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ABSTRACT 
 This article presents a total concentration method for 
two-dimensional wet chemical etching. The proposed 
procedure is a fixed-grid approach. It is analogous to the 
enthalpy method used for modeling melting/solidification 
problems. The governing equation is formulated using the total 
concentration of the etchant. It includes the reacted and the 
unreacted concentrations of the etchant. The proposed 
governing equation includes the interface condition. The 
reacted concentration is used to capture the etchant-substrate 
interface implicitly. Since the grids are fixed, a diffusion 
problem remains a diffusion problem unlike the moving grid 
approach where the diffusion problem becomes the convection-
diffusion problem due to the mesh velocity. For demonstration 
purposes, the finite volume method is used to solve for the 
transient concentration distribution of etchant. In this article, 
two-dimensional diffusion-controlled wet chemical etching 
processes are modeled. The results obtained from the proposed 
total concentration method are compared with available 
“analytic” solutions and solutions from moving-grid approach. 

INTRODUCTION 
 Wet chemical etching (WCE) is a process by which 
materials selectively removed from the surface of a substrate to 
form a specific pattern on the substrate surface. This is 
achieved by the reaction of liquid etchant in contact with the 
substrate. WCE process widely used in the manufacturing of 
shadow mask for color-television tubes [1], IC devices in 
microelectronics industries [2], MEMS devices such as hinges 
[3] and pressure sensors [4] etc.  

 Various mathematical models have been proposed by 
different researchers to model the WCE process in order to 
predict the etched pattern structure on the substrate surface 
during the progress of etching. Those models are the 
asymptotic solution [5, 6], the variational inequality approach 
[7, 8], the moving-grid (MG) approach [7, 10-12], the level-set 
method [13, 14], and the fixed-grid (FG) method [15, 16]. 
 

Based on the rate of reaction, two possible cases of WCE 
process can exists namely- the diffusion-controlled [5-10, 15, 
16] and the reaction-controlled [7, 10-12, 14, 16] etching. 
These two cases are studied in the modeling of one-dimensional 
[9, 11, 15, 16] and two-dimensional [5-10, 12-14] WCE using 
the above analytical and numerical approaches. 

 The analytical solution to two-dimensional WCE is 
presented by Kuiken [5, 6] using asymptotic solution. The 
asymptotic solution is valid for diffusion-controlled etching 
using a dilute etchant. Kuiken et al. [9] also presented the exact 
solution for the diffusion-controlled WCE in a one-dimensional 
geometry. The analytical treatment is then extended to a two-
dimensional diffusion-controlled WCE based on the 
perturbation principle.  

 The MG method is the widely used numerical method to 
model WCE process. In the MG method, since the 
computational domain is limited to the space occupied by the 
etchant, it continuously expands with time. As the 
computational domain expands with time, the computation 
mesh has to be regenerated at every time step. Due to the 
movement of the mesh, a diffusion problem becomes a 
convection-diffusion problem. The mesh velocities are 
accounted for in the governing equation in terms of an extra 
convective term [7, 12]. Further, an unstructured mesh system 
or a body-fitted grid system is needed to model 
multidimensional WCE.  

 Chai and co-workers [15, 16] presented a fixed-grid 
approach based on the total concentration of etchant to model 
WCE process. This method is analogous to the enthalpy 
method used in the modeling of melting/solidification process 
[17, 18]. The total concentration is the sum of the unreacted 
etchant concentration and the reacted etchant concentration. 
The governing equation based on the total concentration 
includes the interface condition. In this formulation, the reacted 
concentration of the etchant is a measure of the etchfront 
profile during the etching process. Unlike the MG method, the 
etchfront is found implicitly with the total concentration 
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method. Since the grids are fixed, there is no grid velocity. 
Hence a diffusion problem always remains a diffusion problem. 
Cartesian grid can be used to capture the complicated etchfront 
evolution in multidimensional etching. The model has been 
tested for one-dimensional diffusion-controlled [15] and 
reaction-controlled [16] WCE.  

 In this article, the fixed-grid (FG) method is extended to 
model two-dimensional diffusion-controlled WCE. A two-
dimensional WCE problem, the governing equation, the 
interface condition and the boundary conditions are described. 
Various ingredients of the proposed FG method are then 
discussed. The overall solution procedure is then summarized. 
A brief description of the numerical method used in this article 
is given. Discussions of the results obtained using the proposed 
FG method are presented. Some concluding remarks are then 
given to conclude this article.   

