
Anatomizing Android Malwares
1st Anand Tirkey

Computer Science and Engineering
National Institute of Technology

Rourkela, India
andy9c@gmail.com

2nd Ramesh Kumar Mohapatra
Computer Science and Engineering

National Institute of Technology
Rourkela, India

rkmohapatra@ieee.org

3rd Lov Kumar
Computer Science and Information Systems

BITS Pilani, Hyderabad Campus
Hyderabad, India

lovkumar505@gmail.com

Abstract—Android OS being the popular choice of major-
ity users also faces the constant risk of breach of confiden-
tiality, integrity and availability (CIA). Effective mitigation
efforts needs to identified in order to protect and uphold the
CIA triad model, within the android ecosystem. In this paper,
we propose a novel method of android malware classifica-
tion using Object-Oriented Software Metrics and machine
learning algorithms. First, android apps are decompiled and
Object-Oriented Metrics are obtained. VirusShare service is
used to tag an app either as malware or benign. Object-
Oriented Metrics and malware tag are clubbed together
into a dataset. Eighty different machine-learned models are
trained over five thousand seven hundred and seventy four
android apps. We evaluate the performance and stability of
these models using it’s malware classification accuracy and
AUC (area under ROC curve) values. Our method yields an
accuracy and AUC of 99.83% and 1.0 respectively.

Index Terms—android, malware detection, machine learn-
ing, object-oriented metrics

I. INTRODUCTION

Since its unveiling in 2007, Android OS market
continues to grow at an unprecedented rate and is
expected to grab global market share at 86.7% by 2019
according to International Data Corporation, USA.
Meanwhile, Symantec internet security threat report
2019 addressed that in 2018, it intercepted & blocked
an average of 10,573 malicious mobile apps per day.
In May 2019, Google Inc. announced that 42.1% of the
total android mobile users run on unsupported versions
of the OS. Karstern Nohl et al. [1] have alarmingly
exhorted that major mobile hardware vendors have
inculcated the dangerous practice of skipping monthly
android patches without the end-user’s knowledge. In
practice, either the hardware vendor stops providing
regular android updates or the android system version
in manipulated to emulate successful android update
installation. These issues have further worsened the
ever-widening gap in android os fragmentation as
shown in Table I.

Google has put forward various preventive measures
in order to prevent malware attack such as improved
android permission and google play protect app. Recent
android os asks the user for permission only when
the app truly requires it as compared to old versions
of os that required all permissions during installation.

Even though this method prevents suspicious malware
activities to some extent, it becomes a usual habit for the
users in this scenario to grant permissions every time
any app asks, without having a proper understanding
of the consequences of granting the permission. It is
also possible to install android apps from third party
sources other than the official google play app, hence this
preventive measure also falls short of being an effective
protection between end-user and malware.

TABLE I: Android OS Fragmentation 2019

Android OS Fragmentation 2019

Version Codename API Distribution Status

2.3.3 -2.3.7 Gingerbread 10 0.3%

Unsupported

4.0.3 -4.0.4 Ice Cream Sandwich 15 0.3%

4.1.x
Jelly Bean

16 1.2%

4.2.x 17 1.5%

4.3 18 0.5%

4.4 KitKat 19 6.9%

5.0 Lollipop 21 3.0%

5.1 22 11.5%

6.0 Marshmallow 23 16.9%

7.0 Nougat 24 11.4%

Supported7.1 25 7.8%

8.0 Oreo 26 12.9%

8.1 27 15.4%

9.0 Pie 28 10.4%

II. PRELIMINARIES

A. Android APK
Android Package (APK) is an executable file under

android ecosystem. Basically it is a zip file that en-
capsulates all the resources required for an android
app to run. APK file primarily consists of ”classes.dex”
(dalvik executable file) that stores all the compiled source
codes. The APK archive may contain more than one
”classes.dex” file such as ”classes1.dex”, ”classes2.dex”
etc. All other resources such as images, audio, database
etc. are stored inside APK archive.

