Equidistant Paths in Graphs

Niranjan Balachandran ^{*1} and Sajith P. ^{**2} Tapas Kumar Mishra ^{***3} L. Sunil Chandran ^{†2}

 1 Department of Mathematics, Indian Institute of Technology, Bombay 400076, India

² Department of Computer Science and Automation, Indian Institute of Science, Bangalore, India

³ Department of Computer Science and Engineering, National Institute of Technology, Rourkela 769008, India

Abstract. Let *n* and *k* be integers, $n \ge k \ge 1$. A graph *G* is said to admit property P_k if for any distinct pair $x, y \in V(G)$, there exists *k* internally vertex disjoint paths between *x* and *y* of the same length. Consider the following family of graphs.

 $\mathcal{G}_k^n := \{ G_n : G_n \text{ admits property } \mathcal{P}_k \}.$

There are two interesting directions in the study of \mathcal{G}^n_k . Firstly, in the extremal direction, it is interesting to estimate the sparsity of graphs admitting property \mathcal{P}_k . That is, estimation of $\nu(n,k) = \min\{|E(G_n)| : G_n \in \mathcal{G}_k^n\}$. The other direction is structural: what properties in the graph ensures admittance of property \mathcal{P}_k . In this paper, we tackle the extremal question followed by some structural results on the same.

1 Introduction

Let *n* and *k* be integers, $n \ge k \ge 1$. A graph *G* is said to admit property \mathcal{P}_k if for any distinct pair $x, y \in V(G)$, there exists *k* internally vertex disjoint paths between *x* and *y* of the same length. Consider the following family of graphs.

$$
\mathcal{G}_k^n := \{ G_n : G_n \text{ admits property } \mathcal{P}_k \}. \tag{1}
$$

There are two interesting directions in the study of \mathcal{G}_k^n . Firstly, in the extremal direction, it is interesting to estimate the sparsity of graphs admitting property \mathcal{P}_k . That is, estimation of $\nu(n,k) = \min\{|E(G_n)| : G_n \in \mathcal{G}_k^n\}$. The other direction is structural: what properties in the graph ensures admittance of property P_k . In the first part, we tackle the extremal question followed by some structural results on the same.

2 Some initial observations

It is intimidate that the smallest graph that admits property \mathcal{P}_2 is the K_4 . In order to extend K_4 to a larger graph admitting \mathcal{P}_2 , one may try something like a mycielskian of K_4 : corresponding to $\{v_1, v_2, v_3, v_4\}$ in the K_4 , add $\{u_1, u_2, u_3, u_4\}$ to *G* such that $V(G) = \{v_1, \ldots, v_4\} \cup \{u_1, \ldots, u_4\}$ and $E(G) = E(K_4) \cup \{\{u_i, v_j\} : \{v_i, v_j\} \in E(K_4)\}$. It is not hard to verify that *G* admits property $\mathcal{P}_2.$ Repeating the process, one may obtain a graph G_{2^k} on 2^k vertices with $6\times 3^{k-1}$ edges. This observation yields the bound $\nu(n, 2) \leq 2n^{\log_2 3}$.

One important observation from the above example is that in order to obtain sparser graphs admitting property P_2 , we need some structural symmetry in the arrangement of edges. But how much more can we improve $\nu(n,2)$? As it turns out, the Hamming cube Q_{2^k} also admits $\mathcal{P}_2.$ In fact, the Hamming cube Q_{2^k} admits $\mathcal{P}_{\lceil \frac{k}{2} \rceil}.$ In order to see this, consider two points (x_1, \ldots, x_k) and (y_1, \ldots, y_k) at a Hamming distance *t* and without loss of generality,

[?] niranj@iitb.ac.in

^{??} sajithiitb@gmail.com

^{? ? ?} mishrat@nitrkl.ac.in

[†] sunil@iisc.ac.in

let the coordinates where the points differ are exactly 1*, . . . , t*. We show *t* equidistant paths of length exactly *t* in the following manner. Let P_1 denote the path $(x_1, x_2, \ldots, x_t, \ldots, x_k) \rightarrow$ $(y_1, x_2, \ldots, x_t, \ldots, x_k) \rightarrow (y_1, y_2, \ldots, x_t, \ldots, x_k) \rightarrow \ldots (y_1, y_2, \ldots, y_t, \ldots, x_k)$. Let P_2 denote the path $(x_1, x_2, x_3, ..., x_t, ..., x_k) \rightarrow (x_1, y_2, x_3, ..., x_t, ..., x_k) \rightarrow (x_1, y_2, y_3, ..., x_t, ..., x_k) \rightarrow$ \ldots $(x_1, y_2, \ldots, y_t, \ldots, x_k) \rightarrow (y_1, y_2, \ldots, y_t, \ldots, x_k)$. Similarly, let P_i denote the path where we start with $(x_1, x_2, \ldots, x_t, \ldots, x_k)$, then switch the *i*th coordinate followed by switching of the successive coordinates cyclically and ending at $(y_1, y_2, \ldots, x_{i-1}, y_i, \ldots, x_k) \to (y_1, y_2, \ldots, y_t, \ldots, x_k).$ It is easy to verify that each of the P_i , $1\leq i\leq t$ are vertex disjoint and of the same length $t.$ Similarly, there are $k - t$ equidistant paths of length exactly $t + 2$, where the first move and the last move is along a coordinate where (x_1, \ldots, x_k) and (y_1, \ldots, y_k) have the same value and internal points are all the correction in Hamming weights along that coordinate. This observation yields the bound $\nu(n, \lceil \frac{k}{2} \rceil) \le n \log n$, where $n = 2^k$.

A lower bound on $\nu(n, k)$ can be obtained by the following simple observation that any graph on *n* vertices admitting property P_k must have connectivity at least $k + 1$: otherwise, two adjacent vertices in the graph can never have *k* equidistant vertex disjoint paths. This gives the following lower bound to $\nu(n, k)$.

$$
\nu(n,k) \ge \frac{n(k+1)}{2}.\tag{2}
$$

The Hamming cube example gives an upper bound of $2nk$ for $\nu(n,k)$ when $n=4^k$. We can improve the upper bound using grids in the following way. Consider the graph G_n where the vertices are the points on a $n^{1/k} \times n^{1/k} \times \ldots \times n^{1/k}$ grid and a point (x_1, x_2, \ldots, x_k) is adjacent to 2*k* points, namely $(x_1 \pm 1, x_2, \ldots, x_k)$, $(x_1, x_2 \pm 1, \ldots, x_k)$, ..., $(x_1, x_2, \ldots, x_k \pm 1)$.