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ABSTRACT 

 

Image processing applications like endoscopy, flash 

photography are prone to specularity reflection because of 

the usage of flash illumination during image acquisition.  

The formation of specularity reflection paralyzes the 

performance accuracy of many state-of-the-art feature 

detection algorithms. Specularity removal in case of real-

world imaging conditions is further challenging when the 

source of illumination is unavailable. Literature suggests 

that chromaticity based reflection removal algorithms 

circumvent the illumination source dependency by 

transforming the pixels into the chromaticity-intensity 

plane and solving a fine-grained, least-squares problem of 

the dichromatic model. In this paper, we extend the 

existing chromaticity based removal approach to Hue-

Saturation-Value color domain and explore its suitability 

in specularity removal under flash imaging conditions. 

Experimentation on MIT intrinsic database demonstrate 

that our approach achieves desirable reflection separation 

results with minimum execution time compared to the 

state of the art. 

Keywords: Reflection, Saturation, Dichromatic reflection 

model, Color space. 

I. INTRODUCTION 

Specularity problem is one of the most challenging 

hindrances in applications like biomedical, computer 

vision, and digital photography. With the advent of 

smartphones, people can capture images in low 

illumination conditions by using mobile flash as a source 

of illumination [4,5,9]. Low illumination condition 

photography needs skill/expertise in capturing images, as 

the captured image can be flawed by the specularities 

formed due to the flash. Similarly, in the case of medical 

applications like endoscopy wherein a small camera with 

an attached flash is invasively navigated through the body 

of a patient---capturing video of the intended body organ 

for medical examination—suffers from information loss 

due to specularity effect. The specular problem resurfaces 

in many other image processing applications involving 

flash photography [11]. 

Variation in illumination level, relative positioning of 

ambient light source and the camera—result in specular 

reflections—which paralyze the performance accuracy of 

many existing state-of-the-art feature detection algorithms 

[19-21]. Therefore, mitigation of the specularity problem 

is a relevant and important challenge. 

 

 

A. Specularity problem 

Image formation of an object is governed by three 

processes: 

 Illumination of the object by a light source. 

 Reflection of light by the object. 

 Detection of the reflected light. 

Generally, illumination sources have uniformly 

distributed spectrum in all wavelengths of the visible 

region. Depending on the nature of the object, it absorbs a 

few wavelengths and reflects back its complementary 

colors—thereby providing a specific color. In literature, 

there are quite a few reflection models that define the 

image formation. Lambertian reflection model is one such 

fundamental reflection model. In this model, the light 

reflected by the material is assumed to be isotropic i.e. 

independent of the viewing direction. The materials 

which show this property are called matte materials. 

These matte materials do not show glare or mirror-like 

behavior called specularity. Many computer vision 

algorithms assume Lambertian surfaces and neglect the 

effect of specularity as outliers. In real-world images, 

these assumptions do not hold good because most of the 

objects photographed are not matte materials and 

therefore result in specularities. Due to this, the extent to 

which the Lambertian reflection model-based algorithms 

can be utilized is limited. A more realistic model that 

considers both highlights and anisotropic reflection is the 

Dichromatic Reflection Model (DRM) proposed by 

Shaufer [1].  

Based on DRM, removing specularities from images can 

be coined as a problem of extraction of corrupted pixels 

from an image and converting it into a meaningful 

representation. Intrinsic image decomposition,  a branch 

of Image processing deals with such information retrieval 

application algorithms. An exhaustive survey on the 

available literature is provided in [19]. Most of the 

available algorithms have high time complexity and 

therefore the adaptability of these algorithms for real-time 

applications is limited. 

B. Contribution of this work 

 

In this manuscript, we explore the DRM approaches and 

check the usability of the available state-of-the-art 

intrinsic decomposition methodologies in the context of 

specularity removal in real-time images. By extending the 

chromaticity based reflection removal approach proposed 

in [13] to Hue-Saturation-Value (HSV) color space we 

propose a simple yet practical way of suppressing the 

spectacle problem. 
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The paper is organized as follows: Section II describes the 

Dichromatic reflection model – its assumptions, 

advantageous and limitations, III describe the 

chromaticity based reflection removal algorithm, Section 

IV provides the proposed extension of the method 

discussed in Section III, Section V the experimentation, 

simulation results, and observations. The concluding 

remarks are given in Section VI. 