B. Android APK Decompilation
Since ”classes.dex” inside APK archive contains the

compiled source codes, it becomes the starting point for



TABLE II: List of selected Object-Oriented Metrics

DATASET COLLECTION DATASET PRE-PROCESSING

ANDROID MALWARE DETECTION

SYSTEM SANDBOXING &

MALWARE LABELLING

ANDROID APK

DECOMPILATION

OBJECT-ORIENTED METRICS

RETIREVAL

PRE-PROCESSING OF

METRICS BASED DATASET

ANDROID MALWARE DETECTION

USING DIFFERENT MODELS

CREATE MODELS

FROM DATASET USING

MACHINE LEARNING

}THIRD PARTY

WEBSITES

ANDROID APP

REPOSITORIES

ONLINE

MARKETPLACES

Fig. 1: Android Malware Detection Model

android decompilation process. First, ”classes.dex” file
is extracted and then apk decompilation tools such as
dex2jar [2] is used to decompile android apk into a jar
(java archive file). This jar file is then used to retrieve
the Object-Oriented Software metrics upon further pro-
cessing.

C. Object-Oriented Metrics
In this paper, 18 Object-Oriented Software metrics

have been used as shown in Table II. These metrics are
defined by several authors such as Chidamber et al. [3],
Martin et al. [4], Bansiya et al. [5], Henderson et al. [6],

Halstead et al. [7] and Tang et al. [8].

Since android apps are primarily programmed using
java programming language, that uses Object-Oriented
programming paradigm. It natively becomes possible to
obtain Object-Oriented metrics for android apps. These
metrics can be used as features and also can be instru-
mental in classifying android malware.

III. RELATED WORK

Over the years, numerous techniques have been used
for malware classification which can primarily be cate-
gorised into static analysis and dynamic analysis. Vari-
ous authors have used static analysis such as Zhuo Ma
et al. [9] make a structured control-flow graph of the
android app from which API information is extracted.
Three different datasets are obtained from this infor-
mation i.e., API calls, API frequency and API sequence
datasets. These datasets are then used over an ensemble
technique deploying C4.5, DNN and LSTM algorithms.
Neeraj Chavan et al. [10] collect the list of permissions
specifically requested by android apps as their features
for malware classification using Random forest, ANN,
SVM, AdaBoost etc. Shivi Garg et al. [11] include both
static features and dynamic features such as API calls,
permissions, battery temperature, network traffic etc.
amongst others. Classification techniques such as MLP,
SVM, PART, RIDOR and their ensemble are used for
malware detection. Yao-Saint Yen et al. [12] generate
images from code, first by extracting important words
from every apk using TF-IDF (term frequency inverse-
document frequency), then they deploy SimHash and
gjb2 algorithm to generate images from the collection
of important words. Finally, CNN is used for malware
classification. Alejandro Martı́n et al. [13] have used
dynamic analysis features obtained from DroidBox tool.
These features are then modelled into first-order markov
chains. The transition probabilities and state-frequencies
obtained from this first-order markov model acts as
input for deep-learning algorithms such as CNN, RNN,
LSTM etc. for detecting android malware. Dina Saif et
al. [14] use both static analysis and dynamic analysis
features along with system calls in their dataset. They
obtain static information using Rapid Android Parser
jar for Investigating DEX (RAPID) tool and DynaLog
tool is used to obtain dynamic runtime information.
All the information is clubbed together in a common
dataset which uses relief feature selection method for
reducing dimensionality. Finally, Deep Belief Networks
(DBN) are used for malware detection. Ignacio Martı́n et
al. [15] have collected android apps and have tagged the
apps either as benign or malware. The app is flagged
as malware if atleast one of the 61 antivirus softwares
they have used successfully detects it as a malware
otherwise it si labelled as benign. They have also used
graph-community algorithms and hierarchical clustering