NOMENCLATURE 
a coefficient of the discretization equation 
c unreacted etchant concentration 
cR reacted etchant concentration 
cR,max maximum possible value of the reacted  
 concentration 
cT total concentration 
D diffusion coefficient of etchant 
MSub molecular weight of the substrate 
m stoichiometric reaction parameter 
t time 
t* non-dimensional time 

n̂v  normal velocity of the etchant-substrate  
 interface 
x, y coordinate directions 
X, Y non-dimensional coordinate directions 

Greek Symbols 
α underrelaxation factor 
∇ vector differential operator 
∆t time step 
ρSub density of the substrate 
β                 non-dimensional etching parameter 

Subscripts 
o initial 
P control volume P 
Sub the substrate 
Et the etchant 
T total 

Superbscripts 
m iteration number 
o previous time step 

PROBLEM DESCRIPTION AND GOVERNING 
EQUATIONS 
 The schematic and computational domain for the two-
dimensional problem considered is shown in Figs. 1. A gap of 
width 2a is to be etched in a cavity as shown in Fig. 1a. The 
initial concentration of the etchant at t = 0 is co. At t > 0, the 
 

reaction between the etchant and the substrate at the etchant-
substrate interface results in the reduction of the concentration 
of etchant adjacent to the etchant-substrate interface and the 
depletion of the substrate. The concentration of etchant on the 
boundaries far away from the gap is kept at the initial 
concentration, i.e. c = co. The etching is assumed diffusion-
controlled where reaction rate is infinitely fast. The origin of 
the coordinate system is set to the etchant-substrate interface at 
the center of the gap. Since the problem is symmetrical about 
the origin in Fig. 1, only half of the domain is considered as 
shown in Fig. 1b. The governing equation, the initial condition, 
the interface condition and the boundary conditions are 
presented next. 

 For a stationary etchant solution, the etchant 
concentration within the etchant domain is governed by the 
mass diffusion equation given by 
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The initial and boundary conditions are 

c = co  in Ω(t), t = 0 (1b) 

c = 0 on f(t)  (1c) 

Remaining boundary conditions are shown in Fig. 1b. The 
interface condition at the etchant-substrate interface is given as 

c
m
DMv

Sub

Sub ∇−=
ρ

r
  (1d)  

where v
r  is the velocity of the etchant-substrate interface, D is 

the diffusion coefficient of etchant, MSub is the molecular 
weight of the substrate, ρSub is the density of the substrate and 
m is the stoichiometric reaction parameter of the etchant-
substrate reaction. 

THE TOTAL CONCENTRATION METHOD 
 In this article the total concentration of the etchant is 
defined as 

RT ccc +≡  (2) 

where cT is the total concentration, c is the unreacted etchant 
concentration and cR is the reacted etchant concentration 
respectively. Physically, cR is the etchant concentration 
consumed in the reaction process. As such it is constant except 
at the etchant-substrate interface. This is used to capture the 
etchfront implicitly. The value of cR changes from 0 to its 
maximum possible value of cR,max in a control volume where 
etching is taking place. The maximum possible value of the 
reacted concentration termed cR,max, is the amount of etchant 
required per unit volume of substrate to dissolve the substrate 
during reaction. It is given as 
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The governing equation based on the total concentration is 
given by 
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Using Eq. (2), Eq. (4) can be written as 
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This equation is valid in both the etchant and the substrate 
regions. The interface condition given by Eq. (1d) is contained 
in Eq. (5) implicitly. A procedure to update the reacted 
concentration (cR) is needed to complete the formulation. This 
is discussed next. 

PROCEDURE TO UPDATE CR 

 In the proposed FG method, the etching-control-volumes 
(ECV) are first identified as shown in Fig. 2. The ECVs are the 
substrate control volumes adjacent to the etchant control 
volumes where reaction between etchant and substrate is taking 
place. In an ECV, cR changes from 0 to its maximum possible 
value of cR,max. The finite volume discretization equation (using 
the fully implicit scheme) of Eq. (5) for an ECV (control 
volume P) is given as 
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where m is the mth iteration of the current time step,  o is the 
previous time step, P is the control volume P,  nb is the 
neighboring control volumes,  a is the coefficients of the 
discretization equation,  ∆V is the volume of a control volume 
and ∆t is the time step respectively. It is to be noted that Eq (6) 
is valid for all control volumes. Since, cR is constant in the 
etchant and substrate regions, the last term on the right side of 
Eq. (6) is zero except in the ECV. At the (m +1)th iteration, Eq. 
(6) can be written as 
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Subtracting Eq. (7) from Eq. (6) and rearranging, gives 
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When the solution converges, the last term of Eq. (8) will be 
zero. However, during the initial iteration process, it is most 
likely a non-zero term. Realizing that it is zero upon 
convergence, this term can be ignored from the calculation and 
Eq. (8) becomes 
 