II DICHROMATIC REFLECTION MODEL 

Dichromatic reflection model (DRM) is a mathematical 

model which describes the reflection of light from a non-

uniform surface. It focuses on the color aspect of 

reflection of light from a nonhomogeneous material 

illuminated by a uniform single source of light. Based on 

these assumptions, the model proposes that the total 

reflected light from a surface of uniform color is the 

weighted linear combination of the light reflected from 

the surface or interface of reflection which is called 

specular reflection and the complementary color reflected 

from the lattice of the material called diffuse reflection 

(see Fig. 1).  The reflection from the surface will have 

mirror-like or specular features and the body component 

has diffusive properties which contribute mainly to the 

glow less color or matte of an object. 

 

Fig. 1. Surface and body reflections of a surface. 

The specular and diffusive components can be classified 

into: 

 A univariable function of the wavelength of the 

illuminating source and gives the relative 

spectral power distribution. 

 A multivariable function the geometrical 

properties which gives the geometrical scale 

factor. 

The total radiance of reflected light from a surface, 

𝐿(𝜆, 𝑖, 𝑒, 𝑣) =  𝐿𝑖(𝜆, 𝑖, 𝑒, 𝑣) + 𝐿𝑏(𝜆, 𝑖, 𝑒, 𝑣)  (1) 

By using the dichromatic mathematical model, we can 

further divide the body and surface into variable separable 

equations which depend on the geometry of the surface as 

well as the wavelength of the illuminant light. They are 

mutually independent. Thus the equation 1. can be further 

modified as, 

𝐿(𝜆, 𝑖, 𝑒, 𝑣) =  𝑚𝑖( 𝑖, 𝑒, 𝑣)𝑐𝑖(𝜆) +  𝑚𝑏( 𝑖, 𝑒, 𝑣)𝑐𝑏(𝜆)   (2) 

where 𝑚𝑖 and 𝑚𝑏 are the scale factors which changes 

from point to point depending upon the geometry and 𝐶𝑖 

and 𝐶𝑏 are the spectral power density over a range of 

wavelengths which does not depend on geometry. By 

using the linearity property as well as the variable 

separability of the body and surface reflection 

components [1] proposed that the pixels of a dichromatic 

surface will be confined to a parallelogram when plotted 

in RGB space (Fig. 2). This has been the groundwork for 

future research and modifications on the single image 

based separation.  

 

Fig. 2. Pixel values of a particular color align on the 

surface of a plane on a parallelogram in color space. 

 

The DRM provides a basic mathematical model but does 

not provide an effective way of isolating the specular 

pixels. This aspect was further extended by Klinker et al. 

[6] by plotting the color histogram of all the pixels. The 

histogram forms a T-shaped distribution with highlight 

and matte component clustering into two side lobes of the 

T-shaped structure. But this approach is limited to 

dielectric objects as well as objects with uniform diffuse 

colors. Tan et al [2] extended the DRM approach and 

proposed a chromaticity based approach which separates 

the reflection components from a single image by 

mapping the pixels in a particular color space to 

maximum chromaticity-pixel intensity space.  

A. Extension of DRM to pixels in a color space 

As the DRM models color in terms of its reflection, it is 

obvious to extend the concept of dichromatic reflection to 

the popular color spaces. Moreover, when this model is 

fitted into a particular color space, the possibility of 

separation of its reflection components also has a pivotal 

role. This subsection gives the extension of DRM to the 

most used color space, viz. RGB space. 

 The spectral power density is the energy received on a 

surface per unit area per unit wavelength for a particular 

illumination. Using the spectral projections, the pixel 

values of the color images can be computed from the 

Spectral Power Distribution (SPD) of the measured light. 

For a color camera, the color value of every pixel is given 

by the color matrix with the corresponding RGB 

components viz. 𝑟𝑥 , 𝑔𝑥  and 𝑏𝑥 for a pixel. Color value 

matrix for an SPD 𝑋(𝜆) and a camera sensitivity for R, G 

and B, 𝑟(𝜆), 𝑔(𝜆)and  𝑏(𝜆) respectively is given by 
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𝐶𝑥 =  [

𝑟𝑥

𝑔𝑥

𝑏𝑥

]      (3) 

 

where 𝑟𝑥 =  ∫ 𝑥(𝜆)𝑟(𝜆), 𝑔𝑥 =  ∫ 𝑥(𝜆)𝑔(𝜆), 𝑏𝑥 =
 ∫ 𝑥(𝜆)𝑏(𝜆)  respectively. 