algorithms to club unsuspecting malware apps. Finally,
Logistic regression and Random Forest techniques are
used for malware classification. Xi Xiao et al. [16] build
two classification models based on LSTM using system
call sequences as their features. One of these models is
trained with system call sequence from malware apps
and the other is trained with system call sequence from
benign apps. Whenever an incoming android app system
call sequence is encountered, that sequence is run against
both of these models and a similarity score is generated
for each of the models. If the similarity score of the new
sequence against the malware model is greater than that
of the benign model, then the incoming app is classified
as a malware, otherwise it is classified as benign. Wei
Wang et al. [17] obtain their features using Androguard
[18] tool. They deploy Deep auto-encoder (DAE) and
CNN model for malware classification. Firstly, they ap-
ply multiple CNN over high-dimensional features in
order to detect android malware. Consequently, the
CNN-S (Serial Convolution Neural Network) uses Relu
activation function to increase sparseness dropout in
order to prevent over-fitting. Finally, DAE is applied
over CNN as pre-training of CNN for reducing training
time. This model is then used for effective malware
classification. Hui-Juan Zhu et al. [19] use ensemble ma-
chine learning algorithms (Random Forest, SVM etc.) for
detecting android malwares. They selected commonly
available group of features such as permissions, monitor-
ing system events, sensitive API and permission rate for
the collected android apps. The ensemble of classifiers
is fine-tuned using two parameters i.e., the selection of
features at each split and the number of decision trees.

IV. PROPOSED WORK

The proposed work in categorized into three primary
components such as effectiveness of Object-Oriented
metrics, metrics-based dataset preparation followed by
dataset pre-processing and malware classification.

A. Effectiveness of Object-Oriented Metrics

It is imperative to establish that Object-Oriented Met-
rics are feasible and effective in classifying android
malware. Figure 2 shows the box-plot of Object-Oriented
Metrics as described in Table II. Each subfigure from
Figure 2 has two box-plots that shows the distribution
of Object-Oriented metric values both for benign and
malware apps. It is observed that the IQR (interquartile
range) for most of the Object-Oriented metrics don’t
overlap and are distinct except for Ca & AMC met-
rics as shown in Figure 2(g) & Figure 2(r) respectively.
Therefore, because of the multiple existence of non-
overlapping distinct IQR of malware & benign apps,
these Object-Oriented metrics can be used in classifying
malware apps.

IQR = (Q3−Q1), where

Q3→ Third Quartile
Q1→ First Quartile

(1)

B. Metrics-based dataset preparation
The proposed android malware detection model as

shown in Figure 1 is grouped into three phases such
as dataset collection phase, dataset pre-processing phase
and android malware detection phase. Each of these
phases further comprise of sub-processes. In data collec-
tion phase, android apps are collected from android app
repositories, online marketplaces and from third-party
website sources. These collected apps are stored in a local
repository. In data pre-processing phase, the apps from
local repository are decompiled using dex2jar [2] and
it’s Object-Oriented metrics are obtained using CKJM-
extended tool [20]. An android app is determined to be
benign or malware using VirusTotal service. VirusTotal
is supported by Google Inc. and is a community based
platform that keeps track whether an app is benign or
malware. Finally, for each android app a feature vector
of dimension (1 × 20) is designated as shown in Table III.
The metrics-based dataset dimension is (N × 20), where
N is the total number of android apps considered for
the experiment. In this dataset, the first feature is app
name followed by 18 Object-Oriented Metrics as shown
in Table II and a malware tag (benign or malware).
This metrics-based dataset forms the basis of malware
classification using machine learning techniques.

C. Dataset pre-processing & malware classification
A total of five thousand seven hundred and seventy

four android apps are considered for this experiment.
Out of which one thousand five hundred and eighty
two are malware and the remaining are benign apps.
It is observed that the malware apps are comparatively
less than benign ones. Hence, SMOTE [21] (Synthetic
Minority Oversampling Technique) analysis is chosen
for producing class-balanced dataset. Henceforth, two
different datasets i.e., original dataset (OD) and class-
balanced smote dataset (SMOTE) will be used for evalu-
ation in our experiments. Further, four feature selection
techniques are considered such as including all features
without any exclusion (ALL), wilcoxon signed-rank test
(SIG), univariate logistic regression (ULR) and principal
component analysis (PCA). Finally, ten different ma-
chine learning algorithms such as Logistic Regression
(LOGR), Decision Tree (DT), Artificial neural network
with adaptive normalised nonlinear gradient descent
(ANNGD) [22], Artificial neural network with gradient
descent-momentum (ANNGDM) [23], Artificial neural
network using gradient descent with momentum and
adaptive learning rate backpropagation (ANNGDMX)



