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Abstract 
A new mathematical model based on the total 
concentration approach is proposed for modeling wet 
chemical etching process. The proposed mathematical 
model is a fixed domain formulation of the etching 
problem. The governing equation based on the total 
concentration includes the interface condition too. The 
total concentration of etchant includes the reacted and 
the unreacted concentration of etchant. The unreacted 
etchant concentration is solved in both the etchant 
solution and the substrate (with zero unreacted etchant 
concentration). The reacted concentration of etchant is 
used to capture the etchfront during the progress of 
etching with time. Unlike the moving grid method, the 
etchfront is found implicitly with the total concentration 
method. Finite volume method is used to solve for the 
transient concentration distribution of etchant. The 
proposed method is applied from etching simple to 
complex geometries partially covered with mask. Results 
from the proposed approach are compared with the 
existing analytical and numerical solutions. 

NOMENCLATURE 
D diffusion coefficient of etchant 
MSub molecular weight of the substrate 
X, Y non-dimensional coordinate directions 

1 Author for correspondence 

a coefficient of the discretization equation 
c unreacted etchant concentration 
cR reacted etchant concentration 
cR,max maximum possible value of the reacted  
 concentration 
cT total concentration
m stoichiometric reaction parameter 
t time 
t* non-dimensional time 

n̂v  normal velocity of the etchant-substrate  
 interface 
x, y coordinate directions 

Greek Symbols 
α underrelaxation factor 
β                 non-dimensional etching parameter 
∇ vector differential operator 
∆t time step 
ρSub density of the substrate 

Subscripts 
Et the etchant 
Sub the substrate 
o initial 
P control volume P 
T total 

Superscripts 
m iteration number 
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o previous time step 

Introduction 
Wet chemical etching (WCE) process involves the 
removal of material from the substrate surface by the 
application of a reactive liquid etchant to form a specific 
pattern on the substrate surface. This process has 
potential application in microelectronic industries in the 
fabrication of integrated circuit devices [1], MEMS 
devices [2] and sensors [3]. As etching progresses, the 
etched interface moves. Hence this process is regarded as 
a moving boundary problem. This process motivates to 
predict and understand the etching profile growth in 
designing a specific pattern on the substrate surface.  

Various mathematical models have been proposed by 
different researchers to model the WCE process such as 
the analytical asymptotic solution [4, 5], the moving grid 
(MG) method [6, 8-10], the level-set method [11, 12], 
and the total concentration fixed grid (FG) method [14, 
15].  Based on the rate of reaction, two possible cases of 
WCE process can exists namely- the diffusion-controlled 
(infinite reaction rate) and the reaction-controlled (finite 
reaction rate) etching. These two cases are studied in the 
modeling of one-dimensional [7, 9, 14, 15], two-
dimensional [4-8, 10, 11, 13] and three-dimensional [12] 
WCE using the above analytical and numerical 
approaches. 

The MG method is the widely used numerical method for 
modeling WCE process. In the MG method, the 
computational domain is limited to the space occupied 
by the etchant, which expands with time. Hence the 
computation mesh has to be regenerated at every time 
step. The mesh velocities have to be accounted for in the 
governing equation in terms of an extra convection term 
[6, 10]. Further an unstructured mesh system or a body-
fitted grid system is needed to model multidimensional 
WCE. 

Recently, Chai and co-workers [14, 15] presented a FG 
approach based on the total concentration of etchant to 
model WCE process. This method is analogous to the 
enthalpy method used in the modeling of 
melting/solidification processes [16, 17]. The total 
concentration is the sum of the unreacted etchant 
concentration and the reacted etchant concentration. The 
governing equation based on the total concentration 
includes the interface condition. The reacted etchant 
concentration is the measure of the etchfront position 
during the etching process. Unlike the MG method, the 
etchfront is found implicitly with the total concentration 
method. Since the grids are fixed, hence there is no grid 
velocity. Therefore, cartesian grid can be used to capture 
the complicated etchfront in multidimensional etching. 

In this article, the total concentration FG method is 
applied to model one-dimensional (1-D), two-
dimensional (2-D) and three-dimensional (3-D) 
diffusion-controlled WCE. The governing equation, the 
boundary conditions and the interface condition are 

described. A brief description on various ingredients of 
the proposed FG method is given. A brief description of 
the numerical method used to solve the governing 
equation is given. The overall solution procedure is then 
summarized. Discussions of the results obtained using 
the proposed FG method are presented. Some concluding 
remarks are given to conclude this article. 

Problem Description and Governing 
Equation 
A diffusion-controlled etching is studied in this article 
from simple to complex geometries. The diffusion-
controlled etching is associated with infinitely fast 
reaction at the interface. Hence the etchant concentration 
at the etchant-substrate interface closes to zero. The 
schematic and computational domains for three test 
problems are shown in Figs. 1-3. In 2-D etching, a gap of 
width 2a is to be etched in a substrate as shown in Fig. 
2a and in 3-D etching a cavity of square cross-section 
with dimension 2a × 2a is to be etched in a substrate as 
shown in Fig. 3a. The origin of the coordinate system is 
set to the etchant-substrate interface at t = 0 for the 1-D 
problem and at the center of the gap for 2-D and 3-D 
problems. Since the problem is symmetrical about the 
origin in Figs. 2 and 3, only half of the domain is 
considered in 2-D etching (Fig. 2b) and one-quarter is 
considered in 3-D etching (Fig. 3b). The governing 
equation, the initial condition, the boundary conditions 
and the interface condition are presented next. 

