goes on increasing with increasing the
number of tasks. The proposed approach is compared with



Best Fit Descending with the same number of servers and
the same numbers of virtual machines in VM based cloud.
The experimental results show that the proposed resource
allocation technique consumes significantly less amount of
total energy than other approaches in the containerized cloud
and VM based cloud.
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