(a) WMC (b) DIT (c) NOC (d) CBO

(e) RFC (f) LCOM (g) Ca (h) Ce

(i) NPM (j) LCOM3 (k) LCO (l) DAM

(m) MOA (n) MFA (o) CAM (p) IC

(q) CBM (r) AMC

Fig. 2: Object-Oriented Metrics Boxplot

[24], Least squared support vector machine (LSSVM)
[25] with linear kernel (LSSVM-LIN), polynomial kernel
(LSSVM-PLY) & radial basis function kernel (LSSVM-
RBF), Bagged tree ensemble (BTE) [26] and Majority
voting ensemble (MVE) [27] are used to create ten differ-
ent classification models, whose discriminatory power is
assessed using two parameters i.e., classifier’s malware
detection accuracy and classifier’s AUC (area under the

curve) value.

V. EXPERIMENTAL RESULTS & COMPARISON

In our experiment, additional six different datasets
are obtained from OD & SMOTE dataset i.e., OD-SIG
dataset (dataset obtained by applying SIG over OD),
SMOTE-SIG dataset (dataset obtained by applying SIG
over SMOTE), OD-ULR dataset (dataset obtained by
applying ULR over OD), SMOTE-ULR dataset (dataset



TABLE III: Object-Oriented metrics dataset feature vector

TABLE IV: Classifier Accuracy against different datasets applying various feature selection techniques

LOGR DT ANNGD ANNGDM ANNGDMX LSSVM-LIN LSSVM-PLY LSSVM-RBF BTE MVE

OD 79.38 77.90 76.08 72.62 76.43 79.46 93.15 79.91 77.90 80.68

SMOTE 82.32 88.62 74.64 70.70 72.56 74.09 99.61 82.48 99.61 89.99

OD-SIG 81.44 76.86 75.20 72.62 74.26 79.18 89.86 81.27 76.86 79.88

SMOTE-SIG 82.27 87.96 75.97 78.84 74.59 89.28 99.83 82.15 99.83 90.49

OD-ULR 78.61 76.32 76.00 72.62 76.17 80.16 93.58 79.05 76.32 79.55

SMOTE-ULR 81.60 87.13 77.28 69.89 74.64 89.61 99.23 81.49 99.23 91.82

OD-PCA 76.78 75.04 73.57 72.96 72.70 80.59 92.55 77.12 75.04 74.35

SMOTE-PCA 79.96 83.60 70.06 70.40 69.38 85.04 99.72 76.75 99.72 86.53

TABLE V: Classifier AUC against different datasets applying various feature selection techniques

LOGR DT ANNGD ANNGDM ANNGDMX LSSVM-LIN LSSVM-PLY LSSVM-RBF BTE MVE

OD 0.68 0.73 0.59 0.50 0.62 0.65 0.89 0.68 0.73 0.66

SMOTE 0.76 0.86 0.60 0.53 0.59 0.58 1.00 0.75 1.00 0.87

OD-SIG 0.71 0.72 0.58 0.50 0.58 0.64 0.84 0.70 0.72 0.64

SMOTE-SIG 0.77 0.85 0.63 0.69 0.60 0.86 1.00 0.75 1.00 0.91

OD-ULR 0.67 0.72 0.59 0.50 0.60 0.67 0.90 0.65 0.72 0.64

SMOTE-ULR 0.76 0.85 0.66 0.50 0.65 0.86 0.99 0.74 0.99 0.91

OD-PCA 0.62 0.68 0.52 0.51 0.51 0.67 0.87 0.60 0.68 0.53

SMOTE-PCA 0.73 0.81 0.51 0.52 0.53 0.80 1.00 0.66 1.00 0.81

obtained by applying ULR over SMOTE), OD-PCA
dataset (dataset obtained by applying PCA over OD)
and SMOTE-PCA (dataset obtained by applying PCA
over SMOTE). These eight datasets are used to create
models for each of the classification algorithms and
it’s accuracy & AUC is shown in Table IV & table
V respectively. It is observed that LSSVM-PLY over
SMOTE-SIG dataset provides a better malware detection
accuracy of 99.83% and AUC of 1.0.