In the absence of convection, the etchant concentration 
within the etchant domain is governed by the mass 
diffusion equation given by 
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where j varies from 1 to 3 for 1-D, 2-D and 3-D etching 
problems respectively and D is the diffusion-coefficient of 
etchant. The initial and boundary conditions are 

c = co  in Ω(t), t = 0 (1b) 

c = co on Γ1, Γ2  (1c) 

0=
∂

∂

n̂

c
   on Γ3 and Γ4 (1d) 

c = 0 on f(t) and -δ(t) (1e) 

where  in Eq. (1d) represents the normal to the surface. 
The interface condition, which gives the equation of 
motion of the interface, is given as 

n̂

 c
m
DMv

Sub

Sub ∇−=
ρ

r
  (1f) 

where v
r  is the velocity of the etchant-substrate interface, 

MSub is the molecular weight of the substrate, ρSub is the 
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density of the substrate and m is the stoichiometric 
reaction parameter of the etchant-substrate reaction. 

The Total Concentration Method 
The total concentration of etchant is defined as 

RT ccc +≡  (2) 

where cT is the total concentration, c is the unreacted 
etchant concentration and cR is the reacted etchant 
concentration respectively. Physically, cR is the etchant 
concentration consumed in the reaction process. As such it 
is constant except at the etchant-substrate interface. This is 
used to capture the etchfront implicitly. The value of cR 
changes from 0 to its maximum possible value of cR,max in 
a control volume where etching is taking place. The 
maximum possible value of the reacted concentration 
termed cR,max, is the amount of etchant required per unit 
volume of substrate to dissolve the substrate during 
reaction. It is given as 
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m
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The governing equation based on the total concentration is 
given by 
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Using Eq. (2), Eq. (4) can be written as 
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The above equation is valid in both the etchant and the 
substrate regions. The interface condition given by Eq. 
(1f) is contained in Eq. (5) implicitly. A procedure to 
update the reacted concentration (cR) is needed to 
complete the formulation. This is discussed next. 

Procedure to Update cR
In the proposed FG method, the etching-control-volumes 
(ECV) are first identified. The ECVs are the substrate 
control volumes adjacent to the etchant control volumes 
where the reaction between the etchant and the substrate 
is taking place. In an ECV, cR changes from 0 to its 
maximum possible value of cR,max. The finite volume 
discretization equation (using the fully implicit scheme) 
of Eq. (5) for an ECV (control volume P) is given as 
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where m is the mth    iteration    of the current time step,  o is 
the previous time step, P is the control volume P,  nb is 
the neighboring    control volumes,  a is the coefficients of 
the discretization equation,  ∆V is the volume of a control 
volume and ∆t is the time step respectively. It is to be 

noted that Eq    (6) is valid for all control volumes. Since, 
cR is constant in the etchant and substrate    regions, the 
last term on the right side of Eq. (6) is zero except in the 
ECV. At the (m + 1)th iteration, Eq. (6) can be written as 
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Subtracting Eq. (7) from Eq. (6) and rearranging, gives 
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When the solution converges, the last term of Eq. (8) will 
be zero. However, during the initial iteration process, it is 
most likely a non-zero term. Realizing that it is zero upon 
convergence, this term can be ignored from the calculation 
and Eq. (8) becomes 
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where α is an under-relaxation factor. For a diffusion-
controlled reaction, the reaction rate at the interface is 
infinitely fast which makes the concentration at the 
interface zero. For diffusion-controlled reaction, the 
proposed FG procedure ensures that  and the 
excess concentration is used to update the reacted 
concentration. With  , Eq. (9) becomes 
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In the ECVs, the reacted concentration is updated using 
Eq. (10). Etching for a given ECV completed, when 

 reaches c1
,
+m
PRc R,max. 

Numerical Method 
In this article, the finite-volume method (FVM) of 
Patankar [18] is used to solve the diffusion equation (Eq. 
5). Since a detailed discussion of the FVM is available in 
Patankar [18], only a brief description of the major 
features of the FVM used is given here. In the FVM, the 
domain is divided into a number of control volumes such 
that there is one control volume surrounding each grid 
point. The grid point is located in the center of a control 
volume. The governing equation is integrated over each 
control volume to derive an algebraic equation 
containing the grid point values of the dependent 
variable. The discretization equation then expresses the 
conservation principle for a finite control volume just as 
the partial differential equation expresses it for an 
infinitesimal control volume. The resulting solution 
implies that the integral conservation of mass is exactly 
satisfied for any control volume and of course, for the 
whole domain. The resulting algebraic equations are 
solved using a line-by-line Tri-Diagonal Matrix 
Algorithm. In the present study, a solution is deemed 
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converged when the maximum change in the 
concentration and the maximum change in the reacted 
concentration between two successive iterations are less 
than 10-11. 