)(
∆
∆ 11 ++ −+= m

P
m
P

P
P

m
P,R

m
P,R cc

V
tacc α  (9)  

where α is an under-relaxation factor. For a diffusion-
controlled reaction, the reaction rate at the interface is infinitely 
fast which makes the concentration at the interface zero. For 
diffusion-controlled reaction, FG procedure ensures that 

01 =+m
Pc  and the excess concentration is used to update the 

reacted concentration. With  01 =+m
Pc , Eq. (9) becomes 
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In the ECVs, the reacted concentration is updated using Eq. 
(10). Etching for a given ECV completed, when 1

,
+m
PRc  reaches 

cR,max. 

OVERALL SOLUTION PROCEDURE 
 The overall solution procedure for the proposed total 
concentration method can be summarized as follows: 

1. Specify the etchant domain, the substrate domain and 
the mask region. Ensure that the etchant-substrate 
interface lies on the interface between two control 
volumes. 

2. Set the initial etchant concentration as co in the etchant 
domain and zero in the substrate domain including the 
mask region. 

3. Initially set cR to 0 in the substrate domain including 
the mask region and to cR,max in the etchant domain 
respectively. 

4. Advance the time step to t + ∆t. 

5. Identify the etching control volumes (ECVs).  

6. Use the “internal” boundary condition treatment of 
Patankar [19] (by setting SP to a big number) to set the 
unreacted etchant concentration in the mask and 
substrate regions to zero. 

7. Set SP in the ECV to zero. 

8. Solve Eq. (5) for the unreacted concentration. 

9. Update the reacted concentration in the ECVs using 
Eq. (10). 

10. Check for convergence. 

a) If the solution has converged, then check if 
the required number of time steps has been 
reached. If yes, stop. If not, repeat (4) to (9). 
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b) If the solution has not converged, then check 
the calculated reacted concentration. 

• If  cR < cR,max, repeat (8) to (9). 

• If maxRR cc ,≥ , then set maxRR cc ,=   

 and repeat (5) to (9). 

NUMERICAL METHOD 
 In this article, the finite-volume method (FVM) of 
Patankar [19] is used to solve the diffusion equation (Eq. 5). 
Since a detailed discussion of the FVM is available in Patankar 
[19], only a brief description of the major features of the FVM 
used is given here. In the FVM, the domain is divided into a 
number of control volumes such that there is one control 
volume surrounding each grid point. The grid point is located in 
the center of a control volume. The governing equation is 
integrated over each control volume to derive an algebraic 
equation containing the grid point values of the dependent 
variable. The discretization equation then expresses the 
conservation principle for a finite control volume just as the 
partial differential equation expresses it for an infinitesimal 
control volume. The resulting solution implies that the integral 
conservation of mass is exactly satisfied for any control volume 
and of course, for the whole domain. The resulting algebraic 
equations are solved using a line-by-line Tri-Diagonal Matrix 
Algorithm. In the present study, a solution is deemed converged 
when the maximum change in the concentration and the 
maximum change in the reacted concentration between two 
successive iterations are less than 10-11. 

RESULTS AND DISCUSSIONS 
 The two-dimensional problem shown in Fig. 1 is 
modeled using the proposed total concentration approach. Due 
to the symmetry of the problem about the y-axis, only half of 
the domain is modeled as shown in Fig. 1b. For ease of 
presentation, the following dimensionless variables are defined. 

X = x/a (11a) 

Y = y/a (11b) 

C = c/co (11c) 

CR = cR/co  (11d) 

t* = tD/a2 (11e) 

Subo

Sub

Mc
mρβ =  (11f) 

 The non-dimensional width of the mask is taken as L1 = 
l1/a = 6.5 and the dimensionless height of etchant is taken as L3 
= l3/a = 6.5. The width and thickness of the substrate are taken 
as LSub = 1 + L1 = 7.5 and L2 = l2/a = 4.0 respectively. Results 
for two mask thicknesses namely, infinitely thin and finite 
thickness are modeled. For infinitely thin mask, the non-
dimensional mask thickness is taken as H = h/a = 0.005. 
Further decrease in mask thickness does not alter the solution. 
 