In order to assess the performance of both OD and
SMOTE datasets, suitable box-plot has been illustrated
in Figure 3. It is observed from Figure 3(a) and Figure
3(b) that, a class-balanced SMOTE dataset generally
provides better results in terms of accuracy & AUC. The
corresponding box-plot descriptive statistics is provided
in Table VI and Table VII. The data shows that SMOTE
provides the best median value of 82.4 & 0.765 for
accuracy and AUC respectively.

Boxplot for four different feature selection techniques

(a) (b)

Fig. 3: Classifier Accuracy & AUC against different
metrics-based datasets

are illustrated in Figure 4. It is observed from Figure
4(a) and Figure 4(b) that SIG feature selection algorithm
provides better results in terms of accuracy & AUC. The



TABLE VI: Boxplot descriptive statistics : Classifier Ac-
curacy against different datasets

Min Max mean median std var Q1 Q3

OD 72.62 93.58 78.5005 76.99 5.332103039 28.43132282 75.12 79.895

SMOTE 69.38 99.83 84.22275 82.4 9.984943534 99.69909737 75.305 90.24

TABLE VII: Boxplot descriptive statistics : Classifier AUC
against different datasets

Min Max mean median std var Q1 Q3

OD 0.5 0.9 0.65525 0.655 0.102406618 0.010487115 0.59 0.715

SMOTE 0.5 1 0.772 0.765 0.161486683 0.026077949 0.64 0.89

corresponding box-plot descriptive statistics is provided
in Table XI and Table XII. The data shows that SIG
provides the best median value of 80.575 & 0.715 for
accuracy and AUC respectively.

(a) (b)

Fig. 4: Classifier Accuracy & AUC against different
datasets applying various feature selection techniques

Boxplot for ten different classification algorithms are
illustrated in Figure 5. It si evident from Figure 5(a) and
Figure 5(b) that LSSVM-PLY provides better results in
terms of accuracy & AUC. The corresponding box-plot
descriptive statistics is provided in Table XIII and Table
XIV. The data shows that LSSVM-PLY provides the best
median value of 96.405 & 0.945 for accuracy and AUC
respectively.

TABLE VIII: p-value : Classification Algorithms
LOGR DT ANNGD ANNGDM ANNGDMX LSSVM-LIN LSSVM-PLY LSSVM-RBF BTE MVE

LOGR • • • •
DT • • • • •
ANNGD • • • • • •
ANNGDM • • • • • •
ANNGDMX • • • • •
LSSVM-LIN • •
LSSVM-PLY • •
LSSVM-RBF

BTE

MVE

In this study, ten different classification techniques are
considered for analysis and a total of 10C2 = 45 pairs
are possible. Analysing all results at 0.05 significance
level, we can reject a null hypothesis if and only if the
p-value is less than 0.05/45 = 0.0011. Upon observing

the classification algorithms p-value in Table VIII,
symbol ” • ” depicts the p-values less than 0.0011.
There are 30 pairs of classification methods out of 45,
that are significantly different (p-value < 0.0011) with
better results. Out of these 30 pairs, it is observed that
Least Squared Support Vector Machine with Polynomial
kernel (LSSVM-PLY) yields superior results than other
classification algorithms.

TABLE IX: p-value : Metrics-based dataset

OD SMOTE

OD •
SMOTE

Similarly, considering the p-value matrix for metrics-
based dataset in Table IX. A total of 2C2 = 1 pair is
possible and analysing the result at 0.05 significance
level, we can reject a null hypothesis if and only if the
p-value is less than 0.05/1 = 0.05. It is observed that
the p-value less than 0.05 is depicted by symbol ” • ”.
It is evident from Table IX, that class-balanced SMOTE
dataset yields better results and is significantly different
as compared to our original dataset (OD).

TABLE X: p-value : Feature selection algorithms

ALL SIG ULR PCA

ALL • • •
SIG • •
ULR •
PCA

Considering four different feature selection algorithms
as shown in Table X. A total of 4C2 = 6 pairs are possible
and analysing the result at 0.05 significance level, we
can reject a null hypothesis if and only if the p-value
is less than 0.05/6 = 0.0083. It is observed that the
p-value less than 0.0083 is depicted by symbol ” • ”. It
can be inferred upon observing Table X that all of the
feature selection techniques are significantly different
and unique amongst themselves.

