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Abstract. Let n and k be integers, n ≥ k ≥ 1. A graph G is said to admit property Pk if
for any distinct pair x, y ∈ V (G), there exists k internally vertex disjoint paths between x
and y of the same length. Consider the following family of graphs.

Gn
k := {Gn : Gn admits property Pk}.

There are two interesting directions in the study of Gn
k . Firstly, in the extremal direction, it

is interesting to estimate the sparsity of graphs admitting property Pk. That is, estimation
of ν(n, k) = min{|E(Gn)| : Gn ∈ Gn

k }. The other direction is structural: what properties
in the graph ensures admittance of property Pk. In this paper, we tackle the extremal
question followed by some structural results on the same.

1 Introduction

Let n and k be integers, n ≥ k ≥ 1. A graph G is said to admit property Pk if for any distinct
pair x, y ∈ V (G), there exists k internally vertex disjoint paths between x and y of the same
length. Consider the following family of graphs.

Gn
k := {Gn : Gn admits property Pk}. (1)

There are two interesting directions in the study of Gn
k . Firstly, in the extremal direction, it

is interesting to estimate the sparsity of graphs admitting property Pk. That is, estimation of
ν(n, k) = min{|E(Gn)| : Gn ∈ Gn

k }. The other direction is structural: what properties in the
graph ensures admittance of property Pk. In the first part, we tackle the extremal question
followed by some structural results on the same.

2 Some initial observations

It is intimidate that the smallest graph that admits property P2 is theK4. In order to extendK4
to a larger graph admitting P2, one may try something like a mycielskian ofK4: corresponding
to {v1, v2, v3, v4} in theK4, add {u1, u2, u3, u4} toG such that V (G) = {v1, . . . , v4}∪{u1, . . . , u4}
and E(G) = E(K4) ∪ {{ui, vj} : {vi, vj} ∈ E(K4)}. It is not hard to verify that G admits
property P2. Repeating the process, one may obtain a graph G2k on 2k vertices with 6× 3k−1

edges. This observation yields the bound ν(n, 2) ≤ 2nlog2 3.
One important observation from the above example is that in order to obtain sparser

graphs admitting property P2, we need some structural symmetry in the arrangement of
edges. But how much more can we improve ν(n, 2)? As it turns out, the Hamming cube Q2k

also admits P2. In fact, the Hamming cube Q2k admits Pd k
2 e

. In order to see this, consider two
points (x1, . . . , xk) and (y1, . . . , yk) at a Hamming distance t and without loss of generality,
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let the coordinates where the points differ are exactly 1, . . . , t. We show t equidistant paths
of length exactly t in the following manner. Let P1 denote the path (x1, x2, . . . , xt, . . . , xk) →
(y1, x2, . . . , xt, . . . , xk) → (y1, y2, . . . , xt, . . . , xk) → . . . (y1, y2, . . . , yt, . . . , xk). Let P2 denote
the path (x1, x2, x3, . . . , xt, . . . , xk)→ (x1, y2, x3, . . . , xt, . . . , xk)→ (x1, y2, y3 . . . , xt, . . . , xk)→
. . . (x1, y2, . . . , yt, . . . , xk)→ (y1, y2, . . . , yt, . . . , xk). Similarly, let Pi denote the path where we
start with (x1, x2, . . . , xt, . . . , xk), then switch the ith coordinate followed by switching of the
successive coordinates cyclically and ending at (y1, y2, . . . , xi−1, yi, . . . , xk)→ (y1, y2, . . . , yt, . . . , xk).
It is easy to verify that each of the Pi, 1 ≤ i ≤ t are vertex disjoint and of the same length t.
Similarly, there are k − t equidistant paths of length exactly t + 2, where the first move and
the last move is along a coordinate where (x1, . . . , xk) and (y1, . . . , yk) have the same value
and internal points are all the correction in Hamming weights along that coordinate. This
observation yields the bound ν(n, dk

2 e) ≤ n logn, where n = 2k.
A lower bound on ν(n, k) can be obtained by the following simple observation that any

graph on n vertices admitting property Pk must have connectivity at least k + 1: otherwise,
two adjacent vertices in the graph can never have k equidistant vertex disjoint paths. This
gives the following lower bound to ν(n, k).

ν(n, k) ≥ n(k + 1)
2 . (2)

The Hamming cube example gives an upper bound of 2nk for ν(n, k) when n = 4k. We
can improve the upper bound using grids in the following way. Consider the graph Gn where
the vertices are the points on a n1/k × n1/k × . . . × n1/k grid and a point (x1, x2, . . . , xk) is
adjacent to 2k points, namely (x1±1, x2, . . . , xk), (x1, x2±1, . . . , xk), . . . , (x1, x2, . . . , xk±1).
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