Overall Solution Procedure 
The overall solution procedure for the proposed total 
concentration method can be summarized as follows: 

1. Specify the etchant domain, the substrate domain and 
the mask region. Ensure that the etchant-substrate 
interface lies on the interface between two control 
volumes. 

2. Set the initial etchant concentration as co in the 
etchant domain and zero in the substrate domain 
including the mask region. 

3. Initially set cR to 0 in the substrate domain including 
the mask region and to cR,max in the etchant domain 
respectively. 

4. Advance the time step to t + ∆t. 

5. Identify the etching control volumes (ECVs).  

6. Use the “internal” boundary condition treatment of 
Patankar [18] (by setting SP to a big number) to set 
the unreacted etchant concentration in the mask and 
substrate regions to zero. 

7. Set SP in the ECV to zero. 

8. Solve Eq. (5) for the unreacted concentration. 

9. Update the reacted concentration in the ECVs using 
Eq. (10). 

10. Check for convergence. 

a) If the solution has converged, then check if 
the required number of time steps has been 
reached. If yes, stop. If not repeat (4) to (10). 

b) If the solution has not converged, then check 
the calculated reacted concentration. 

• If cR < cR,max, repeat (8) to (10). 

• If cR ≥ cR,max, then set cR = cR,max and 
repeat (5) to (10). 

Results and Discussions 
Three test problems namely 1-D, 2-D, and 3-D etching 
are illustrated using the proposed FG method for 
modeling diffusion-controlled etching. The schematic of 
the test problems and the computational domains are 
shown in Figs. 1-3. In 2-D etching, a gap of width 2a and 
in 3-D etching, a gap of square cross-section with 
dimension 2a × 2a is to be etched in a substrate. Rest 
part of the substrate surface is covered with a infinitely 
thin mask at the top to protect it from being contact with 
the etchant. Due to the symmetry of the problem about 
the center of the gap to be etched, only half of the 

domain is modeled in 2-D etching and one-quarter of the 
domain is modeled in 3-D etching as shown in Figs. 2b 
and 3b respectively. For ease of presentation, in the test 
problems 2-D and 3-D, length scales are non-
dimensionalised with respect to the half gap width. The 
dimensionless variables used in this article are 

X = x/a (11a) 

Y = y/a (11b) 

C = c/co (11c) 

t* = tD/a2 (11d) 

Subo

Sub

Mc
mρβ =  (11e) 

For 1-D etching problem, the lengths of etchant and 
substrate domains are taken as 0.03 cm and 51 µm. The 
density and molecular weight of the substrate are taken 
to be 2.1 g/cm3 and 60 respectively. The diffusion 
coefficient of etchant is 10-5 cm2/sec. The stoichiometric 
reaction parameter is 6. In 2-D and 3-D etching 
problems, the dimensionless widths are taken as L1 (l1/a) 
= L4 (l4/a) = 6.5. The dimensionless mask thickness is H 
= h/a = 0.005. Further decrease in mask thickness does 
not alter the solution. The dimensionless height of 
etchant above the substrate surface is taken as L3 = l3/a = 
6.5 and the substrate thickness is L2 = l2/a = 1.0. 

A grid refinement study was performed to ensure that the 
solutions are grid (temporal and spatial) independent. 
Figure 4a shows the grid independent study for 1-D 
etching problem with non-dimensional etching 
parameter, β  = 1. Four spatial grid sizes are taken 
namely,- 12 µm, 6 µm, 3 µm, and 1.5 µm. The time step 
size is kept at 0.001 second and further reduction in the 
time step size does not alter the solution. It is seen that 
all four spatial grids capture the etchfront accurately. 
Figure 4b shows the grid independent study for 2-D 
problem with β = 100. The non-dimensional time step 
size is ∆t* = 0.01. It is seen that the grid sizes of 72 × 53 
and 144 × 104 produced the same etchfront for the four 
given time as shown.   

Figure 5 shows the comparison of etchfronts and 
concentration distribution in a 1-D etching problem 
obtained from the proposed FG method with the exact 
solution [7] for four β values. Figure 5a shows the 
temporal variation of etch depth, which varies as the 
square root of time. It is seen that as β increases, the etch 
depth increases. This is because of the increase in the 
initial etchant concentration with the decrease in β value, 
which is evident from Eq. (11e). Figure 5b shows the 
concentration distribution at t = 1 second.  

Figure 6a shows the comparison of etchfronts in a 2-D 
etching problem obtained from the proposed FG method 
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Figure 1. Schematic and computational domain of a 1-D etching problem. 
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Figure 2. Schematic and computational domain of the two-dimensional (2-D) etching problem. 
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Figure 3. Schematic and computational domain of the three-dimensional (3-D) etching problem. 
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Figure 6. Etch profiles and concentration distribution in 2-D etching: (a) comparison of etch profiles at three different time 
levels obtained from the proposed FG method with analytical asymptotic solution and MG method, (b) concentration 
contours at t* = 30 for β = 100. 
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Figure 8. Evolution of etchfront surface for β = 10 at non-dimensional time t* = 2.4. 
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