TABLE XI: Boxplot descriptive statistics : Classifier Accu-
racy against datasets applying various feature selection
algorithms

Min Max mean median std var Q1 Q3

ALL 70.7 99.61 81.4065 79.42 8.541362689 72.95487658 75.36 85.55

SIG 72.62 99.83 82.432 80.575 8.000261575 64.00418526 76.415 88.62

ULR 69.89 99.23 82.015 79.3 8.535067292 72.84737368 76.245 88.37

PCA 69.38 99.72 79.593 76.765 9.094804821 82.71547474 73.265 84.32

Finally, comparing our techniques with that of other
authors as listed in Table XV, shows that our method



TABLE XII: Boxplot descriptive statistics : Classifier AUC
against datasets applying various feature selection algo-
rithms

Min Max mean median std var Q1 Q3

ALL 0.5 1 0.7135 0.68 0.145756647 0.021245 0.595 0.81

SIG 0.5 1 0.7345 0.715 0.139037102 0.019331316 0.635 0.845

ULR 0.5 0.99 0.7285 0.695 0.145864934 0.021276579 0.645 0.855

PCA 0.51 1 0.678 0.665 0.159756393 0.025522105 0.525 0.805

(a)

(b)

Fig. 5: Classifier Accuracy & AUC box-plot

yields superior results with values of accuracy and AUC
at 99.83% and 1.0 respectively. None of the authors
in literature have used Least Squared Support Vector
Machine with polynomial kernel function (LSSVM-PLY)
over SMOTE-SIG Object-Oriented Metrics based dataset
for android malware detection.

