

# Study of Dielectric and Magnetodielectric Properties of Y-Type Ba<sub>2</sub>Mg<sub>1.5</sub>Ni<sub>0.5</sub>Fe<sub>12</sub>O<sub>22</sub> Hexaferrite

Md. F. Abdullah<sup>1\*</sup>, P. Pal<sup>1</sup>, S. Patel<sup>1</sup>, K. Chandrakanta<sup>1</sup>, R. Jena<sup>1</sup> and, A. K. Singh<sup>1\*</sup>

<sup>1</sup>Department of Physics and Astronomy, National Institute of Technology Rourkela-769008, Odisha, India.

\*Email: (faruck.ggv@gmail.com, singhanil@nitrkl.ac.in)

# Abstract

We have investigated dielectric, impedance and magnetodielectric (MD) properties of polycrystalline Y-type hexaferrite  $Ba_2Mg_{1.5}Ni_{0.5}Fe_{12}O_{22}$  (BMNF). Rietveld refinement of the X-ray diffraction pattern and hexagonal plate-like Field Emission Scanning Electron Microscope (FESEM) micrograph confirms the phase purity with rhombohedral crystal structure (*R-3m* space group). Both temperatures dependent dielectric permittivity ( $\varepsilon'$ ) and dielectric loss (tan  $\delta$ ) show an anomaly around 150°C and 290°C. The comparable value of activation energy extracted from impedance spectroscopy above 290°C between  $\sigma_g$  and  $\sigma_{gb}$  indicates that relaxation and conduction mechanism may be attributing to the same entities. Room temperature magnetodielectric (MD) measurement at 1MHz indicates the step like increase at ~8 kOe in dielectric constant ( $\varepsilon$ ) with applied field but a reverse trend is observed for magneto-loss (ML) with step like feature preserving it nature.

# **Experimental Results**



### Structural Characterization

# Introduction

- Hexaferrite materials continue to be interesting due to its potential electrical, dielectric and Magneto-electric coupling (MEC) properties at room temperature. [1]
- \* Recently, Y-type hexaferrite has attracted attention for their possibility of tailoring electrical, magnetic and ME properties by varying doping and sintering condition. [2]
- It is reported that, the magnetic ordering in Y-type BaSrCoZnFe<sub>12</sub>O<sub>22</sub> can be modulated by Al doping at Fe site, which tunes magnetic anisotropy by decreasing polyhedral distortion. [3]
- Several reports on hexaferrite mainly focused on magnetic properties but very few materials have both high resistivity and ME properties.
- \* Controlled synthesis or suitable doping are one of the prominent process of getting enhanced properties in hexaferrite sample.

> XRD refinement confirms that all the sample are properly crystallize with space group R-3m.

 Table 1. The Superexchange Bond Angle and Bond Length of BMNF

| Bond Angle | Bond Angle (degree) | Atoms  | <b>Bond length</b> (Å) |
|------------|---------------------|--------|------------------------|
| Mg2-O5-Fe1 | 132.60° (14)        | Fe1-O1 | 2.13066 (2)            |
| Mg3-O3-Mg1 | 125.50° (10)        | Fe2-O4 | 3.16472 (3)            |
| Mg1-O3-Fe3 | 154.60° (18)        | Fe2-O5 | 2.02691 (2)            |
| Fe2-O1-Mg1 | 144.70° (10)        | Fe3-O4 | 2.73398 (8)            |

### Magnetodielectric Characterization





**Dielectric and Impedance Characterization** 

Nyquist plots can be best fitted with the equivalent circuit by considering bricks-layer model. The equation of this equivalent circuit can be represented by:

$$Z^{*} = Z' - jZ'' = \frac{1}{R_{g}^{-1} + j\omega C_{g}} + \frac{1}{R_{gb}^{-1} + j\omega C_{gb} + A_{0}(j\omega)^{n}}$$

Figure show the variation of dielectric permittivity and dielectric loss at room temperature with an applied field of  $\pm 13$  kOe.

$$MD\% = \frac{\varepsilon(H) - \varepsilon(0)}{\varepsilon(0)} \times 100$$

- Linear step like increase in MD% with H in BMNF sample.
- Distorted butterfly loop like MD effect with applied field
- The step at ~8 kOe may be due to evolution of different spin ordering in the sample with

### □ Arrhenius law,

```
\boldsymbol{\sigma} = \boldsymbol{\sigma}_0 \exp(\mathrm{E_g/k_BT})
```

field.

Where,  $\sigma_0$  is prefactor, *E* is activation energy for response,  $k_B$  is Boltzmann constant, and T is absolute temperature.

### Conclusions

- The Reitveld refinement data of prepared sample are single phase rhombohedral with space group R-3 m.
- > The temperature dependent dielectric permittivity and dielectric loss



 $(R_g, C_g)$  and  $(R_{gb}, C_{gb})$  are the resistance and capacitance of grain and grain boundary respectively

The fitted value of n of constant phase element (CPE) is in range 0.65 0.31 and the value decrease with increase in temperature

#### Acknowledgment

We acknowledge Board of research in Nuclear Science (BRNS), Mumbai (Sanction: 2012/37P/40/BRNS/2145) and Department of Science and Technology (DST), New Delhi (Sanction No: SR/FTP/PS-187/2011) for funding.

#### **References**



Interestingly, it is also noticed that dielectric loss decrease with applied field followed by

step at ~8kOe.

A detailed investigation needs to be done to understand the microscopic origin of MD effect at room temperature in the studied



#### reveals anomalies around 150°C and 290°C.

- The dielectric impedance analysis shows that non-Debye-type relaxation present in the sample and above 290 °C, the relaxation and conduction
- mechanism may be attributed to the same entities.
- The room temperature magnetodielectric and magneto loss measurement shows distorted butterfly loop like hysteresis behavior with the applied

[1]Y. Iguchi, Y. Nii & Y. Onose, Nat. Commn 8, (2017) 15252
[2]. Md F. Abdullah *et al.*, Physica B: Condensed Matter 70–75 (2019) 568.
[3]. F. Wang *et al.* Appl. Phys. Lett. 100 (2012) 122901.
[4]. G. W. Rathenau, Rev. Mod. Phys. 25 (1953) 297.
[5] K. Tanwar *et al.*, RSC Adv., 8(2018), 19600.
[6] G. Catalan , *Appl. Phys. Lett.* 88 (2006) 102902.
[7] B. Ramachandran *et al.*, *Appl. Phys. Lett.* 100 (2012) 252902.