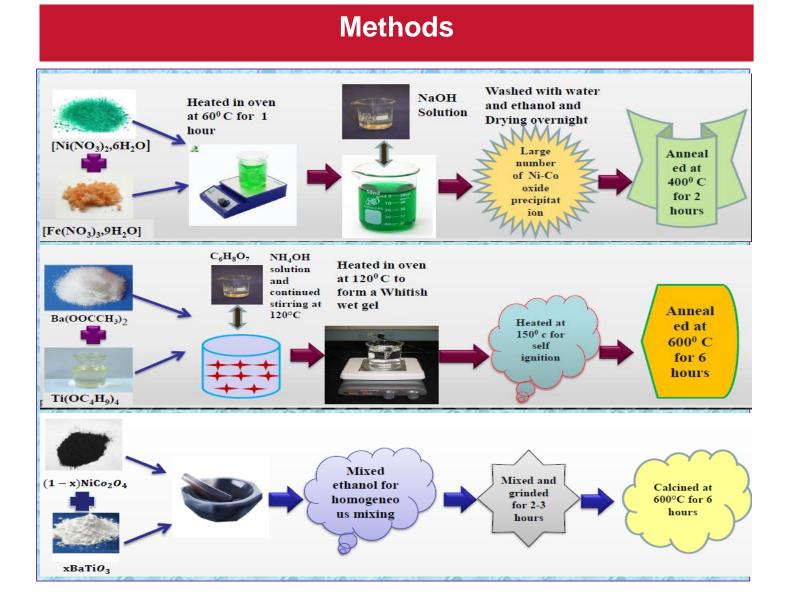
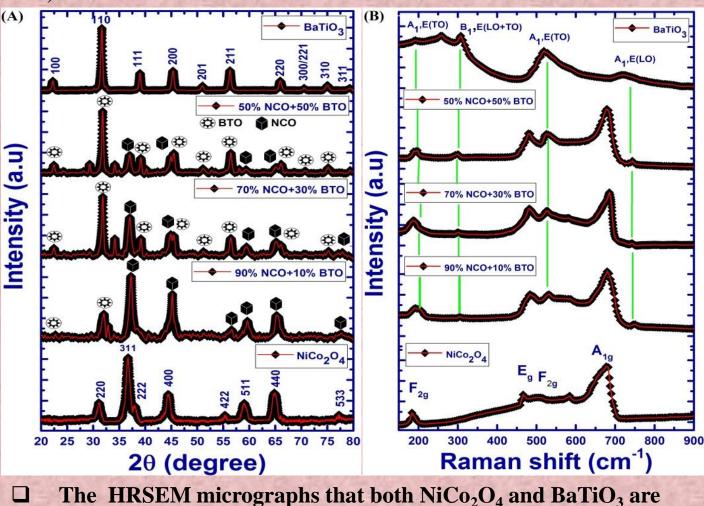


Observation of Room Temperature Raman, Magnetic and Ferroelectric Response of $(1 - x)NiCo_2O_4 - xBaTiO_3$ Nanocomposites System

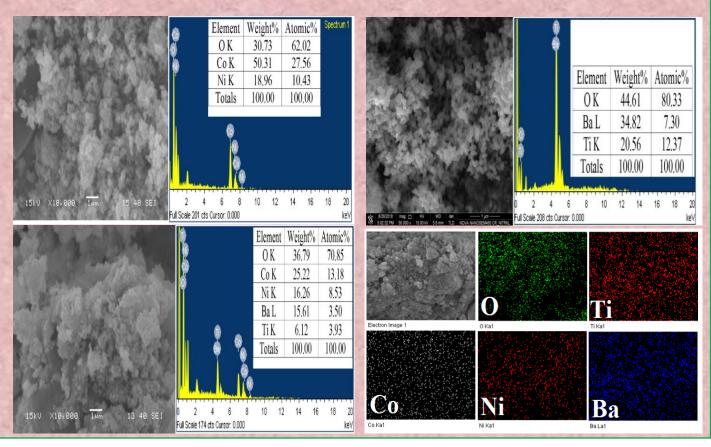

Department of Physics & Astronomy, National Institute of Technology Rourkela, Rourkela-769008, India

Abstract

The single phase $NiCo_2O_4$ and $BaTiO_3$ were synthesized via Coprecipitation and solgel auto-combustion route separately and polycrystalline novel Nanocomposites $(1 - x)NiCo_2O_4 - xBaTiO_3$ [x=0.1, 0.3, 0.5] were prepared by ultra-sonication respectively with a prospect to understand the correlation between room temperature magnetic and ferroelectric performance. The structural information, pure phase formation and surface morphology with elemental composition were confirmed by XRD, FTIR and FESEM analysis. Various Raman peaks (F_{2g}, E_g, A_{1g}) were observed corresponding to NiCo₂O₄ and E(TO), E(LO+TO) and E(LO) are assigned to BaTiO₃ nanoparticles. The M-H hysterics loop exhibits the curtailment of saturation magnetization and coercive field of NiCo₂O₄ from 5.07 emu/gm. to 2.8 emu/gm. and 448 Oe to 61 Oe with the incorporation of 50% BaTiO₃. Furthermore, the P-E response enhances in NiCo₂O₄ with the evolution of BaTiO₃ percentages.