TABLE XIII: Boxplot descriptive statistics : Classifier
Accuracy

Min Max mean median std var Q1 Q3

LOGR 76.78 82.32 80.295 80.7 1.96974255 3.879885714 78.995 81.935

DT 75.04 88.62 81.67875 80.75 5.748675469 33.04726964 76.59 87.545

ANNGD 70.06 77.28 74.85 75.585 2.227868937 4.9634 74.105 76.04

ANNGDM 69.89 78.84 72.58125 72.62 2.799481776 7.837098214 70.55 72.79

ANNGDMX 69.38 76.43 73.84125 74.425 2.278642688 5.1922125 72.63 75.405

LSSVM-LIN 74.09 89.61 82.17625 80.375 5.375199498 28.89276964 79.32 87.16

LSSVM-PLY 89.86 99.83 95.94125 96.405 4.062470879 16.50366964 92.85 99.665

LSSVM-RBF 76.75 82.48 80.0275 80.59 2.215766556 4.909621429 78.085 81.82

BTE 75.04 99.83 88.06375 88.565 12.35587418 152.6676268 76.59 99.665

MVE 74.35 91.82 84.16125 83.605 6.394945409 40.89532679 79.715 90.24

TABLE XIV: Boxplot descriptive statistics : Classifier
AUC

Min Max mean median std var Q1 Q3

LOGR 0.62 0.77 0.7125 0.72 0.052847489 0.002792857 0.675 0.76

DT 0.68 0.86 0.7775 0.77 0.072456884 0.00525 0.72 0.85

ANNGD 0.51 0.66 0.585 0.59 0.05042675 0.002542857 0.55 0.615

ANNGDM 0.5 0.69 0.53125 0.505 0.065123509 0.004241071 0.5 0.525

ANNGDMX 0.51 0.65 0.585 0.595 0.045669621 0.002085714 0.555 0.61

LSSVM-LIN 0.58 0.86 0.71625 0.67 0.107827574 0.011626786 0.645 0.83

LSSVM-PLY 0.84 1 0.93625 0.945 0.067810134 0.004598214 0.88 1

LSSVM-RBF 0.6 0.75 0.69125 0.69 0.054099776 0.002926786 0.655 0.745

BTE 0.68 1 0.855 0.86 0.153063946 0.023428571 0.72 1

MVE 0.53 0.91 0.74625 0.735 0.146281285 0.021398214 0.64 0.89

TABLE XV: Comparison

Ref. Accuracy AUC

Proposed Work 99.83% 1.0

Zhuo Ma et al. [9] - -

Neeraj Chavan et al. [10] 97.0% 0.9900

Shivi Garg et al. [11] 98.27% -

Yao-Saint Yen et al. [12] 92.0% -

Alejandro Martı́n et al. [13] 77.8% -

Dina Saif et al. [14] 99.1% -

Ignacio Martı́n et al. [15] 92.7% -

Xi Xiao et al. [16] 93.7% -

Wei Wang et al. [17] 99.8% -

Hui-Juan Zhu et al. [19] 89.91% 0.9031

VI. CONCLUSION

In this paper, we present techniques in order to
classify android malware from benign apps. Initially, we
consider five thousand seven hundred and seventy four
android apps collected from various sources. These apps
are decompiled using dex2jar and it’s corresponding
eighteen Object-Oriented metrics are obtained using
CKJM extended tool. In order to tag an android app
either as malware or benign, VirusTotal service from



Google Inc. is employed. Once the metrics-based dataset
is obtained by clubbing together the Object-Oriented
metrics and the malware tag, it is then verified whether
considering Object-Oriented metrics as features will
feasibly and effectively discriminate android malwares.
To the best of our knowledge, we’re the first ones
to create Object-Oriented metrics based dataset. The
effectiveness of Object-Oriented metrics to be used as
potential features is validated using box-plot diagrams
for each of the eighteen metrics. It is observed that there
are less malware samples as compared to benign ones.
Hence, SMOTE technique is applied over the original
dataset in order to mitigate class-imbalance. Considering
these two separate datasets i.e., original dataset (OD)
and class-balanced SMOTE dataset (SMOTE). Four
different feature selection techniques such as ALL,
SIG, ULR and PCA are applied over each of these
datasets, consequently we obtain an additional of six
different datasets i.e., OD-SIG, SMOTE-SIG, OD-ULR,
SMOTE-ULR, OD-PCA and SMOTE-PCA. Considering
these six datasets along with OD and SMOTE, we
have a total of eight different datasets. Subsequently,
ten machine learning algorithms are used over these
eight datasets to create (10 × 8 = 80) eighty models
for malware classification. The discriminatory power
of these classification models are then assessed using
the classifier’s accuracy and AUC. In this experiment,
classifier’s accuracy and AUC is described using
box-plots. Various box-plots are depicted in order to
capture three parameters such as dataset selection,
feature selection and classifier selection affecting the
overall malware detection accuracy and classifier AUC.
Finally, it is observed from box-plot and its descriptive
statistics that Least Squared Support Vector Machine
(LSSVM-PLY) applied over SMOTE-SIG dataset yields
better malware detection accuracy of 99.83% and AUC
of 1.0.

In the future, additional Object-Oriented metrics will
be included along with various machine learning algo-
rithms such as deep learning. Currently, our experiment
is a 2-class classification problem and only checks for
benign and malware apps. Further, a multi-class classi-
fication model will be considered.

REFERENCES

[1] K. Nohl and K. Lell, “Mind the gap: Uncovering the android patch
gap through binary-only patch level analysis,” HITB Security
Conference, 2018.

[2] P. O. Fora, “Beginners guide to reverse engineering android
apps,” in RSA Conference, 2014, pp. 21–22.

[3] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object
oriented design,” IEEE Transactions on software engineering, vol. 20,
no. 6, pp. 476–493, 1994.

[4] R. Martin, “Oo design quality metrics,” An analysis of dependencies,
vol. 12, pp. 151–170, 1994.

[5] J. Bansiya and C. G. Davis, “A hierarchical model for object-
oriented design quality assessment,” IEEE Transactions on software
engineering, vol. 28, no. 1, pp. 4–17, 2002.

[6] B. Henderson-Sellers, Object-oriented metrics: measures of complexity.
Prentice-Hall, Inc., 1995.

[7] M. H. Halstead et al., Elements of software science. Elsevier New
York, 1977, vol. 7.

[8] M.-H. Tang, M.-H. Kao, and M.-H. Chen, “An empirical study on
object-oriented metrics,” in Proceedings sixth international software
metrics symposium (Cat. No. PR00403). IEEE, 1999, pp. 242–249.

[9] Z. Ma, H. Ge, Y. Liu, M. Zhao, and J. Ma, “A combination method
for android malware detection based on control flow graphs and
machine learning algorithms,” IEEE Access, vol. 7, pp. 21 235–
21 245, 2019.