For finite mask thickness, the thickness of the mask is taken as 
one-fourth of the gap width, i.e. H = h/a = 0.5.  

 A grid refinement study was performed to ensure the 
solutions are grid (temporal and spatial) independent. Figure 3 
shows the evolution of etch profiles at four different times for β 
= 100 and infinitely thin mask. Three control volume sizes are 
taken to carry out this test. For each control volume size the 
time independent etch profiles are shown. For the grid sizes of 
32 × 29 and 72 × 53, the time step size is ∆t* = 0.01. For the 
144 × 104 grid, the time step size is ∆t* = 0.001. It is seen that 
the grid sizes of 72 × 53 and 144 × 104 produced the same etch 
profile for the four given times. As a result, 72 × 53 control 
volumes with ∆t* = 0.01 are used in this article. 

 Figure 4 shows the comparisons of etch profiles at 
different times between the FG method, the asymptotic solution 
[6] and the MG [10] method. The non-dimensional etching 
parameter is taken as β = 100. It is seen from Fig. 4 that the 
present approach predicts the etch profiles at different times 
accurately. Some bulging effect is seen near the corner of the 
mask. The etching is faster near the corner region compared to 
the region away from the corner. Figure 5 shows the 
concentration contours at t* = 30.  It is seen that the 
concentration contours have gone deep into the etched region 
near the corner of the mask. Hence, the concentration gradient 
is higher near the mask region. As a result the etching is faster 
in this region which results in bulging of etch profiles. Figure 6 
shows the comparison of etch profiles for β = 10. The etch 
profiles from the present approach compare very well with the 
variational inequality approach of Bruch et. al. [8]. The bulging 
region is enlarged from mask corner to the center compared to 
the case with β = 100. This is because of the high initial etchant 
concentration for β = 10, which results in faster etch rate. The 
bulging effect is localized near the mask corner region only at 
early time when β decreases to 10 from 100. 

 Figure 7 shows the comparisons of the etch profiles 
evolution for finite mask thickness. The non-dimensional 
etching parameter is taken as β = 100. The etch profiles 
obtained from the present approach compare well with the MG 
solutions [10]. Figure 8 shows the concentration contour at t* = 
126. It is seen that the concentration contours in the etched 
region is nearly flat. As a result, the concentration gradient will 
also be nearly uniform. Hence there is no significant bulging 
effect seen unlike the case with infinitely thin mask. Figure 9 
shows the etch profiles obtained with both mask thicknesses. It 
is seen that the bulging effects reduces with mask thickness. It 
is because of the larger diffusion length of the etchant from the 
area above the inert mask to the etching surface. Hence fresh 
etchant is less readily available near the mask corner as 
thickness of the mask increases which results in slow etch rate 
near the mask corner.  

CONCLUDING REMARKS 
 A new fixed-grid method based on the total-
concentration of etchant has been presented for two-
dimensional WCE. The proposed method is analogous to the 
enthalpy method used in the modeling of melting/solidification 
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processes. A detailed formulation based on the total 
concentration of the etchant is presented. In the proposed 
approach the governing equation includes the interface 
condition. With this proposed method there is no necessity for 
computing the etchfront position explicitly. The method has 
been applied to two-dimensional diffusion-controlled etching. 
For demonstration purposes, the finite-volume method is used 
to discretize the governing equation. The results from the 
present approach are compared with the results from other 
existing methods. The results show that the etchfront profile 
can be predicted accurately using the proposed method. 
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Figure 1. Schematic of the two-dimensional etching problem 

with finite gap width. 
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Figure 2. Control volumes P1, P2, P3 undergoing etching. 
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Figure 3. Grid independent study for β = 100 and infinitely 

thin mask. 
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Figure 4. Comparison of etched profiles with existing 
asymptotic solution and MG method for β = 100 and infinitely 
thin mask. 
 

 
Figure 5. Concentration contours at t* = 30 for β = 100 and 
infinitely thin mask. 
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Figure 6. Comparison of etched profiles with the variational 
inequality approach for β = 10 and infinitely thin mask. 
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Figure 7. Comparison of etched profiles with MG method for β 
= 100 and finite mask thickness (H = 0.5). 
 

 
Figure 8. Concentration contour at t* = 126 for β = 100 and 
finite mask thickness (H = 0.5). 
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Figure 9. Effect of mask thickness on bulging of etched profile 
for β = 100. 
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