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Abstract 

Nonlinear fractional differential equations (NLFDEs) are widely used to describe various 

phenomena in different fields of science and engineering such as physics, chemistry, acoustics, 

control theory, finance, economics, mechanical, civil, electrical engineering and also in social 

sciences. Applications of NLFDEs can also be found in turbulence, fluid dynamics, and 

nonlinear biological systems. NLFDEs are believed to be potent tools to define real-world 

problems more accurately than the integer-order differential equations. In this investigation, we 

have applied fractional reduced differential transform method (FRDTM) to obtain the solution of 

time-fractional seventh-order Sawada–Kotera–Ito (SK-Ito) equation. The novelty of the FRDTM 

is that it does not require any discretization, transformation, perturbation, or any restrictive 

conditions. Moreover, this method requires less computation compared to other methods. 

Computed results are compared with the existing results for the special cases of integer as well as 

non-integer orders.  The present results are in good agreement with the existing solutions. Here, 

the fractional derivatives are considered in the Caputo sense. Further, convergence analysis of 

the results with an increasing number of terms of the solution has also been studied.  
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1. Introduction and motivation 

During the last few years, the subject of fractional derivatives and integrals of arbitrary order has 

been of great interest for many scientists who are working in this field. These new definitions of 

the fractional-order derivatives and fractional differential equations, especially fractional partial 

differential equations (FPDF) have gained increasing popularity for possible applications in 

many areas of science and engineering. For example, signal processing [1], fluid mechanics 

[2,3], option pricing problems [4,5,6],  electrochemistry [7] and structural dynamics [8,9]. Thus, 

the need for proper numerical and analytic methods that can deal with such models is important.  



 One of the most important methods that deals with these fractional models are the 

fractional reduced differential transform method (FRDTM). This method has its inherent 

advantages and disadvantages. One of the most important advantages of this method is that it 

does not require any linearization or discretization for the model problem and can reduce the size 

of the computation. Thus, the use of this method and its modifications for solving differential 

equations and especially fractional order differential equations due to these advantageous have 

increased tremendously. Arshad et al. [10]  used the FRDTM for solving some FPDE, including 

the fractional Zakharove-Kuznetsov equation. Also, El-Sayed et al. [11] adapted this method for 

solving a fractional model of projectile motion in a quadratic resistant medium as an application 

for the use of fractional order derivative in engineering models. Thabet et al. [12] proposed a 

conformable fractional differential transform method for solving different conformable fractional 

PDE achieving good results. A fractional-order integrodifferential equation with nonlocal 

boundary conditions has been solved in [13] using the FRDTM converting this equation into a 

system of algebraic equations and solving it to get the unknowns. In addition, many other 

fractional models have been solved using this method including fractional differential-algebraic 

equations [14], time-fractional gas dynamics equation [15], fractional Riccati equation [16,17], 

multiterm time-fractional diffusion equations [18], irrational order fractional equations [19], 

Bagley–Torvik equation [20], fuzzy fractional dynamical model of marriage [21], system of 

fractional differential equations [22] and nonlinear fractional Klein-Gordon equation [23].  

Due to the importance of PDE in the modeling of different areas of science, there have 

been many methods that have been proposed for their solution. Among these models with a 

particular interest in fluid mechanics is the Sawada–Kotera–Ito equation. This model is used to 

describe the motion of long waves in shallow water under gravity and also in the modeling of 

nonlinear optics. Many researchers applied efficient and powerful techniques for solving various 

forms of these equations. For example, Koonprasert et al. [24] applied the Riccati equation 

mapping method for solving the fifth-order fractional Sawada-Kotera equation. Also, Naher et al. 

[25] adapted the Exp-function method in order to construct a traveling wave solution for the 

fifth-order Sawada-Koter equation. For more details about the methods and models of these 

equations see [26-32] and references therein.   

The generalized time-fractional KdV equation of seventh-order is written as follows [33] 
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where 7)1(1, imi are the nonzero parameters. Sawada and Kotera [34], and later, Ito [35] found 

that for 42,63,126,378,63,252 654321  mmmmmm  and 217 m . Now, the time-

fractional seventh-order SK–Ito  equation is given by [36,37] 
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Our primary interest in this paper is to investigate the following time-fractional seventh-order 

SK–Ito equation subject to proper initial conditions (IC) which have been taken into 

consideration as 
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where a  is constant and k

k

kx x
  . 

To the best of the authors' knowledge, the results that are presented in this work are the 

first to be introduced for solving time-fractional SK-Ito equation using FRDTM. 