[10] N. Chavan, F. Di Troia, and M. Stamp, “A comparative analysis
of android malware,” arXiv preprint arXiv:1904.00735, 2019.

[11] S. Garg and N. Baliyan, “A novel parallel classifier scheme
for vulnerability detection in android,” Computers & Electrical
Engineering, vol. 77, pp. 12–26, 2019.

[12] Y.-S. Yen and H.-M. Sun, “An android mutation malware detec-
tion based on deep learning using visualization of importance
from codes,” Microelectronics Reliability, vol. 93, pp. 109–114, 2019.

[13] A. Martı́n, V. Rodrı́guez-Fernández, and D. Camacho, “Candy-
man: Classifying android malware families by modelling dynamic
traces with markov chains,” Engineering Applications of Artificial
Intelligence, vol. 74, pp. 121–133, 2018.

[14] D. Saif, S. El-Gokhy, and E. Sallam, “Deep belief networks-based
framework for malware detection in android systems,” Alexandria
engineering journal, vol. 57, no. 4, pp. 4049–4057, 2018.

[15] I. Martı́n, J. A. Hernández, and S. de los Santos, “Machine-
learning based analysis and classification of android malware
signatures,” Future Generation Computer Systems, 2019.

[16] X. Xiao, S. Zhang, F. Mercaldo, G. Hu, and A. K. Sangaiah,
“Android malware detection based on system call sequences and
lstm,” Multimedia Tools and Applications, vol. 78, no. 4, pp. 3979–
3999, 2019.

[17] W. Wang, M. Zhao, and J. Wang, “Effective android malware
detection with a hybrid model based on deep autoencoder and
convolutional neural network,” Journal of Ambient Intelligence and
Humanized Computing, pp. 1–9, 2018.

[18] A. Desnos and G. Gueguen, “Android: From reversing to decom-
pilation,” Proc. of Black Hat Abu Dhabi, pp. 77–101, 2011.

[19] H.-J. Zhu, T.-H. Jiang, B. Ma, Z.-H. You, W.-L. Shi, and L. Cheng,
“Hemd: a highly efficient random forest-based malware detec-
tion framework for android,” Neural Computing and Applications,
vol. 30, no. 11, pp. 3353–3361, 2018.

[20] M. Jureczko and D. Spinellis, Using Object-Oriented Design Metrics
to Predict Software Defects, ser. Monographs of System Depend-
ability. Wroclaw, Poland: Oficyna Wydawnicza Politechniki
Wroclawskiej, 2010, vol. Models and Methodology of System
Dependability, pp. 69–81.

[21] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,
“Smote: synthetic minority over-sampling technique,” Journal of
artificial intelligence research, vol. 16, pp. 321–357, 2002.

[22] D. P. Mandic, A. I. Hanna, and D. I. Kim, “A general adaptive
normalised nonlinear-gradient descent algorithm for nonlinear
adaptive filters,” in 2002 IEEE International Conference on Acoustics,
Speech, and Signal Processing, vol. 2. IEEE, 2002, pp. II–1353.

[23] S. Sahoo and M. K. Jha, “Pattern recognition in lithology classi-
fication: modeling using neural networks, self-organizing maps
and genetic algorithms,” Hydrogeology journal, vol. 25, no. 2, pp.
311–330, 2017.

[24] C.-C. Yu and B.-D. Liu, “A backpropagation algorithm with adap-
tive learning rate and momentum coefficient,” in Proceedings of the
2002 International Joint Conference on Neural Networks. IJCNN’02
(Cat. No. 02CH37290), vol. 2. IEEE, 2002, pp. 1218–1223.

[25] J. A. Suykens and J. Vandewalle, “Least squares support vector
machine classifiers,” Neural processing letters, vol. 9, no. 3, pp. 293–
300, 1999.

[26] T. G. Dietterich, “An experimental comparison of three methods
for constructing ensembles of decision trees: Bagging, boosting,
and randomization,” Machine learning, vol. 40, no. 2, pp. 139–157,
2000.

[27] ——, “Ensemble methods in machine learning,” in International
workshop on multiple classifier systems. Springer, 2000, pp. 1–15.