Introduction & Objectives

- ***** Tuning the magnetic and ferroelectric properties is a huge demand of several technologies to integrate future magnetic and nanodevices.
- * The combination of ferrimagnetic NiCo₂O₄ and ferroelectric BaTiO₃ (BTO) composites are one of the unique examples of multiferroic materials and they would exhibit exceptional magnetic and electric properties than individual component.
- * The motivation of our works arises from the additional degrees of freedom of application of both NiCo₂O₄ and BaTiO₃ composites in the design of actuators, transducers, and energy storage devices by tuning their magnetic and ferroelectric properties.

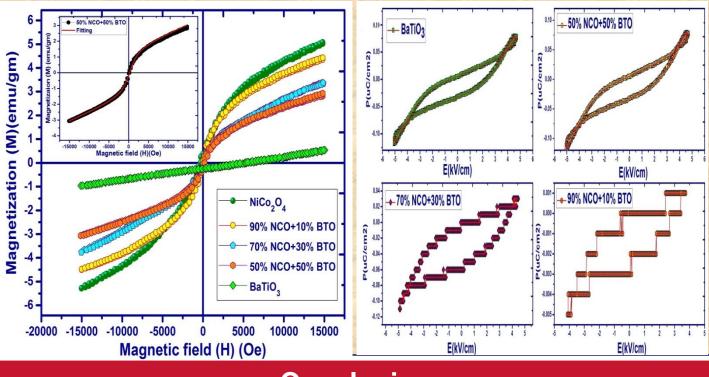


Results & Discussion

- □ All major peaks of NiCo₂O₄ (space group-Fd3m) and BaTiO₃ (space group- P4mm) are assigned to their corresponding hkl planes of JCPDS card No.73-1702 and 81-2205.
- \Box The broad peak (A_{1g}) for NiCo₂O₄ around 685 cm⁻¹ is associated with the vibration of O²⁻ ions in octahedral sites combined with Co³⁺ ions.
- \Box The additional peaks $E_g(481 \text{cm}^{-1})$ and $F_{2g}(519 \text{ cm}^{-1})$ are assigned to combined vibrations of O atoms in tetrahedral and octahedral position.
- □ In BaTiO₃, various phonon vibration modes A₁,E(TO) (172cm⁻¹), B₁,E(TO+LO)(305 cm⁻¹), A₁,E(TO)(518 cm⁻¹) and A₁,E(LO)(720 cm⁻¹) ¹) were detected.

- agglomerated in nature and their grain growth in nm range with average grain sizes 60 nm.
- The EDX spectra confirm the presence of fundamental particle Ni, Co, Ba, Ti, and O with their true stoichiometrical ratios.

Subrata Karmakar, Bibekananda Sahoo, Dhrubananda Behera



Result & Discussion

- The NiCo₂O₄ nanoparticles exposed the ferrimagnetic nature at room temperature with saturation magnetization (M_s) 5.07 emu/gm. and coercive field 448 Oe.
- The M-H loops are fitted with

$$M(H) = \left[2\frac{M_{FM}^{s}}{\Pi}\tan^{-1}\left\{\left(\frac{H\pm H_{ci}}{H_{ci}}\right)\tan\left(\frac{\Pi M_{FM}^{R}}{2M_{FM}^{s}}\right)\right\}\right] + \chi H$$

The maximum polarization (P_{max}) and coercive field (V_c) of ferroelectric BaTiO₃ nanoparticles curtailed gradually from 0.05 μ C/cm² to 0.0009 μ C/cm² and 1.65 kV/cm. to 0.25 kV/cm. due to the incorporation of non-ferroelectric NiCo₂O₄

Conclusion

- The ferrimagnetic nature of NiCo₂O₄ diminished gradually with 2 the inclusion of BaTiO₃ nanoparticle.
- The ferroelectric nature BaTiO₃ curtailed with the evolution of NiCo₂O₄ percentages and 0.5NiCo₂O₄ - 0.5BaTiO₃ composites exhibits ferrimagnetic and ferroelectric nature simultaneously at room temperature.

Acknowledgement

Authors are thankful to Prof. Pawan Kumar and Rashmirekha Negi of NIT Rourkela for extending their Ferroelectric Characterization.

References

1.G. Blasse, Philips Res. Report. 20, 528 (1965).

2. M. A. Mousa, M. A. Ahmed, Thermochimica Acta. 125, 379-386 (1988).

3. Z. Wu, Y. Zhu and X. Ji, J. Mater. Chem. A 2, 14759-14772 (2014).

4. Y. Okino, H. Shizuno, S. Kusumi, H. Kishi, Jpn. J. Appl. Phys. 33, 5393 (1994)

5. S. Karmakar, S. Varma, D.Behera, Journal of Alloys and Compounds, 49-59 (2018).

6. S. Karmakar, D. Behera, J. Phys.: Condens. Matter 31, 245701 (2019).

PhDPosters.com