The outline of the paper is organized as in section 2; we present the basic concepts of 

fractional calculus. Section 3 is devoted to present the main steps for applying the FRDTM. In 

Section 4, the method is demonstrated on the time-fractional SK-Ito equation. Some numerical 

examples are presented in Section 5. Finally, Section 6 is devoted to the conclusion of this study. 

2. Basics on fractional calculus 

In this section, we will introduce the basic definitions for the fractional calculus that will be 

needed [38-40]. These definitions are as follows 

Definition 2.1:  

The Riemann-Liouville (R-L) fractional differential operator D of order  is described as  
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where ,Zm R  and 

                
 

  10,)(
1

)(
0

1



 

 



 dtttxxD

x

.                                                              (5) 



Definition 2.2:   

The R-L fractional order integral operator J is described as  
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 Following Podlubny [40], we  have 
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Definition 2.3:  

The Caputo fractional differential operator DC of order  is described as  
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Definition 2.4: 

 (a)    ttJD tt                                                                                                                       (10) 
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Next, we will introduce the necessary steps for adapting the fractional reduced differential 

transform method (FRDTM).  

                                           

3. Fractional reduced differential transform method (FRDTM) 

In this section, we will illustrate the necessary steps for the FRDTM [41-45]. First, let us 

consider a function of (n+1) variables  nxxxt ,..,,, 21  such that 

 

                                    thxxxxxxt nnn  ...,..,,, 221121  ,                                                      (11) 

Hence from the properties of one-dimensional  differential transform method [18] 
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where           jhiiijiii nnn  ...,,...,, 221121    is denoted as the spectrum of  nxxxt ,..,,, 21 . 

Also,   nxxxt ,..,,, 21  is called the original function and  nk xxx ,..,, 21  is called the 

transformed function or T-function. Thus, we need the following lemma. 

 

Lemma 1: Let us consider an analytic and continuously differentiable function  nxxxt ,..,,, 21  

to       variables nxxxt ,..,,, 21  in the domain of our interest, then FRDTM of  nxxxt ,..,,, 21  

can be  written as 
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Then, applying the inverse transform of  nk xxx ,..,, 21 , we get 
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 From Eqs. (13) and (14), we obtain 
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In particular, at 00 t ,  Eq. (15) reduces to the following equation 

              

 
 

  








0
02121 ,..,,,

1

1
,..,,,

k

k

tn

k

tn txxxtD
k

xxxt  


 .                                          (16) 

From the above definition, it is observed that the idea of FRDTM is derived from the power 

series expansion of a function. Then the inverse transformation of the set of values 

  n
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021 ,..,,
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where    is the order of the approximation solution and the exact solution may be written in the 

form 
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We need the following theorems for better understanding of the proposed method  

Theorem 1: 

Let    txtx ,,,   and  tx,  are three analytical functions such that     xRtx kD  1,  , 
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where 1

DR   is the inverse reduced differential transform. 

Theorem 2: 
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To explain the basic implementation of FRDTM, we have considered the following equation in 

the operator form 

                                           txhtxNtxRtxL ,,,,   ,                                                     (19)                                        

with initial condition 

                                                     xgx 0, ,                                                                            (20)      
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an inhomogeneous source term. Then, by using Theorem 2 property No. (ii) and Eq. (13), Eq. 

(19) reduces to   
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where  xk  and  xH k  are the differential transformed form of   tx,  and  txh , , respectively. 

Appling FRDTM on the initial conditions, we obtain 

                                               
   xgx 0 ,                                                                                (22)                                             

Using Eq. (21) and Eq. (22), )(xk  for ....,3,2,1k can be determined. 
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So, the analytical result of Eq. (23) is written as    txtx n
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Also, one may see the reference [45] for the convergence analysis of the present method 

theoretically.  

4. Implementation of FRDTM on time-fractional seventh-order SK-Ito Equation 

Applying FRDTM on both sides of Eq. (3) and using the appropriate theorem, the following 

recurrence relations for the problem and its initial condition is obtained 
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Then, by plugging the transformed initial condition of Eq. (24) into the transformed main 

equation of Eq. (24) for k=0,1,2,.., we obtain the following values of   n
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Continuing likewise, all other values of   n

kk x
4

  maybe calculated. So the  th
 order 

approximate solution of Eq. (3) maybe written as follows 

                                        k
n

k

kn txtx  



0

,~  .                                                                           (28) 

 

5. Numerical results and discussion  

 

In this section, the approximate solution of time-fractional seventh-order SK-Ito equation using 