 

B. The linearity of the Model 

The model which is obtained by combining the properties 

of a dichromatic color model and RGB color space is 

found to have linearity property. If 𝑋(𝜆) and 𝑌(𝜆) are two 

different SPDs, the resultant colour value matrix which 

are combined in ratios a and b respectively is obtained by 

𝐶(𝑎𝑋+𝑏𝑌) = 𝑎𝐶𝑋 + 𝑏𝐶𝑌    (4) 

After applying the linearity property to the spectral 

projections we have  

𝐶𝐿 =  𝑚𝑖𝑐𝑖 +  𝑚𝑏𝑐𝑏     (5) 

𝐶𝐿 is given by the linear combination of all the SPDs 

which contribute to the illumination of a particular 

surface contributing to the corresponding pixel value. The 

pixel values line on the surface of a plane on a 

parallelogram in color space (see Fig. 2). Due to the 

linearity property, the pixel values are confined to a two-

dimensional plane rather than a three-dimensional space. 

C.  SEPARATION USING CHROMATICITY 

In order to separate the diffuse and specular components 

of a single color image, the chromaticity of pixels can be 

used as a parameter [13]. They can be obtained using the 

intensity of every pixel form the corresponding RGB 

vectors of every pixel. The chromaticity based approach 

transforms the pixels in a particular color space to a two-

dimensional plane which is spanned by the maximum 

chromaticity and intensity values of every pixel. 

The chromaticity for a pixel can be defined as:  

𝛽(𝒑) =  
𝐼(𝒑)

𝐼𝑟(𝒑)+𝐼𝑔(𝒑)+𝐼𝑏(𝒑)
      (6) 

where 𝐼(𝒑) is the intensity of the 𝑝𝑡ℎpixel and 𝐼𝑟(𝒑),
𝐼𝑔(𝒑), 𝐼𝑏(𝒑)are its corresponding RGB values. 𝛽 is a 

vector with R, G and B components such that 𝛽 =
(𝛽𝑟 , 𝛽𝑔, 𝛽𝑏). The chromaticity factors can be separately 

found out for the diffusive as well as specular components 

using eq. (7).  

 

In order to separate the two reflection components from a 

color image, its corresponding RGB color space is 

mapped to an intensity-maximum chromaticity space. 

Maximum chromaticity is a scalar which is defined by:   

𝛽𝑚𝑎𝑥 =  
max (𝐼𝑟(𝒑)+𝐼𝑔(𝒑)+𝐼𝑏(𝒑))

𝐼𝑟(𝒑)+𝐼𝑔(𝒑)+𝐼𝑏(𝒑)
    (7) 

 

 

 

 

 

IV. PROPOSED METHODOLOGY 

Color models specify a coordinate system of color space 

where each and every point in that space represents a 

unique color [3]. The chromaticity approach in [13] is 

defined in RGB color space, so in this manuscript, we 

extended the approach to Hue-Saturation-Value (HSV) 

color model to analyze whether the transformation 

enhances or diminishes the separation of reflection 

components.  

A. HSV Color Model 

Hue-Saturation-Value is one of the widely used color 

space in many image processing applications. In the HSV 

color model, color is represented as a combination of hue, 

saturation, and value which is modeled geometrically as a 

cone or cylinder. Hue is the color portion of the color 

model expressed as a number from 0 to 360 degrees. 

Saturation is the amount of gray in the color, from 0 to 

100 percent. Value works in conjunction with saturation 

and describes the brightness or intensity of the color, from 

0-100 percent, where 0 is completely black, and 100 is the 

brightest and reveals the most color. The advantage of the 

HSV color model is the independency of hue and 

value/brightness channels. Hue channel exclusively 

contains information about the color of pixel whereas the 

value channel has information regarding the intensity of 

the reflected light from the object. Saturation channel is 

found to give information about both colors as well as 

brightness. 

B. The effect of specularity on pixels in RGB, HSV color 

spaces 

Since DRM assumes illuminant light to be white 

(contains wavelength of all frequencies with uniform 

energy density), in RGB space for an 8-bit pixel, 

specularity is represented by the channel values 

(255,255,255). Histogram analysis (see Fig. 3) on MIT 

intrinsic image database [10], reveals us the fact that the 

presence of specularities results in a right shift of 

intensities in all the three channels (R, G and B).  

In HSV color space specularity does not have any 

significant impact on the hue channel [18]. From Fig. 3, 

we can notice that the value of hue changes 

insignificantly with different levels of illumination 

brightness. There is a right shift in the brightness value 

(V) channel. In saturation channel, we find an inverse 

relationship between the S channel values and the 

specularities causing the S channel values to shift left.   