FRDTM has been studied. Here, all the numerical calculations have been computed by 

truncating the infinite series to a finite number of terms  3n . In this article, all the figures and 

tables are included by considering the values of the parameter as 1.0a  [36].  The achieved 

outcomes are compared with the solution of Arora and Sharma [36] and El-Sayed and Kaya [37] 

for 1 , which shows the validation of the present study. Calculated results are displayed in 

terms of plots. Tables 1 shows the difference between the exact solution and present solution of 



the absolute errors. Comparison of the present result of Eq. (3) with the existing results at 1  

are demonstrated in Table 2. Solution plot of Eq. (3) has been compared with the exact solution 

plot, which is depicted in Figure 1. Similarly, Figure 2 gives the plots of Eq. (3) at different 

values of  (=0.2, 0.5, 0.7 and 0.9). Convergence analysis of the present solution by taking the 

increasing number of terms have been portrayed in Figure (3) for the Eq. (3) at 1  and 

5.0 . It is also noted that here we have used third-order approximate solution throughout the 

computations and we have achieved a good approximation with the exact solution of the titled 

problems. Improved approximation solutions have been obtained if we increase the order of the 

approximation that is increasing the number of terms of solution. 

 

Table 1. Absolute error of third-order (n=3) approximate solution in comparison with the exact 

solution [36]  
























3

256
tanh32

3

4
,

6
22 ta

axatx  at 1,1.0  a  for Eq. (3). 

tx  0.1 0.3 0.5 0.7 1.0 

0.1 -4.2262E-08 -1.4787E-07 -2.7889E-07 -4.3209E-07 -6.9640E-07 

0.3 -1.1847E-07 -3.7243E-07 -6.4123E-07 -9.1548E-07 -0.1316E-05 

0.5 -1.9280E-07 -5.9085E-07 -9.9327E-07 -0.1385E-05 -0.1922E-05 

0.7 -2.6416E-07 -8.002E-07 -0.1331E-05 -0.1838E-05 -0.2514E-05 

1.0 -3.6344E-07 -0.1091E-05 -0.1803E-05 -0.2477E-05 -0.3374E-05 

 

Table 2. Comparison of the present solution with the exact solution of Eq. (3) and their absolute 

error at 1.0a  and 1 . 

 

 t               x          Present solution      Exact solution [36]         Absolute Error 

               -2         0.2509759131E-1    0.2511356173E-1           -0.15970338E-4 

-4             0         0.2666057464E-1     0.2666666201E-1          -0.6087390863E-5 

                2         0.2512389335E-1     0.2510320234E-1           0.20690918E-4 

               -2         0.2510030777E-1     0.2511097485E-1          -0.10667079E-4 

-2             0         0.2666514366E-1     0.2666666550E-1          -0.1521847716E-5 

                2         0.2511764239E-1     0.2510579515E-1            0.11847225E-4 

               -2         0.2510838599E-1     0.2510838599E-1            0 

 0             0         0.2666666667E-1     0.2666666667E-1            0 

                2         0.2510838599E-1     0.2510838599E-1            0 

               -2        0.2511764239E-1      0.2510579515E-1           0.11847225E-4 

2              0        0.2666514366E-1      0.2666666550E-1          -0.1521847716E-5 

                2        0.2510030777E-1      0.2511097485E-1          -0.10667079E-4 

               -2        0.2512389335E-1      0.2510320234E-1           0.20690918E-4 

4              0        0.2666057464E-1      0.2666666201E-1          -0.6087390863E-5 

                2        0.2509759131E-1      0.2511356173E-1          -0.15970338E-4 



 

 

 

  
                                    (a)                                                                             (b) 

Fig.1. Comparison plots of the (a) third-order present solution with (b) the exact solution of Eq. 

(3) at 1.0a  and 1 . 

  
                                      (a)                                                                     (b) 

     



                                     (c)                                                                         (d) 

Fig.2. Plots of the present solution (n=3) of Eq. (3) at (a) 2.0  (b) 5.0  (c) 7.0  and 

(d) 9.0 . 

  
 

Fig.3. Solution plots of Eq. (3) at 1.0a and 5t  when (a) 1  (b) 5.0  for different 

values of  . 

7. Conclusion 

 

In this research, approximate solutions of time-fractional seventh-order Sawada–Kotera–Ito 

equation is obtained with the help of an efficient method, namely FRDTM. Obtained outcomes 

are compared with the existing results at a particular value of 1  and are found to be in 

precise agreement. The main benefit of applying this method is that it does not require any 

assumption, perturbation, and discretization for solving the governing time-fractional seventh-

order SK–Ito equation. Also, computation time is less compared to other techniques. The 

computational outcomes assure that the present technique is very accurate, fast converges, and 

effective. It is also a very easily implementable mathematical tool for solving real-life problems 

arising in different areas of engineering and sciences.  
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