Based on this observation, we propose to extend the 

maximum chromaticity based approach proposed in [13] 

to HSV color space. Removal of specularity from images 

is generalized as a two-step problem. 

• Identifying the location of the diffuse and 

specular pixels from the original image which is 

degraded by specularity effect. 

• Modifying the pixels which are corrupted by 

specularity. 
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The proposed extension of the maximum chromaticity 

based approach is given in Fig. 4. 

 

Fig. 4. Flowchart of the proposed method. 

Further details of the processing details can be found at 

[13]. 

 

V. EXPERIMENTATION 

 

To compare the performance of the existing and the 

proposed extension of [13], we have considered the single 

image based intrinsic image decomposition 

methodologies proposed in [12-17]. Real-world images 

from MIT intrinsic image database [10] were used for 

experimentation. The dataset contains 120 images of 

various illumination conditions captured with and without 

flash. The images with flash were given as the input 

image and the images captured under no-flash are 

considered as the ground truth for qualitative analysis.  

PSNR, SSIM, and EKI were the parameters used for 

comparison. Sample images of experimental output image 

is given in Fig. 5. 

Simulation results: Visual similarity measure 

For qualitative measurement of the visual similarity 

between the ground-truth image and the output rendered 

image, the authors considered four metrics, namely, Peak 

Signal to Noise Ratio (PSNR) [7], Structural Similarity 

(SSIM) index [8], Edge Keeping Index (EKI), and Time 

taken for the execution. Mean Square Error (MSE) 

represents the cumulative squared error between the 

reconstructed and the input image, whereas PSNR (in dB) 

represents a measure of the peak error. SSIM is used to 

quantify the amount of visual and structural information 

retained in the output rendered image. SSIM index 

measure varies between 0 and 1, where 0 corresponds to 

structurally completely uncorrelated images, and 1 

corresponds to similar images. On the other hand, edge 

preservation capability and discrepancy in edge location 

between output and the ground-truth image is determined 

 

Fig. 3. Effect of specularities in RGB, HSV color spaces. In the figure, each subplot contains the histogram of 

corrupted and uncorrupted images taken from MIT intrinsic database [10]. 
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using EKI. EKI values vary between 0 and 1. A higher 

value of EKI index indicates that most of the edges in the 

input image are retained in the output rendered image. 

Experimental results are presented in Table 1.  

Table. 1. Visual similarity measure values of the proposed 

and state-of-the-art algorithms. Database: MIT intrinsic 

database [10]. 

 PSNR 

(in dB) 

SSIM EKI Time 

(in 

Sec.) 

Shen et al. [12] 57.16 0.55 0.45 5.10 

Shen et al. [13] 62.68 0.71 0.80 0.37 

Shih et al. [14] 53.81 0.43 0.13 3.70 

Li et al. [15] 64.40 0.78 0.73 1.09 

Zhang et al. [16] 64.76 0.78 0.77 9.17 

Li et al. [17] 63.45 0.75 0.81 0.41 

Proposed 66.23 0.80 0.84 0.26 

From the results, it is evident that the proposed approach 

enhances the performance of [13] and the results are 

slightly better than many of the compared state-of-the-art 

methods. The major advantage of the proposed 

preprocessing step of conversion into HSV color space 

are: 

 HSV color space is less sensitive to noise. 

 As Hue values do not change much because of 

specularity, the processing of identifying and 

separating reflection components is mostly 

confined to (1-S) and V channels only. 

Due to the above-mentioned advantages, the proposed 

preprocessing approach provides better visual similarity 

measures in comparison with the existing approaches. 

Also, as most of the processing is confined to two 

channels, the proposed approach takes lesser time than 

[13]. 

B. Implementation details 

All the experiments were conducted on a PC with Intel 

(R) Core (TM) i7 - 3770 CPU and 8:00 GB RAM. The 

algorithms were implemented in MATLAB R2017a 

without any GPU acceleration. The thresholds were tuned 

to attain the minimum possible localization error. 

VIII.  CONCLUSIONS 

The specularity removal of images is a relevant but 

challenging task. Most of the available literature on 

specularity removal has been tested on synthetic images 

only. In this manuscript, we implemented a few state-of-

the-art intrinsic image decomposition methods for single 

image based specularity removal application. We have 

extended [13] --- a chromaticity based reflection removal 

algorithm into HSV color domain. Experimental analysis 

on MIT intrinsic images [10] reveals that the proposed 

extension of [13] has better performance and minimum 

time complexity than the existing approaches.  
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